
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 11, 2020 

Multi-Verse Algorithm based Approach for Multi-
criteria Path Planning of Unmanned Aerial Vehicles 

Raja Jarray1, Soufiene Bouallègue1, 2  
Research Laboratory in Automatic Control (LARA) 

National Engineering School of Tunis (ENIT) 
University of Tunis EL MANAR, BP 37, Le Belvédère, 1002 Tunis, Tunisia1 

Higher Institute of Industrial Systems of Gabès (ISSIG), 6011 Gabès, Tunisia2 

 
 

Abstract—In this paper, a method based on a Multiobjective 
Multi-Verse Optimizer (MOMVO) is proposed and successfully 
implemented to solve the unmanned aerial vehicles’ path 
planning problem. The generation of each coordinate of the 
aircraft is reformulated as a multiobjective optimization problem 
under operational constraints. The shortest and smoothest path 
by avoiding all obstacles and threats is the solution of such a hard 
optimization problem. A set of competitive metaheuristics such 
as Multiobjective Salp Swarm Algorithm (MSSA), Grey Wolf 
Optimizer (MOGWO), Particle Swarm Optimization (MOPSO) 
and Non-dominated Sorting Genetic Algorithm II (NSGA-II) are 
retained as comparison tools for the problem’s resolution. To 
assess the performance of the reported algorithms and conclude 
about their effectiveness, an empirical study is firstly performed 
for solving different multiobjective test functions from the 
literature. These algorithms are then used to obtain a set of 
optimal Pareto solutions for the multi-criteria path planning 
problem. An efficient Technique for Order of Preference by 
Similarity to Ideal Solution (TOPSIS) of Multi Criteria Decision-
Making (MCDM) model is investigated to find the optimal 
solution from the non-dominant ones. Demonstrative results and 
statistical analysis are presented and compared in order to show 
the effectiveness of the proposed MOMVO-based path planning 
technique. 

Keywords—Unmanned aerial vehicles; path planning problem; 
multiobjective optimization; multiobjective multi-verse algorithm; 
decision-making model; nonparametric statistical tests 

I. INTRODUCTION 
The Unmanned Aerial Vehicles (UAVs) have shown their 

commitment in various military and civil applications [1, 2]. 
The problem of paths planning, especially within a flight 
environment with threats and obstacles, is one of the key 
elements in the framework of design and control of these aerial 
robots. Such a complex problem can be seen and treated as a 
hard optimization problem under operational constraints [3]-
[15]. The resolution of such a problem allows the unmanned 
aircraft to autonomously calculate the optimal or almost 
optimal path from the starting point to the target, based on the 
requirements and constraints of the activity. 

In the literature, various approaches and techniques have 
been proposed to solve such kind of complex optimization 
problems. The graph-based techniques are extensively adopted 
and show some effective advantages. The well-known Voronoi 
diagram searching method [3], rapidly-exploring random graph 
algorithm [4], A* algorithm [5], D* Lite approach [6] and 

artificial potential field algorithm [7] are the main used 
approaches. Often, it is difficult to consider the movement 
limitations of the UAVs in these types of planning methods, 
which means that they cannot normally be used within 
practical situations [8]. Another category of path planning 
methods, such as the population-based scalable algorithms, can 
overcome these shortcomings. As an example, the authors in 
[9] used the Genetic Algorithm (GA) to solve the shortest path 
problem in order to scan large agricultural lands and collect 
data. The authors in [10] developed an algorithm that uses the 
well-known Particle Swarm Optimization (PSO) method to 
solve the trajectory planning problem for multiple UAVs in a 
receding horizon framework. In [11], a two new hybrid 
metaheuristics that combine the PSO method both with the 
genetic algorithm and harmony search algorithm have been 
proposed to solve the UAVs’ path planning problem. In [12], 
the authors have solved the UAVs’ path planning problem 
based on a recent global metaheuristic named Grey Wolf 
Optimization (GWO). In [13], an improved Ant Colony 
Optimization (ACO) algorithm has been given by introducing 
the metropolis criterion into the node filtering mechanism in 
order to generate the initial trajectory and avoid the risk of 
falling into the optimal local solution and stagnation. In [14], a 
modified central force optimization based method has been 
introduced to address the rotary wing vertical take-off and 
landing aircraft trajectory planning. The authors in [15] have 
presented a 3D path planning algorithm based on an adaptive 
sensitivity decision operator associated with a PSO method. 

