
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Smart Start and HER for a Directed and Persistent
Reinforcement Learning Exploration in

Discrete Environment
Heba Alrakh1, Muhammad Fahmi Miskon2
Center for Robotics and Industrial Automation

Fakulti Kejuruteraan Elektrik
Universiti Teknikal Malaysia Melaka

76100 Durian Tunggal, Melaka, Malaysia

Rozilawati Mohd Nor3
Center for Robotics and Industrial Automation

Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik
Universiti Teknikal Malaysia Melaka

76100 Durian Tunggal, Melaka, Malaysia

Abstract—Reinforcement learning (RL) solves sequential
decision making problems through trial and error, through
experiences can be amassed to achieve goals and increase the
accumulative rewards. Exploration-exploitation dilemma is a
critical challenge in reinforcement learning, particularly
environments with misleading or sparse rewards which have
shown difficulties to construct a suitable exploration strategy. In
this paper a framework for Smart Start (SS) and Hindsight
experience replay (HER) is developed to improve the
performance of SS and make the exploration more directed
especially in the early episodes. The framework Smart Start and
Hindsight experience replay (SS+HER) was studied in discrete
maze environment with sparse rewards. The results reveal that
the framework doubles the rewards at the early episodes and
decreases the time of the agent to reach the goal.

Keywords—Reinforcement learning; hindsight experience
replay; smart start; limit search space; exploration-exploitation
trade off

I. INTRODUCTION
People learn through interacting with the environment

around them from their childhood where children’s walking or
trying to play, which is considered the major source of
learning. The same in reinforcement learning, the machine is
trying to interact with environment to collect information then
use it to discover the best possible performance [1].

Exploration means learning new knowledge by trying new
actions that the agent did not select before which might lead to
a better action selection in the future causing increase in the
accumulative reward [2]. In contrast, exploitation is using the
same actions that the agent tried in the past and was effective
in producing rewards in order to maximize the immediate
reward. Excessive exploration will be wasting of time and
cause less immediate reward because the agent might spend
most of the time doing irrelevant actions or less reward
actions. On the other hand, more exploitation will cause
suboptimal solution. So the balance between both of them is
becoming a critical challenge and an essential matter in order
to get better results [3]. This is called exploration and
exploitation dilemma.

There are many exploration strategies to solve this
problem [4] but most of them are depending on collecting

more data. A relatively new strategy is focusing on reducing
the search space such as Proximal Policy Optimization (PPO)
[5] and Trust Region Policy Optimization (TRPO) [6].
Although there are number of new limiting search space
techniques, there are no experiments combining two
techniques together.

The objective of this paper is combining Smart Start and
Hindsight Experience Replay (HER) in order to reach a more
efficient exploration. Smart Start guides an agent to a state
where it supposes to discover the newest information, which is
named the Smart Start state, Sss. Smart Start does not modify
the functionality of RL algorithm in which it is utilized with,
yet it adds more persistent and directed exploration to the
algorithm. On top of Smart Start strategy, a conceptually
simple framework (HER) is added which utilizes experience
to improve exploration by splitting the main goal to sub goals
to learn from the previous errors.

The rest of this paper is organized as follows: Section II
gives the description of the related work. Section III contains
the background of the research. In Section IV, Smart Start and
HER is discussed in details. Section V presents the
experiments. In Section VI, the results are displayed. Lastly,
Section VII is conclusion.

II. RELATED WORK
Balancing between exploration and exploitation is solved

by [7] which depends on Stratonovich’s value of information
which consists of two steps. The first one generates the base
line of agent performance by measuring the achievable return
of a policy in where there is no information regarding the
states, afterward offsets these costs with a term that evaluates
the average penalties when the state-action information is
bounded above by a prescribed amount. Though, the
optimization of value of information shows a softmax random
exploration. Obviously, it depends on factors where the value
factors is decided by human. Also it does not cover the
multistate case so the improvement of optimal average cost
can be achieved per episode.

Another alternative solution, by applying Bayesian deep
Q-networks (BDQN) is an efficient Thompson sampling based
method in high dimensional RL problems. In [8]

132 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Azizzadenesheli and Anandkumar studied the behaviour of
BDQN and compared it to another method to solve
exploration – exploitation trade off. Yet the problem is this
method itself is difficult in implementing and time consuming
and did not provide a sample efficiency guarantee.

