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Abstract—Reinforcement learning (RL) solves sequential 
decision making problems through trial and error, through 
experiences can be amassed to achieve goals and increase the 
accumulative rewards. Exploration-exploitation dilemma is a 
critical challenge in reinforcement learning, particularly 
environments with misleading or sparse rewards which have 
shown difficulties to construct a suitable exploration strategy. In 
this paper a framework for Smart Start (SS) and Hindsight 
experience replay (HER) is developed to improve the 
performance of SS and make the exploration more directed 
especially in the early episodes. The framework Smart Start and 
Hindsight experience replay (SS+HER) was studied in discrete 
maze environment with sparse rewards. The results reveal that 
the framework doubles the rewards at the early episodes and 
decreases the time of the agent to reach the goal. 

Keywords—Reinforcement learning; hindsight experience 
replay; smart start; limit search space; exploration-exploitation 
trade off 

I. INTRODUCTION  
People learn through interacting with the environment 

around them from their childhood where children’s walking or 
trying to play, which is considered the major source of 
learning. The same in reinforcement learning, the machine is 
trying to interact with environment to collect information then 
use it to discover the best possible performance [1]. 

Exploration means learning new knowledge by trying new 
actions that the agent did not select before which might lead to 
a better action selection in the future causing increase in the 
accumulative reward [2]. In contrast, exploitation is using the 
same actions that the agent tried in the past and was effective 
in producing rewards in order to maximize the immediate 
reward. Excessive exploration will be wasting of time and 
cause less immediate reward because the agent might spend 
most of the time doing irrelevant actions or less reward 
actions. On the other hand, more exploitation will cause 
suboptimal solution. So the balance between both of them is 
becoming a critical challenge and an essential matter in order 
to get better results [3]. This is called exploration and 
exploitation dilemma. 

There are many exploration strategies to solve this 
problem [4] but most of them are depending on collecting 

more data. A relatively new strategy is focusing on reducing 
the search space such as Proximal Policy Optimization (PPO) 
[5] and Trust Region Policy Optimization (TRPO) [6]. 
Although there are number of new limiting search space 
techniques, there are no experiments combining two 
techniques together. 

The objective of this paper is combining Smart Start and 
Hindsight Experience Replay (HER) in order to reach a more 
efficient exploration. Smart Start guides an agent to a state 
where it supposes to discover the newest information, which is 
named the Smart Start state, Sss. Smart Start does not modify 
the functionality of RL algorithm in which it is utilized with, 
yet it adds more persistent and directed exploration to the 
algorithm. On top of Smart Start strategy, a conceptually 
simple framework (HER) is added which utilizes experience 
to improve exploration by splitting the main goal to sub goals 
to learn from the previous errors. 

The rest of this paper is organized as follows: Section II 
gives the description of the related work. Section III contains 
the background of the research. In Section IV, Smart Start and 
HER is discussed in details. Section V presents the 
experiments. In Section VI, the results are displayed. Lastly, 
Section VII is conclusion. 

II. RELATED WORK 
Balancing between exploration and exploitation is solved 

by [7] which depends on Stratonovich’s value of information 
which consists of two steps. The first one generates the base 
line of agent performance by measuring the achievable return 
of a policy in where there is no information regarding the 
states, afterward offsets these costs with a term that evaluates 
the average penalties when the state-action information is 
bounded above by a prescribed amount. Though, the 
optimization of value of information shows a softmax random 
exploration. Obviously, it depends on factors where the value 
factors is decided by human. Also it does not cover the 
multistate case so the improvement of optimal average cost 
can be achieved per episode. 

Another alternative solution, by applying Bayesian deep 
Q-networks (BDQN) is an efficient Thompson sampling based 
method in high dimensional RL problems. In [8] 

132 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

Azizzadenesheli and Anandkumar studied the behaviour of 
BDQN and compared it to another method to solve 
exploration – exploitation trade off. Yet the problem is this 
method itself is difficult in implementing and time consuming 
and did not provide a sample efficiency guarantee. 