In addition, most real path planning problems need to be 
solved by considering different conflicting goals such as price 
and quality. The conflicting objectives must be addressed 
simultaneously and the weighted based methods are usually 
used [14, 16]. Nevertheless, it is difficult to determine the 
relationship between the weighting factors. Therefore, these 
objectives should be treated by multiobjective metaheuristics 
which are applied in many others domains [17, 18]. The idea of 
using multiobjective optimization concepts for path planning 
problem formulation and resolution seems a promising solution 
and it has been exploited in this work. 

In [19], a Multiobjective Genetic Algorithm (MOGA) 
based method has been used to solve the complex path 
planning problems implying a mission of UAVs and a set of 
ground control stations. Many objectives have been optimized 
such as the makespan, the fuel consumption, and covered 
distance. In [20], the authors developed an improved 
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Multiobjective Particle Swarm Optimization (MOPSO) 
algorithm to find collision-free and feasible paths with various 
minimum factors such as altitude, length and angle variable 
rate. The authors in [21] have improved a Non-dominated 
Sorting Genetic Algorithm III (NSGA-III) by adding adaptive 
genetic operators in the offspring population generation to 
solve the path planning problems. In [22], an improved 
multiobjective ACO algorithm has been adopted in which the 
objective function for optimization is formulated to make UAV 
drone following a short, safe and smooth path. Such an 
algorithm assumes that the environment is known in advance.  
The authors in [23] have used a safety index map (SIM) to 
catch obstacles in the geography map. Then, a multiobjective 
path planning approach based on a Crowding Distance NSGA-
II (CDNSAG-II) metaheuristic is proposed while considering 
both path length and safety as the main flight objectives. In 
[24], the path planning problem has been modeled as a problem 
with high complexity involving several tasks. Such a modeling 
approach presented high convergence rate for multiobjective 
solvers. The authors have used a weighted random generator 
that can concentrate the search on potentially better regions of 
the solution space to reduce the convergence rate of the used 
Multiobjective Evolutionary Algorithm (MOEA) solver. The 
authors in [25] have solved a multi-UAVs’ trajectory planning 
problem using the concepts of MOPSO metaheuristic. 

Based on the aforementioned studies, and regarding the 
drawbacks of the cited methods especially in terms of 
complexity and time consuming, the main contribution of this 
paper is the development of a novel strategy of reformulation 
and solving of a multi-criteria path planning problem under 
operational constraints based on a recent and unified MOMVO 
algorithm. The proposed MOMVO-based method allows the 
UAVs to autonomously calculate the optimum or near optimal 
path from the starting point to the target while avoiding all 
threats and obstacles considered in the flight environment. The 
choice of a solution among all the optimal Pareto ones requires 
a higher-level decision-making approach. The Technique for 
Order of Preference by Similarity to Ideal Solution (TOPSIS) 
is proposed for this path planning methodology. The 
demonstrative results are presented, statistically analyzed and 
compared with each other as well as with those obtained by the 
competitive MOPSO, NSGA-II, MSSA and MOGWO 
algorithms. 

The reminder of this paper is organized as follows. In 
Section II, the flight environment is topologically modeled and 
a multiobjective reformulation of the UAVs’ path planning 
problem is derived. This section is ended by the description of 
the proposed offline path planning algorithm. Section III 
presents the description of the proposed multiobjective multi-
verse algorithm MOMVO as well as its adaptation to solve the 
reformulated multi-criteria path planning problem. A pseudo-
code of such a multiobjective algorithm is given for the soft 
implementation. In Section IV, numerical simulations are 
carried out and discussed to show the effectiveness of the 
proposed MOMVO-based path planning approach. Several 
comparisons with a set of competitive algorithms are made 
through this study. Section V concludes the paper. 