On the other hand, Lin et al. [9] used demonstration data to
guide the exploration of agents at the beginning of training,
which can help agents learn faster. A demonstration data
guided mechanism was proposed, which makes use of
demonstration data to guide agents’ actions in the training
phase. But after running the experiment on Ant-v2
environment for random seed 3 and 4, the algorithm had
experienced the unstable training problem at the beginning of
training.

Also Colas et al. [10] tried to solve exploration –
exploitation trade off in continuous environment especially in
Continuous Mountain Car. By using “Goal Exploration
Process - Policy Gradient” GEP-PG which contained of two
stages: the first one was “Goal Exploration Processes” GEP
which used a directed exploration of the continuous state
action space for a specific environment. Then stored the
results in the replay buffer of a deep RL algorithm, which
processed them to perform sample efficient policy
improvement.

Nair et al. [11] aimed to solve the exploration problem via
imitation of a human expert. That combined demonstration-
based imitation learning and reinforcement learning to solve
exploration problems in robotic tasks. Also learn a policy from
demonstrations and rewards, using demonstrations to make the
RL problem easier. The main limitation of this work was
small efficiency when solving tougher tasks.

III. BACKGROUND

A. Smart Start
Smart Start was developed for sparse or misleading

rewards, in which the agent receives the rewards after
achieving the goal which make the learning process harder
[12]. Smart Start uses the previous information to find the
region is expected to give the best information of the agent to
solve the challenge and reach the goal. On the other hand, in
normal learning the agent spends most of the time just re-
exploring the states that have already visited.

Fig. 1 displays a normal RL contrasted with RL with
Smart Start [13]. In normal RL, the agent starts in the first
state s0 and continues its policy utilizing some exploration
strategy, named πexplore, till the end of episode in a final state
sterm. For Smart Start, in contrast, the agent firstly finds the
Smart Start state Sss then obtains a policy πss leading the
agent to Sss by utilizing past experiences. The policy πss is
implemented till the agent is nearby Sss and consequently the
agent implements the learned policy πexplore until finishing
the episode in a terminal state sterm.

Here the functionality for discrete systems is considered in
the environment. So it becomes essential to utilize the epsilon
greedy or Upper Confidence Bound (UCB1) algorithm [14]
for getting the Smart Start state and dynamic programming for
guiding the agent to the Smart Start state.

1) Choosing smart start state: In choosing Sss, select a
reachable state. The state is called reachable when it has been
visited no less than one time by the agent. Thus, the agent
cannot determine the Smart Start state at the beginning of the
learning process because it requires collecting more
information about the surrounding environment at the
beginning. The agent saves the visited states in a replay buffer
(D) [15] which is used in many algorithms in Deep
Reinforcement Learning, such as Deep Q-Network (DQN)
[16], Deep Deterministic Policy Gradients (DDPG) and
Hindsight Experience Replay (HER). The replay buffer has a
specific capacity and uses many strategies for sampling the
transition. Such as uniform sampling where each transition is
sampled with equal probability or prioritized sampling where
each transition is sampled with a high Temporal Difference
error (TD) [17].

When selecting Sss, the agent is searching for the optimal
state in buffer D to begin exploring from. As a result, a state
with a lower visitation density has a higher probability to be
nearby unvisited states as a result has a high probability of
leading to new information. In this project an easy
approximation has been used and only taken into
consideration the visitation density of discrete states. That can
be verified simply by the visitation counts C(s) to every
visited state. The following equation shows how to choose the
smart start state [7]:

Sss= argmax[maxQ(s,a) + css �
log∑ 𝐶(𝑠)𝑠∈𝑆

𝐶(𝑠)]∀𝑠 ∈ 𝐷 (1)

Where Q (s, a) is the action value function and D is the
size of buffer. A constant css > 0 for varying the amount of
exploitation and exploration and has to be selected suitably.
Sometimes the agent only needs exploration especially at the
start of the learning process to learn too much about the
surrounding environment. A large value for css will produce
more exploration. The css value may be reduced in the
learning process to change from pure exploration to a suitable
balance between exploration and exploitation.