On the other hand, Lin et al. [9] used demonstration data to 
guide the exploration of agents at the beginning of training, 
which can help agents learn faster. A demonstration data 
guided mechanism was proposed, which makes use of 
demonstration data to guide agents’ actions in the training 
phase. But after running the experiment on Ant-v2 
environment for random seed 3 and 4, the algorithm had 
experienced the unstable training problem at the beginning of 
training. 

Also Colas et al. [10] tried to solve exploration – 
exploitation trade off in continuous environment especially in 
Continuous Mountain Car. By using “Goal Exploration 
Process - Policy Gradient” GEP-PG which contained of two 
stages: the first one was “Goal Exploration Processes” GEP 
which used a directed exploration of the continuous state 
action space for a specific environment. Then stored the 
results in the replay buffer of a deep RL algorithm, which 
processed them to perform sample efficient policy 
improvement. 

Nair et al. [11] aimed to solve the exploration problem via 
imitation of a human expert. That combined demonstration-
based imitation learning and reinforcement learning to solve 
exploration problems in robotic tasks. Also learn a policy from 
demonstrations and rewards, using demonstrations to make the 
RL problem easier. The main limitation of this work was 
small efficiency when solving tougher tasks. 

III. BACKGROUND 

A. Smart Start 
Smart Start was developed for sparse or misleading 

rewards, in which the agent receives the rewards after 
achieving the goal which make the learning process harder 
[12]. Smart Start uses the previous information to find the 
region is expected to give the best information of the agent to 
solve the challenge and reach the goal. On the other hand, in 
normal learning the agent spends most of the time just re-
exploring the states that have already visited. 

Fig. 1 displays a normal RL contrasted with RL with 
Smart Start [13]. In normal RL, the agent starts in the first 
state s0 and continues its policy utilizing some exploration 
strategy, named πexplore, till the end of episode in a final state 
sterm. For Smart Start, in contrast, the agent firstly finds the 
Smart Start state Sss then obtains a policy πss leading the 
agent to Sss by utilizing past experiences. The policy πss is 
implemented till the agent is nearby Sss and consequently the 
agent implements the learned policy πexplore until finishing 
the episode in a terminal state sterm. 

Here the functionality for discrete systems is considered in 
the environment. So it becomes essential to utilize the epsilon 
greedy or Upper Confidence Bound (UCB1) algorithm [14] 
for getting the Smart Start state and dynamic programming for 
guiding the agent to the Smart Start state. 

1) Choosing smart start state: In choosing Sss, select a 
reachable state. The state is called reachable when it has been 
visited no less than one time by the agent. Thus, the agent 
cannot determine the Smart Start state at the beginning of the 
learning process because it requires collecting more 
information about the surrounding environment at the 
beginning. The agent saves the visited states in a replay buffer 
(D) [15] which is used in many algorithms in Deep 
Reinforcement Learning, such as Deep Q-Network (DQN) 
[16], Deep Deterministic Policy Gradients (DDPG) and 
Hindsight Experience Replay (HER). The replay buffer has a 
specific capacity and uses many strategies for sampling the 
transition. Such as uniform sampling where each transition is 
sampled with equal probability or prioritized sampling where 
each transition is sampled with a high Temporal Difference 
error (TD) [17]. 

When selecting Sss, the agent is searching for the optimal 
state in buffer D to begin exploring from. As a result, a state 
with a lower visitation density has a higher probability to be 
nearby unvisited states as a result has a high probability of 
leading to new information. In this project an easy 
approximation has been used and only taken into 
consideration the visitation density of discrete states. That can 
be verified simply by the visitation counts C(s) to every 
visited state. The following equation shows how to choose the 
smart start state [7]: 

Sss= argmax[maxQ(s,a) + css �
log∑ 𝐶(𝑠)𝑠∈𝑆

𝐶(𝑠)  ]∀𝑠 ∈ 𝐷          (1) 

Where Q (s, a) is the action value function and D is the 
size of buffer. A constant css > 0 for varying the amount of 
exploitation and exploration and has to be selected suitably. 
Sometimes the agent only needs exploration especially at the 
start of the learning process to learn too much about the 
surrounding environment. A large value for css will produce 
more exploration. The css value may be reduced in the 
learning process to change from pure exploration to a suitable 
balance between exploration and exploitation. 