II. PATH PLANNING PROBLEM FORMULATION 

A. Flight Environment Modeling 
In robotics, the path planning procedure is the creation of a 

plan to guide a UAV, similar to a moving object in the space, 
from the starting point S to the destination one P with the 
spatial coordinates denoted as ( ) ( )1 1 1, , , ,S S Sx y z x y z=  and 

( ) ( ), , , ,P P P n n nx y z x y z= , respectively. The navigation 
model used in this study is shown in Fig. 1. In a real navigation 
environment, it is very challenging to define the geometric 
coordinates of the obstacles and threats of the UAV drone. In 
this work, a danger zone is characterized by a cylinder model 
supposed to be static in the 3D flight environment as depicted 
in Fig. 2. 

The x-axis range of the flight space is divided into 1n −   
equal segments which are denoted as 1 2 3, , , , nx x x x . The 

perpendicular planes ( )1 2 3, , , , nL L L L…  are passed by these 
corresponding division points. By taking a waypoint 

( ), ,i i i ix y z=w  at each plane iL  and forming a waypoints’ 

sequence ( ) ( ){ }2 2 2 1 1 1, , , , , , , ,n n nS x y z x y z P− − −= W , a flight 
path is then generated by connecting all these waypoints. In 
this study, the problem of path planning is solved by 
optimizing the series of the waypoints in order to generate a 
shorter and smoother path from the starting point S to the goal 
point P while avoiding the existing obstacles and threats. Based 
on the cubic Spline interpolation method, these waypoints are 
connected to obtain the desired smooth path. In this path’s 
modeling strategy, the x-coordinates of all waypoints are know 
in advance but those of the y- and z-axis have to be 
determined. Subsequently, the generation of each coordinate 
waypoint ( ), ,i i known i ix x y z= =w ,, 2,3, , 1i n= − , is 
formulated as a multiobjective optimization problem with the 
decision variables { },i iy z=θ  

and under operational nonlinear 
and complex constraints. In this mathematical formulation, the 
variables iy  and iz  denote the y- and z-coordinates of the ith 
waypoint, respectively. 

 
Fig. 1. Geometry of the UAV’s Navigation Space. 
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B. Problem Formulation 
In the mathematical multiobjective optimization formalism, 

a generic constrained problem is defined as follows [26]:  

( ) ( ) ( ) ( ){ }1 2Minimize , ,
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( ) 0 1,2,...,
( ) 0 1,2,...,
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where : q
mf →   , for 1, 2, ,m M=  , denote the 

objective functions to be minimized, 
{ }min max,q= ∈ ≤ ≤θ θ θ θD  is the bounded search domain, 

: q
vg →   and : q

wh →   are the inequality and equality 
constraints, respectively, q∈N  is the dimension of the 
optimization problem, i.e. the number of decision variables. 

For the UAVs’ navigation process, the length of the 
planned path is very important in the case of several missions. 
A shorter path can extend the life of an UAV and remains 
desirable in all planning problems. The criteria which can be 
considered for the path planning process are especially related 
to the path length and drone’s attitude. According to this flight 
specification and for a given ith waypoint, the related objective 
function to be minimized in problem (1) can be formulated as 
follows: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
1, 1 1 1

2 2 2

i i i i i i i

i n i n i n

f x x y y z z

x x y y z z

− − −= − + − + −
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θ
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where ( ), ,n n nx y z denotes the coordinates of the destination 

point P, n  is the number of the waypoints and { },i iy z=θ are 
the unknown y- and z-axis coordinates of the given ith 
waypoint, respectively. 

In addition, the dynamical characteristics of a given UAV 
cannot be completely ignored. In order to limit the straightness 
of the path, the angles between two adjacent segments’ ϕ


 and 

ψ  are introduced. This path planning specification is modeled 
by the following cost function: 

( )2, arccosif ϕψ
ϕ ψ

 
=   

 

 

 θ             (3) 

whereϕ


 means ( )2 1 2 1 2 1, ,i i i i i ix x y y z z− − − − − −− − −  and ψ


 

denotes ( )1 1 1, ,i i i i i ix x y y z z− − −− − − . 

The collision avoidance is essential for any path planning 
task. In its own navigation process, a drone cannot in any case 
cross the threat zones and/or fly over them in order to avoid the 
risk of being detected by the radars or missiles within a 

military application. Such an avoidance specification is 
modeled by the following family of nonlinear and hard 
constraints: 

( ) ( ) ( )2 2
1, min 0i t i t i tg r x x y yδ= + − − + − ≤θ

          (4) 

where ( ), ,t t tx y r  is the coordinates of the static threat zone, 

( ),t tx y  presents the center on the XOY flight plan, tr   is the 

radius of a given obstacle and minδ  is the safety distance 
defined as shown in Fig. 2. 