Fig. 1. Comparison between RL Episodes with and without Smart Start.

133 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

To explain the previous equation in details, suppose that
there is a state with 10 visitation density then the value of

�log10
10

 will be 0.316. On the other hand, if a second state was
with 20 visitation density then the value of the same part will
be 0.255. Because of that the agent chooses the maximum
value since it indicates to a less visitation density.

2) Leading the agent to smart start state: Leading the
agent from the first state to Sss is considered the second section
of the Smart Start technique. As mentioned previously the
Smart Start state has been visited before, consequently the
trajectory to Sss is known. The easiest method to reach the Sss
might be through replaying the trajectory. However this has
clear consequences especially in stochastic environments
because it has randomness behavior associated with it contrary
to deterministic system [18]. Additionally, there is other issue
which is the trajectory length as the trajectory might be totally
a random path. After numerous iterations the trajectory to Sss
can involve numerous series random trajectories, leading to
extremely long, complicated and time-consuming path to the
Smart Start state. This is not a good option since it lessens the
efficiency and the accumulative rewards.

The trajectory optimization method [19] can direct the
agent to the Smart Start state. But it is needed to take into
consideration the environment in the trajectory optimization
with a view to prevent the agent going to regions with great
penalties. This work will not consider the environment
characteristics when leading the agent to the smart start state,
because the main aim is finding a policy which causes to the
shortest, most efficient and rapid track to Sss.

This article focuses on discrete environments where a
model based approach may be simply applied and almost has
an optimum performance. The trajectory optimization may be
done by dynamic programming which depends on Value
Iteration to give the shortest and most reliable track to Sss.

The agent keep counts the visitation states and learns a
transition model as the Model Based Reinforcement Learning
method where the transition model and reward function can be
simply build. The agent is tracking the visitation counts of the
total number of times an action a has been used in state s
which symbolized through C (s, a) in equation 1, also the
times number using action a in state s resulting a traversing to
state s0 which symbolized through C (s, a, s0). A rewards’
sum for the reward function for each state-action pair is saved.
Now the transition model and reward function can be built.
Then transitions’ reward is given to the Sss in order to use this
transitions, the whole transitions have a probability larger than
zero for traversing to the Smart Start state receive a reward.
That is because the agent is aiming to get into the area of the
Smart Start but not exactly in the Sss itself. An ideal policy to
the Sss may be obtained utilizing Value Iteration.

B. HER
Imagine that you want to cook any kind of food, and the

first trial was bad because you did a mistake then the next time
you will avoid that mistake to get a better result. This can
simply explain the main idea behind HER which is letting the

agent learn from all episodes even the episode was not
successful for reaching the main goal g. Assuming that at the
early episodes the agent cannot reach the final goal g, it is
supposed that the state where the agent arrives is the virtual
reward and the agent can get some reward instead of zero.
Which can be seen in Fig. 2.

Suppose that there is an agent with a task g, every
transition leads to the goal will give a reward 0 or 1. This is
called a sparse reward environment where the agent gets the
reward when reaching the goal only so that does not help in
improving the actions next time. Because of that learning from
the sparse reward is so difficult, but HER is solving this
problem [20]. HER is taking into account the goal beside the
state in the value function. So the transition will be saved in
the replay buffer in the following format:

(St || g, at, rt, St+1 || g)

As mentioned above the agent must split the tasks so
instead of storing the transitions regarding the goal g every
time, the agent also stores the transitions regarding the new
selected sub goals g’ in order to decrease the sparsity. Because
of that the agent can get more rewards which help in
improving the next new actions which leading to lessen the
time that the agent needs to reach the goal g. So the new
transition will look like the next format:

(St || g’, at, r’, St+1 || g’)

It is not a good idea to tell the agent which sub goals to
choose since it will cause a domain specific knowledge. There
are four strategies to choose the sub goal. The first strategy
uses final state in the episode. The second strategy uses
random states that come from the same episode as the
transition being replayed. The third strategy depends on
choosing random states that come from the same episode. The
last strategy chooses the sub goals in a random way. In this
experiment, the second strategy is used mainly because it is
considered the best one and has the maximum success rate
[20].