 
Fig. 1. Comparison between RL Episodes with and without Smart Start. 
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To explain the previous equation in details, suppose that 
there is a state with 10 visitation density then the value of 

�log10 
10

 will be 0.316. On the other hand, if a second state was 
with 20 visitation density then the value of the same part will 
be 0.255. Because of that the agent chooses the maximum 
value since it indicates to a less visitation density. 

2) Leading the agent to smart start state: Leading the 
agent from the first state to Sss is considered the second section 
of the Smart Start technique. As mentioned previously the 
Smart Start state has been visited before, consequently the 
trajectory to Sss is known. The easiest method to reach the Sss 
might be through replaying the trajectory. However this has 
clear consequences especially in stochastic environments 
because it has randomness behavior associated with it contrary 
to deterministic system [18]. Additionally, there is other issue 
which is the trajectory length as the trajectory might be totally 
a random path. After numerous iterations the trajectory to Sss 
can involve numerous series random trajectories, leading to 
extremely long, complicated and time-consuming path to the 
Smart Start state. This is not a good option since it lessens the 
efficiency and the accumulative rewards. 

The trajectory optimization method [19] can direct the 
agent to the Smart Start state. But it is needed to take into 
consideration the environment in the trajectory optimization 
with a view to prevent the agent going to regions with great 
penalties. This work will not consider the environment 
characteristics when leading the agent to the smart start state, 
because the main aim is finding a policy which causes to the 
shortest, most efficient and rapid track to Sss. 

This article focuses on discrete environments where a 
model based approach may be simply applied and almost has 
an optimum performance. The trajectory optimization may be 
done by dynamic programming which depends on Value 
Iteration to give the shortest and most reliable track to Sss. 

The agent keep counts the visitation states and learns a 
transition model as the Model Based Reinforcement Learning 
method where the transition model and reward function can be 
simply build. The agent is tracking the visitation counts of the 
total number of times an action a has been used in state s 
which symbolized through C (s, a) in equation 1, also the 
times number using action a in state s resulting a traversing to 
state s0 which symbolized through C (s, a, s0). A rewards’ 
sum for the reward function for each state-action pair is saved. 
Now the transition model and reward function can be built. 
Then transitions’ reward is given to the Sss in order to use this 
transitions, the whole transitions have a probability larger than 
zero for traversing to the Smart Start state receive a reward. 
That is because the agent is aiming to get into the area of the 
Smart Start but not exactly in the Sss itself. An ideal policy to 
the Sss may be obtained utilizing Value Iteration. 

B. HER 
Imagine that you want to cook any kind of food, and the 

first trial was bad because you did a mistake then the next time 
you will avoid that mistake to get a better result. This can 
simply explain the main idea behind HER which is letting the 

agent learn from all episodes even the episode was not 
successful for reaching the main goal g. Assuming that at the 
early episodes the agent cannot reach the final goal g, it is 
supposed that the state where the agent arrives is the virtual 
reward and the agent can get some reward instead of zero. 
Which can be seen in Fig. 2. 

Suppose that there is an agent with a task g, every 
transition leads to the goal will give a reward 0 or 1. This is 
called a sparse reward environment where the agent gets the 
reward when reaching the goal only so that does not help in 
improving the actions next time. Because of that learning from 
the sparse reward is so difficult, but HER is solving this 
problem [20]. HER is taking into account the goal beside the 
state in the value function. So the transition will be saved in 
the replay buffer in the following format: 

(St || g, at, rt, St+1 || g ) 

As mentioned above the agent must split the tasks so 
instead of storing the transitions regarding the goal g every 
time, the agent also stores the transitions regarding the new 
selected sub goals g’ in order to decrease the sparsity. Because 
of that the agent can get more rewards which help in 
improving the next new actions which leading to lessen the 
time that the agent needs to reach the goal g. So the new 
transition will look like the next format: 

(St || g’, at, r’, St+1 || g’ ) 

It is not a good idea to tell the agent which sub goals to 
choose since it will cause a domain specific knowledge. There 
are four strategies to choose the sub goal. The first strategy 
uses final state in the episode. The second strategy uses 
random states that come from the same episode as the 
transition being replayed. The third strategy depends on 
choosing random states that come from the same episode. The 
last strategy chooses the sub goals in a random way. In this 
experiment, the second strategy is used mainly because it is 
considered the best one and has the maximum success rate 
[20]. 