 
Fig. 2. Illustration of the Threat Zones in Flight Space. 

Considering all these defined objectives and constraints, the 
formulated multiobjective optimization problem for the UAV’s 
path planning according to a given ith waypoint is defined as 
follows: 
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where ( )1, .if , ( )2, .if  and ( )1, .ig  are the cost and 
constraint functions given in (2), (3) and (4), respectively, 

{ },i iy z=θ  is the decision variable of the problem. 

To handle with the operational constraints of problem (5), 
the following static penalty function is used [27]:   

( ) ( ) ( ){ }2
, , , ,

1
max 0,

V

m i m i v i v i
v

f gφ λ
=

= +∑θ θ θ
           (6) 

where  vλ
+∈  is the weighting coefficient associated to 

the vth constraint, V  is the total number of the inequality types 
of constraints and 1,2, ,m M=  . 

C. Proposed Planning Procedure 
In the multiobjective optimization framework, many 

methods have been developed for the selection of an optimal 
solution from a given set of Pareto non-dominated ones [28, 
29]. In this work, the technique for order of preference by 
similarity to ideal solution TOPSIS is used to make decision 
about the optimal solution for problem (5). Algorithm 1 is so 
proposed for the complete resolution of the UAV’s path 
planning problem (5). 
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Algorithm 1: offline path planning algorithm 
Step 1: Initialization 
Initialize the starting point ( )1 1 1, ,x y z , the destination point 

( ), ,n n nx y z , the waypoints matrix [ ]1 1 1; ;P x y z= . Divide the x-
axis range into 1n − equal portions and set the vector 

[ ]1 2 i nPx x x x x=   . 
Step 2: Generation of the waypoints 
For 2i =  to length 1Px −  do 
A multiobjective optimizer is used to obtain a set of optimal 
Pareto solutions of problem (5). 
A multi-criteria decision making method, i.e. TOPSIS, is used 
to find the optimal solution. 
A new waypoint is generated ( ); ;new opt optP Px i y z =   . 

[ ]newP P P= . 
End For 
Step 3: Interpolation of the waypoints 
Waypoints are linked by a cubic spline interpolation method. 

III. PROPOSED MULTIOBJECTIVE MULTI-VERSE OPTIMIZER 

A. Basic Concepts 
The Multi-Verse Optimizer (MVO), originally proposed by 

Mirjalili et al. [30], is a recent global metaheuristic based on 
the physics theories about the existence of multi-verse. The 
interaction among different universes is ensured based on the 
concepts of white/black holes and worm holes. 

The optimization process of the MVO metaheuristic begins 
with a set of randomly solutions. At each step, the objects from 
one universe (decision variables) move according to their 
inflation rates (fitness values) to another via the white/black 
holes, and displace within a universe or to another via a worm 
hole. In this process, the white/black holes are used for the 
improvements of the exploration mechanism, while the worm 
holes are employed for the exploitation one. The main updating 
equations in the MVO metaheuristic are given as follows [30]: 
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4 3

4 3
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2
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
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where j
ix denotes the jth component in the ith solution, jx  

indicates the jth variable of the best universe, jlb  and jub  are 

the lower and upper bounds, respectively, 2r , 3r  and 4r  are 
random numbers defined in the interval [0, 1], TDR  and 
WEP  present the travelling distance rate and the worm hole 
existence probability, respectively. They are defined as follows 
[30]: 

max_ - min_min_
_

pro proWEP pro iter
Max iter

 
= +  

          (8) 

( )
1

1
_

piter
TDR

Max iter
= −              (9) 

where min_ pro and max_ pro  are the minimum and 
maximum probability of the wormhole existence, respectively, 
iter  is the current iteration, _Max iter  is the maximum 
number of iterations and p  is the exploitation accuracy. 