Fig. 3 displays a diagram for normal reinforcement
learning with (HER). In normal reinforcement learning, at
every time step the agent receives a representative from the
environment state St ∈ S and a reward Rt ∈ R, on that basis
selects an action at. After executing the action at, the agent
receives again the modified st+1 and rt+1. The loop continues
going on until the environment sends a terminal state, which
finishes the episode. When HER is implemented, the same
thing will happen except the experiences are stored in the
replay buffer that is related to the goal. As a result, through
each step the agent will get a batch of experiences, so the
agent will store them in the replay buffer regarding the goal
then it will choose a sub goal in order to use it.

The HER process can be described in steps as below:

1) Store tuple from the episodes using the goal g.
2) Select sub goals, g’, using one of the mentioned above

strategy.
3) Store new tuples by replacing g to g’.

134 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 2. Grid World Environment showing Virtual Goal in HER Technique.

Fig. 3. The effect of Adding Hindsight Experience Replay.

IV. SMART START AND HER ALGORITHM
In this work both techniques are combined together in

order to reach the more efficient exploration. Smart Start
solves the challenges in a more efficient way. However, it is
not a complete and independent exploration strategy. For this
reason, Smart Start should be incorporated with other
exploration strategies for increasing the accumulative rewards
and decreasing the number of episodes. So a conceptually
simple framework (HER) will be added which split the goal to
improve exploration by saving the previous experiences.

Both Smart Start and HER was developed for sparse or
misleading rewards. In Smart Start the agent receives the
rewards after achieving the final goal which makes the
learning process harder. So by adding HER the agent can
receive some rewards before reaching the final goal that
helping in decreasing the learning time.

The algorithm of how HER is implemented with Smart
Start technique is provided in Algorithm 1. This algorithm can
be utilized as a template for implementing HER with Smart
Start framework.

Algorithm 1 Smart Start Framework with HER
1 : Initialize buffer D, and let AGENT starts from initial state

s0
2 : For each episode do
3 : Sample a goal g and an initial state s0
4 : For t=0, T-1 do
5 : Sample an action at using the behavioral policy from A:

at ←πb(st||g)
6 : Execute the action at and observe a new state st+1
7 : End for
8 : For t=0, T-1 do
9 : rt := r(st, at, g)

10 : Store the transition (st||g, at, rt , st+1||g) in D
11 : Sample a set of additional goals for replay G:=S (current

episode)
12 : For g’ ∈ G do
13 : r’:= r(st, at, g’)
14 : Store the transition (st||g, at, rt , st+1||g) in D
15 : End for
16 : End for

// ---- Smart Start algorithm begins ---- //
17 : if u ≤ η and |D| > 0 then // Smart Start Algorithm
18 : // select Sss utilizing upper confidence bound
19 :

 Sss =argmaxa [max Q(s,a) + css �log |𝐷|
𝐶(𝑠)

] Ɐ s ∈ D

20 : // obtain policy using trajectory optimization
21 : πss = TRAJOPT (D, s0 , Sss)
22 : // execute smart start policy
23 : Repeat
24 : Choose at = πss (st)
25 : Take action at and observe st+1 and rt+1
26 : Add (st , at , st+1 , rt+1) to D
27 : UPDATEAGENT (D)
28 : t ← t +1
29 : Until d (st, Sss) < θ, st is terminal or t = Tepisode

// ---- Smart Start algorithm ends ---- //
30 : End for

From the algorithm, the buffer size D should be more than
zero, to ensure there are states inside. Line 19 shows that the
agent uses the buffer size instead of visitation count in
equation 1 mainly because both of them are equal.

Normally, Smart Start is not used in each episode, it is
utilized only in a specific ratio of the episodes. Now after
implementing HER that leading to boost the accumulative
rewards and enhance the performance of the agent in reaching
the goal optimal solution as shown in Fig. 4.

135 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 4. Flowchart of Smart Start with HER.