Fig. 3 displays a diagram for normal reinforcement 
learning with (HER). In normal reinforcement learning, at 
every time step the agent receives a representative from the 
environment state St ∈ S and a reward Rt ∈ R, on that basis 
selects an action at. After executing the action at, the agent 
receives again the modified st+1 and rt+1. The loop continues 
going on until the environment sends a terminal state, which 
finishes the episode. When HER is implemented, the same 
thing will happen except the experiences are stored in the 
replay buffer that is related to the goal. As a result, through 
each step the agent will get a batch of experiences, so the 
agent will store them in the replay buffer regarding the goal 
then it will choose a sub goal in order to use it. 

The HER process can be described in steps as below:  

1) Store tuple from the episodes using the goal g. 
2) Select sub goals, g’, using one of the mentioned above 

strategy. 
3) Store new tuples by replacing g to g’. 
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Fig. 2. Grid World Environment showing Virtual Goal in HER Technique. 

 
Fig. 3. The effect of Adding Hindsight Experience Replay. 

IV. SMART START AND HER ALGORITHM 
In this work both techniques are combined together in 

order to reach the more efficient exploration. Smart Start 
solves the challenges in a more efficient way. However, it is 
not a complete and independent exploration strategy. For this 
reason, Smart Start should be incorporated with other 
exploration strategies for increasing the accumulative rewards 
and decreasing the number of episodes. So a conceptually 
simple framework (HER) will be added which split the goal to 
improve exploration by saving the previous experiences. 

Both Smart Start and HER was developed for sparse or 
misleading rewards. In Smart Start the agent receives the 
rewards after achieving the final goal which makes the 
learning process harder. So by adding HER the agent can 
receive some rewards before reaching the final goal that 
helping in decreasing the learning time. 

The algorithm of how HER is implemented with Smart 
Start technique is provided in Algorithm 1. This algorithm can 
be utilized as a template for implementing HER with Smart 
Start framework. 

Algorithm 1 Smart Start Framework with HER 
1 : Initialize buffer D, and let AGENT starts from initial state 

s0 
2 : For each episode do 
3 :  Sample a goal g and an initial state s0 
4 :  For t=0, T-1 do  
5 :  Sample an action at  using the behavioral policy from A: 

at ←πb(st||g) 
6 :  Execute the action at  and observe a new state st+1  
7 :  End for 
8 :  For t=0, T-1 do  
9 :  rt  := r(st, at, g) 

10 :  Store the transition (st||g, at, rt , st+1||g) in D 
11 :  Sample a set of additional goals for replay G:=S (current 

episode)  
12 :  For g’ ∈ G do  
13 :  r’:= r(st, at, g’)  
14 :  Store the transition (st||g, at, rt , st+1||g) in D 
15 :  End for 
16  :   End for  

// ---- Smart Start algorithm begins ---- // 
17 :  if u ≤ η and |D| > 0 then // Smart Start Algorithm 
18 :  // select Sss utilizing upper confidence bound 
19 : 

 Sss =argmaxa [max Q(s,a) + css �log |𝐷|
𝐶(𝑠)

] Ɐ s ∈ D 

20 :  // obtain policy using trajectory optimization 
21 :  πss = TRAJOPT (D, s0 , Sss) 
22 :  // execute smart start policy  
23 :  Repeat  
24 :  Choose at = πss (st) 
25 :  Take action at and observe st+1 and rt+1  
26 :  Add (st  , at  , st+1 , rt+1) to D 
27 :  UPDATEAGENT (D) 
28 :  t ← t +1 
29 :  Until d (st, Sss) < θ, st  is terminal or t = Tepisode   

// ---- Smart Start algorithm ends ---- // 
30 : End for 

From the algorithm, the buffer size D should be more than 
zero, to ensure there are states inside. Line 19 shows that the 
agent uses the buffer size instead of visitation count in 
equation 1 mainly because both of them are equal. 

Normally, Smart Start is not used in each episode, it is 
utilized only in a specific ratio of the episodes. Now after 
implementing HER that leading to boost the accumulative 
rewards and enhance the performance of the agent in reaching 
the goal optimal solution as shown in Fig. 4. 
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Fig. 4. Flowchart of Smart Start with HER. 