In order to elaborate a multiobjective version of the MVO 
metaheuristic for problem (5), a concept of the archive is added 
to the research mechanism in a similar way with the well-
known literature approaches [31]. Like the MVO, the solutions 
of the MOMVO algorithm are enhanced using black, white and 
worm holes. For selecting solutions from the archive, the 
leader selection method is implemented to establish tunnels 
among solutions. A roulette wheel approach is used to select 
the fittest solutions. Obviously, a limited number of solutions 
can be accommodated in the archive. In order to remove the 
unsatisfactory ones, a probabilistic mechanism given by 
Equation (10) is proposed as follows [31]: 

i
i

N
cδ =             (10) 

where iN  defines the number of the vicinity solutions and 
c is a constant which is greater than 1. 

B. Pseudo-Code 
According to the above evolution equations (7)-(10) and 

the basic concept of the MOMVO algorithm, a pseudo-code for 
its software implementation is presented in Algorithm 2. 

Algorithm 2: MOMVO  
Step 1: Set the parameters of the MOMVO algorithm 
Step 2: Randomly initialize the positions of universes. 
Step 3: While ( _ 1iter Max iter< + ) do 

Update WEP and TDR  by applying Eq. (8) and Eq. (9). 
For each universe do 

Boundary checking for the universes inside search space. 
Calculate the inflation rate (fitness) of universes. 

End For 
Sort fitness values. 
Find the non-dominated solutions. 
Normalize the inflation rates of each universe. 
Update the archive. 

If the archive is full do 
Delete some solutions from the archive.  

End If 
Update the position of universes according to Eq. (7) 

If any new solution of the archive is outside boundaries do 
Update the boundaries to cover the new solution(s). 

End If 
Increment iter  

Step 4: Stop the algorithm when it reaches _Max iter . 
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IV. SIMULATION RESULTS AND DISCUSSION 
A. Numerical Validation on CEC’2009 Test Suite 

In order to evaluate the performance of the reported 
competitive algorithms MSSA, MOMVO, MOGWO, NSGA-II 
and MOPSO for problem (5), an empirical study is firstly 
conducted based on a benchmark of 9 standard multiobjective 
test problems from the CEC’2009 test suite [32]. The main 
control parameters of the reported solvers are setting as 
follows: 

• MOMVO [31]: min and max of wormhole existence 
probability: 0.2 and 1, respectively. 

• MSSA [33]: without control parameters. 

• MOGWO [34]: grid inflation 0.1, number of grids per 
each dimension 10, leader selection pressure 4 and extra 
repository member selection pressure 2. 

• NSGA-II [35]: crossover probability 0.7, mutation 
probability 0.4 and mutation rate 0.02. 

• MOPSO [36]: social and cognitive parameters 2, grid 
inflation 0.1, leader selection pressure parameter 2 and 
number of grids per each dimension 7. 

In order to have a fair comparison, the termination criterion 
of all competitive algorithms is set as a maximum number of 
iterations reached 100. The population size is fixed as 50. After 
numerical experimentations on a PC with i7 Core 2 Duo/2.67 
GHz CPU and 6.00 GB RAM, the obtained optimization 
results show the effectiveness of all reported algorithms with a 
remarkable superiority of the proposed MOMVO algorithm in 
terms of convergence fastness and solutions’ quality. The 
obtained Pareto fronts are closer to the well-known ones with 
satisfied distribution and repartition of solutions. 

B. Path Planning Problem Resolution 
In this subsection, the effectiveness and validity of the 

proposed MOMVO-based planning approach are presented and 
compared to those of the reported competitive algorithms in 
different flight scenarios as given in Table I. In order to have 
an equitable comparison, the population size retained for all 
reported algorithms in the resolution of problem (5) is set as 
100 and the maximum number of iterations is equal to 100. 
Path planning problems involve finding a feasible path from 
the starting point to the target one by avoiding out all the 
obstacles and threats. In this work, five experimental scenarios 
are investigated. Each of them is specified by the number and 
position of the static threats as shown in Table I. 