V. EXPERIMENT
The experiment is done using python 19.2.3 on a grid

world environment which is shown in Fig. 2. The initial state
is represented by a red circle, and the goal state is represented
by a green circle. The agent cannot pass through walls. Once
the agent tries to pass a wall the state does not change. The
episode is finished once the agent reaches either the state of
goal or the limit of steps per episode which is 1000. The agent
takes a reward only when the agent reaches the goal state as
shown below:

Rt+1 = {1 if st+1 = sgoal

{0 if otherwise

The number of steps that the agent takes to reach the goal
in this experiment is computed also the average reward per
episode. The experiment is carried out on the Easy grid world
environments [13]. Firstly, the experiment is carried out with
Smart Start framework only then HER is added to the
framework to compare between them.

The agent should utilize Smart Start each episode. So, in
this experiment η = 1 will be used. Smart Start does not used
in the first episode since there is no information has been
stored yet. Through the experiment the value function will be
zero. This makes the Smart Start parameter css irrelevant in
this experiment and can be set to an arbitrary positive value, a
value of css = 0.1 is utilized in this experiment.

VI. RESULTS
Reinforcement learning agents learn from the reward

which is given to the agent by the environment. There are
certain suggestions in sparse rewards environment like ours.
For an algorithm like Q-Learning this means the value
function is zero until the goal has been reached for the first
time. Also the number of steps that the agent takes to reach the
goal for the first time is consequently a vital characteristic of
the exploration strategy. But this problem was solved by
adding HER which reduce the sparsity in the environment by
choosing sub goals and give the agent rewards when reaching
there.

To study the result of adding HER on the maze grid world
environments, Fig. 5 and Fig. 6 display the average reward per
episode and the number of steps required to achieve the goal
using Smart Start alone and Smart Start with HER,
respectively.

Fig. 5 shows the reward is doubled in SS+HER comparing
to SS alone in the episodes which are less than 100. After that
both SS alone and (SS+HER) give the same performance. So
HER helps SS to be more directed and persistent in the
beginning which is leading to more rewards and achieving the
goal with a less time.

Fig. 6 shows the number of steps per episode for
(SS+HER) is less than number of steps per episode for SS
alone, the difference between them was 30% in the beginning
then is reduced to reach 5% after the episode 100. When the
number of steps is less in all the episodes as a result the time is
needed in (SS+HER) is less than the time for SS alone. So
(SS+HER) is faster than SS alone, as a result (SS+HER)
reduces the learning time.

In both Fig. 5 and Fig. 6, the graph is becoming flat after
the learning time. As in the early episodes, the agent is just
collecting information. After that, the agent uses this
information to reach the goal with the maximum reward and
minimum number of steps.

Fig. 5. The Average Reward of Smart Start alone and Smart Start with HER.

136 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 6. Steps Per Episode of both Smart Start alone and Smart Start with

HER.

VII. CONCLUSION
The Smart Start framework with HER was assessed by

using the easy grid world environment in this experiment. The
experiment considered the exploration performance of Smart
Start in combination with a limit search space technique which
is HER. The performance of exploration was determined as
the average number of steps it took the agent to attain the goal
state.

It has shown that Smart Start and HER together can
enhance the exploration on discrete grid world environments.
This clearly leads to efficient performance of the whole
learning. The Smart Start and HER can simply be combined
with several exploration strategies and reinforcement learning
algorithms. That making Smart Start and HER a promising
and attracting exploration basis of reinforcement learning
challenges. The Smart Start technique was developed for
environments with misleading or sparse rewards. This article
assessed the performance of Smart Start and HER in discrete
environments. For the future works, it is still an open area for
other environments not only restricted to discrete
environments with misleading or sparse rewards. This directly
provides a rise to remarkable guidelines for future work in the
same field in other environments such as continuous.

ACKNOWLEDGMENT
This research was supported by Ministry of Higher

Education Malaysia Grant under project FRGS/2018/FTKEE-
CERIA/F00384 and Center for Robotics and Industrial
Automation (CeRIA), Faculty of Electrical Engineering
(FKE), Universiti Teknikal Malaysia Melaka (UTeM).

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning : An Introduction.

London: MIT press, 2015.
[2] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A Survey of Deep

Reinforcement Learning in Video Games,” no. 61573353, pp. 1–13,
2019, [Online]. Available: http://arxiv.org/abs/1912.10944.