V. EXPERIMENT 
The experiment is done using python 19.2.3 on a grid 

world environment which is shown in Fig. 2. The initial state 
is represented by a red circle, and the goal state is represented 
by a green circle. The agent cannot pass through walls. Once 
the agent tries to pass a wall the state does not change. The 
episode is finished once the agent reaches either the state of 
goal or the limit of steps per episode which is 1000. The agent 
takes a reward only when the agent reaches the goal state as 
shown below: 

Rt+1 = {1 if st+1 = sgoal 

{0 if otherwise 

The number of steps that the agent takes to reach the goal 
in this experiment is computed also the average reward per 
episode. The experiment is carried out on the Easy grid world 
environments [13]. Firstly, the experiment is carried out with 
Smart Start framework only then HER is added to the 
framework to compare between them. 

The agent should utilize Smart Start each episode. So, in 
this experiment η = 1 will be used. Smart Start does not used 
in the first episode since there is no information has been 
stored yet. Through the experiment the value function will be 
zero. This makes the Smart Start parameter css irrelevant in 
this experiment and can be set to an arbitrary positive value, a 
value of css = 0.1 is utilized in this experiment. 

VI. RESULTS 
Reinforcement learning agents learn from the reward 

which is given to the agent by the environment. There are 
certain suggestions in sparse rewards environment like ours. 
For an algorithm like Q-Learning this means the value 
function is zero until the goal has been reached for the first 
time. Also the number of steps that the agent takes to reach the 
goal for the first time is consequently a vital characteristic of 
the exploration strategy. But this problem was solved by 
adding HER which reduce the sparsity in the environment by 
choosing sub goals and give the agent rewards when reaching 
there. 

To study the result of adding HER on the maze grid world 
environments, Fig. 5 and Fig. 6 display the average reward per 
episode and the number of steps required to achieve the goal 
using Smart Start alone and Smart Start with HER, 
respectively. 

Fig. 5 shows the reward is doubled in SS+HER comparing 
to SS alone in the episodes which are less than 100. After that 
both SS alone and (SS+HER) give the same performance. So 
HER helps SS to be more directed and persistent in the 
beginning which is leading to more rewards and achieving the 
goal with a less time. 

Fig. 6 shows the number of steps per episode for 
(SS+HER) is less than number of steps per episode for SS 
alone, the difference between them was 30% in the beginning 
then is reduced to reach 5% after the episode 100. When the 
number of steps is less in all the episodes as a result the time is 
needed in (SS+HER) is less than the time for SS alone. So 
(SS+HER) is faster than SS alone, as a result (SS+HER) 
reduces the learning time. 

In both Fig. 5 and Fig. 6, the graph is becoming flat after 
the learning time. As in the early episodes, the agent is just 
collecting information. After that, the agent uses this 
information to reach the goal with the maximum reward and 
minimum number of steps. 

 
Fig. 5. The Average Reward of Smart Start alone and Smart Start with HER. 
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Fig. 6. Steps Per Episode of both Smart Start alone and Smart Start with 

HER. 

VII. CONCLUSION 
The Smart Start framework with HER was assessed by 

using the easy grid world environment in this experiment. The 
experiment considered the exploration performance of Smart 
Start in combination with a limit search space technique which 
is HER. The performance of exploration was determined as 
the average number of steps it took the agent to attain the goal 
state. 

It has shown that Smart Start and HER together can 
enhance the exploration on discrete grid world environments. 
This clearly leads to efficient performance of the whole 
learning. The Smart Start and HER can simply be combined 
with several exploration strategies and reinforcement learning 
algorithms. That making Smart Start and HER a promising 
and attracting exploration basis of reinforcement learning 
challenges. The Smart Start technique was developed for 
environments with misleading or sparse rewards. This article 
assessed the performance of Smart Start and HER in discrete 
environments. For the future works, it is still an open area for 
other environments not only restricted to discrete 
environments with misleading or sparse rewards. This directly 
provides a rise to remarkable guidelines for future work in the 
same field in other environments such as continuous. 
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