TABLE I. INFORMATION ON EXTERNAL INSTALLATIONS OF THE FLIGHT 
ENVIRONMENT 

Scenarios Starting point 
[km] 

Destination point 
[km] 

Threats’ 
number 

1 [2,2,0] [8,10,0] 5 

2 [1,2,0] [10,10,0] 7 

3 [1,10,0] [15,2,0] 10 

4 [4,4,0] [19,13,0] 12 

5 [1,18,0] [17,4,0] 15 

Since the generation of each waypoint of the flight path is 
considered as a solution of the formulated multiobjective 
optimization problem (5), all reported algorithms are executed 
on such a constrained problem and the obtained Pareto fronts 
for the generated waypoints at the same plan are given in Fig. 3 
to 7. These results show the repartition topology of the non-
dominated solutions through the Pareto surfaces. The best 
compromise solution is selected at each case thanks to the 
proposed TOPSIS method. These demonstrative results show 
high optimization performance in terms of convergence 
dynamics and solutions’ distribution. The proposed algorithms 
have a good coverage of the non-dominated set of solutions 
that means a high variety among the different solutions of the 
optimization problem (5) with the considered two objective 
functions of Equations (2) and (3) and under operational 
constraints of Equation (4). 

 
Fig. 3. Pareto Front for the Generation of a Waypoint: MSSA-based 

Approach. 

 
Fig. 4. Pareto Front for the Generation of a Waypoint: MOMVO-based 

Approach. 
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Fig. 5. Pareto Front for the Generation of a Waypoint: MOGWO-based 

Approach. 

 
Fig. 6. Pareto Front for the Generation of a Waypoint: NSGA-II-based 

Approach. 

 
Fig. 7. Pareto Fronts for the Generation of a Waypoint: MOPSO-based 

Approach. 

For the performance comparison purposes, various metrics 
such as Maximum Spread (MS) [37, 38], Hyper-Volume (HV) 
[39] and C-metric [40] have been employed in this study. The 
optimization results related to the MS-metric are presented in 
Table II. The average performance of the MOMVO has 
surpassed the other algorithms in terms of having the biggest 
values for the MS metrics. It may be seen that the coverage of 
the proposed algorithm tends to be better than other algorithms. 
Table III shows the comparison of the hyper-volume metrics of 
different methods. The MOGWO algorithm obtains the largest 
average of HV values followed by the MOMVO, which means 
that the MOGWO and MOMVO are the best solvers in terms 
of diversity and convergence performance. 

The comparative results for the proposed algorithm 
MOMVO with others methods in terms of the C-metric are 
shown in Table IV. The proposed MOMVO algorithm 
outperformed all others competitive ones, which dominates 
more than 21% of the MSSA solutions, 35% of the MOGWO 
solutions, 1% of the NSGA-II solutions and 76 % of MOPSO 
solutions on average. The MOGWO algorithm dominates more 
than 57% of the MOMVO solutions. 

TABLE II. COMPARISON OF THE MS-METRIC FOR THE REPORTED 
ALGORITHMS 

 MSSA MOMVO MOGWO NSGAII MOPSO 

Best 114.275 115.395 121.89 64.122 96.2610 

Mean 112.477 114.352 114.111 39.6856 63.5578 

Worst 111.986 111.745 113.68 11.7029 38.6300 

STD 1.0804 1.0712 2.23149 26.5066 28.1470 

TABLE III. COMPARISON OF THE HV-METRIC FOR THE REPORTED 
ALGORITHMS 

 MSSA MOMVO MOGWO NSGAII MOPSO 

Best 0.55670 0.61150 4.22660 1.13e-10 2.16790 

Mean 0.52158 0.59281 4.02710 2.82e-11 0.54902 

Worst 0.47390 0.57180 3.82800 0.0000 0.29900 

STD 0.03270 0.01037 0.16850 5.65e-11 0.71760 

TABLE IV. COMPARISON OF THE C-METRIC FOR THE REPORTED 
ALGORITHMS 

 Best Mean Worst STD 

C (MOMVO, MSSA) 0.34 0.21 0.09 0.0921 

C (MSSA, MOMVO) 0.04 0.02 0.00 0.0160 

C (MOMVO, MOGWO) 0.39 0.35 0.33 0.0254 

C (MOGWO, MOMVO) 0.66 0.57 0.46 0.0776 

C (MOMVO, NSGAII) 0.02 0.01 0.00 0.0124 

C (NSGAII, MOMVO) 0.25 0.20 0.14 0.0381 

C (MOMVO, MOPSO) 1.00 0.67 0.00 0.4306 

C (MOPSO, MOMVO) 0.74 0.28 0.00 0.3416 
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The comparative analysis of MOMVO metaheuristic is 
performed with MSSA, MOGWO, NSGAII and MOPSO on 
three performance criteria at the five scenarios, such as the path 
length, the elapsed time and the 3D planned trajectory. In order 
to evaluate the capability of the proposed MOMVO algorithm 
to solve the path planning problem (5), the path length and 
elapsed time results on each scenario are saved over 10 
simulations independently. The statistical results are 
summarized in Table V. 