[3] L. Shani, Y. Efroni, and S. Mannor, “Exploration conscious
reinforcement learning revisited,” 36th Int. Conf. Mach. Learn. ICML
2019, vol. 2019-June, pp. 9986–10012, 2019.

[4] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing
exploration strategies for Q-learning in random stochastic mazes,” 2016
IEEE Symp. Ser. Comput. Intell. SSCI 2016, 2017, doi:
10.1109/SSCI.2016.7849366.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” pp. 1–12, 2017, [Online].
Available: http://arxiv.org/abs/1707.06347.

[6] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel, “Trust
region policy optimization,” 32nd Int. Conf. Mach. Learn. ICML 2015,
vol. 3, pp. 1889–1897, 2015.

[7] I. J. Sledge and J. C. Principe, “Balancing exploration and exploitation
in reinforcement learning using a value of information criterion,”
ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., pp.
2816–2820, 2017, doi: 10.1109/ICASSP.2017.7952670.

[8] K. Azizzadenesheli and A. Anandkumar, “Efficient exploration through
Bayesian deep Q-networks,” 2018 Inf. Theory Appl. Work. ITA 2018,
2018, doi: 10.1109/ITA.2018.8503252.

[9] K. Lin et al., “Exploration-efficient Deep Reinforcement Learning with
Demonstration Guidance for Robot Control,” 2020, [Online]. Available:
http://arxiv.org/abs/2002.12089.

[10] C. Colas, O. Sigau, and P. Y. Oudeyer, “GEP-PG: Decoupling
exploration and exploitation in deep reinforcement learning algorithms,”
35th Int. Conf. Mach. Learn. ICML 2018, vol. 3, pp. 1682–1691, 2018.

[11] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming Exploration in Reinforcement Learning with
Demonstrations,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 6292–
6299, 2018, doi: 10.1109/ICRA.2018.8463162.

[12] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J.
Brandstetter, and S. Hochreiter, “RUDDER: Return Decomposition for
Delayed Rewards,” in 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019, no. NeurIPS, pp. 1–12.

[13] Bart Keulen, “Smart Start A Directed and Persistent Exploration
Framework for Reinforcement Learning,” 2018.

[14] E. Hartog and H. Moreines, “New techniques in automatic flight control
system design,” SAE Tech. Pap., vol. 3, pp. 397–422, 1961, doi:
10.4271/610369.

[15] S. Zhang and R. S. Sutton, “A Deeper Look at Experience Replay,”
2017, [Online]. Available: http://arxiv.org/abs/1712.01275.

[16] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A Theoretical Analysis of Deep
Q-Learning,” vol. 120, no. 1995, pp. 1–4, 2019, [Online]. Available:
http://arxiv.org/abs/1901.00137.

[17] M. Tokic, P. Ertle, G. Palm, D. Söffker, and H. Voos, “Robust
exploration/exploitation trade-offs in safety-critical applications,” IFAC
Proc. Vol., vol. 8, no. PART 1, pp. 660–665, 2012, doi:
10.3182/20120829-3-MX-2028.00160.

[18] V. Anagnostopoulou, “Stochastic and deterministic absorption in
neutron-interference experiments,” vol. 36, no. 9, pp. 1–17, 1987.

[19] J. T. Betts, “Survey of numerical methods for trajectory optimization,” J.
Guid. Control. Dyn., vol. 21, no. 2, pp. 193–207, 1998, doi:
10.2514/2.4231.

[20] M. Andrychowicz et al., “Hindsight experience replay,” Adv. Neural
Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5049–5059, 2017.

137 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Background
	A. Smart Start
	1) Choosing smart start state: In choosing Sss, select a reachable state. The state is called reachable when it has been visited no less than one time by the agent. Thus, the agent cannot determine the Smart Start state at the beginning of the learning pro�
	2) Leading the agent to smart start state: Leading the agent from the first state to Sss is considered the second section of the Smart Start technique. As mentioned previously the Smart Start state has been visited before, consequently the trajectory to Ss�

	B. HER
	1) Store tuple from the episodes using the goal g.
	2) Select sub goals, g’, using one of the mentioned above strategy.
	3) Store new tuples by replacing g to g’.

	IV. Smart Start and HER Algorithm
	V. Experiment
	VI. Results
	VII. Conclusion