To analyze the differences between the performances of 
reported algorithms, nonparametric statistical tests in the sense 
of Friedman are implemented and discussed [41]. For the five 
proposed algorithms and five scenarios, the computed value of 
the χ -distribution is equal to 

1

2 10.7059Fχ = for the path 
length criterion and is 

2

2 46.0000Fχ =  for the elapsed time one. 
Based on the distribution table at a confidence level 0.05α = , 

the Friedman statistic, i.e. Iman-Davenport extension of the 
classical Friedman test, is 

1 2

2 2 2
0.95,4,16 3.01 F Fχ χ χ= < < . So the 

null hypothesis is rejected and there are notable differences 
between the proposed methods for path planning problem. In 
order to know which algorithms are different, the post-hoc 
paired comparison is performed. The algorithms i and j are 
declared different when the absolute difference of the rank’s 
sum 

i jR R− is greater than a critical value. The summation of 
the ranks of different algorithms is presented in Tables VI and 
VII. The critical value is equal to 6.1805 for the path length 
criterion and is 3.3519 for the elapsed time one according to 
the statistic computation formula given in [42, 43]. The paired 
comparisons are summarized in Tables VIII and IX. The bold 
and underlined values in such tables designated that the 
performances of the reported algorithms are different. 

TABLE V. OPTIMIZATION RESULTS OF PROBLEM (5) 

Scenarios 
MSSA MOMVO MOGWO NSGAII MOPSO 
Path 
length 

Elapsed 
time 

Path 
length 

Elapsed 
time 

Path 
length 

Elapsed 
time 

Path 
length 

Elapsed 
time 

Path 
length 

Elapsed 
time 

1 

Best 11.716 226.215 11.633 179.835 13.478 609.89 10.367 916.874 12.155 353.330 

Mean 11.805 267.63 11.700 185.214 14.038 694.24 10.684 954.364 12.942 465.251 

Worst 11.889 335.340 11.789 194.796 16.093 769.81 11.014 980.351 13.254 534.214 

STD 0.0487 3.1009 0.0449 2.8908 1.0792 5.5416 0.0510 6.142 0.0562 4.354 

2 

Best 13.906 463.59 13.814 313.511 15.776 740.541 12.160 1010.02 18.310 770.470 

Mean 13.971 598.90 13.853 352.481 16.259 817.02 13.561 1100.14 18.563 820.540 

Worst 14.060 643.75 13.896 388.173 16.995 868.63 14.547 1502.87 19.547 897.540 

STD 0.0476 1.8751 0.0310 1.0856 0.3817 3.127 0.6751 5.3654 0.5541 3.1452 

3 

Best 20.052 630.631 19.933 622.273 19.994 920.511 21.040 1246.44 25.035 859.4230 

Mean 20.251 675.421 20.154 658.591 20.169 956.05 21.501 1424.25 26.584 898.3540 

Worst 20.354 780.254 20.280 775.453 20.268 991.8 22.574 1914.24 27.984 950.2450 

STD 0.0541 1.5412 0.0453 1.4516 0.0818 2.0414 0.1554 5.2541 0.1422 3.4251 

4 

Best 22.764 782.680 22.731 804.85 23.152 1198.13 21.822 1584.63 29.273 1263.090 

Mean 22.815 808.657 22.755 829.669 23.791 1257.24 22.783 2451.35 30.201 1310.250 

Worst 22.867 889.06 22.804 845.214 24.213 1301.32 22.974 2971.35 31.254 1398.210 

STD 0.0353 1.2592 0.0200 1.0241 0.0524 3.2145 0.1642 5.0841 0.1234 4.5412 

5 

Best 28.953 974.255 28.883 950.989 30.218 2273.75 25.957 2614.11 34.568 1501.90 

Mean 29.076 1201.35 28.967 1024.69 30.451 2468.21 26.874 2781.34 36.354 1654.21 

Worst 29.354 2763.36 29.058 1300.53 30.869 2654.31 27.236 3594.12 37.541 1701.24 

STD 0.1174 550.076 0.0530 112.667 0.3254 2.5471 0.1874 3.1245 0.1542 4.1243 

TABLE VI. AVERAGE RANK ANALYSIS OF MEAN PERFORMANCES FOR THE PATH LENGTH CRITERION 

 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Rank’s 

sum Score Rank Score Rank Score Rank Score Rank Score Rank 

MSSA 11.805 3 13.971 3 20.251 3 22.815 3 29.076 3 15 

MOMVO 11.700 2 13.853 2 20.154 1 22.755 1 28.967 2 8 

MOGWO 14.038 5 16.259 4 20.169 2 23.791 4 30.451 4 19 

NSGA-II 10.684 1 13.561 1 21.501 4 22.783 2 26.874 1 9 

MOPSO 12.942 4 18.563 5 26.584 5 30.201 5 36.354 5 24 
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TABLE VII. AVERAGE RANK ANALYSIS OF MEAN PERFORMANCES FOR THE ELAPSED TIME CRITERION 

 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Rank’s 

sum Score Rank Score Rank Score Rank Score Rank Score Rank 

MSSA 267.63 2 598.90 2 675.42 2 808.65 1 1201.30 2 9 

MOMVO 185.21 1 352.48 1 658.59 1 829.66 2 1024.60 1 6 

MOGWO 694.24 4 817.02 3 956.05 4 1257.20 3 2468.20 4 18 

NSGA-II 954.36 5 1100.10 5 1424.20 5 2451.30 5 2781.30 5 25 

MOPSO 465.25 3 820.54 4 898.35 3 1310.20 4 1654.20 3 17 

TABLE VIII. PAIRED COMPARISON OF THE PROPOSED METAHEURISTICS 
FOR THE PATH LENGTH CRITERION 

i jR R−  MOMVO MOGWO NSGA-II MOPSO 

MSSA 7 4 6 9 

MOMVO - 11 1 16 

MOGWO - - 10 5 

NSGA-II - - - 15 

TABLE IX. PAIRED COMPARISON OF THE PROPOSED METAHEURISTICS 
FOR THE ELAPSED TIME CRITERION 

i jR R−  MOMVO MOGWO NSGA-II MOPSO 

MSSA 3 9 16 8 

MOMVO - 12 19 11 

MOGWO - - 7 1 

NSGA-II - - - 8 

From the results of Tables VI and VIII, i.e. comparison 
based on the path length criterion, the proposed MOMVO 
solver outperforms all the MSSA, MOGWO and MOPSO 
algorithms since the obtained the values of the absolute 
difference of the rank’s sum are greater than the computed 
critical value 6.1805. However, such an optimizer has the same 
performance with the NSGA-II algorithm with an absolute 
difference of rank’s sum equal to 1 and according to the final 
given by Table VI we can confirm that the MOMVO 
metaheuristic is better than NSGA-II in the case of path length 
performance metric. For the second criterion, i.e. elapsed time 
of Tables VII and IX, we found that the MOMVO and MSSA 
algorithms have the same performance but the MOMVO one is 
the better since it have the first final rank as given in Table VII. 
For the rest of competitive algorithms MOGWO, NSGA-II and 
MOPSO, the proposed MOMVO method has values of 
absolute difference greater that the computed critical value 

3.3519, so it remains better than these mentioned algorithms 
regarding the final ranking of Table VII. 

For the defined performance criteria such as elapsed time, 
path length and threats avoidance, the planned paths are shown 
in Fig. 8, 9 and 10 for only the hard flight situations, i.e. 3rd, 4th 
and 5th flight scenarios with an increasing number of threats. 
These curves correspond to the optimization results for the 
mean case. As observed in these figures, the MSSA, MOMVO 
and MOGWO competitive metaheuristics give the most direct 
path. They are perfect in all scenarios and can avoid all 
obstacles and threats, which ensure their high efficiency in 
flight planning. The path obtained by the MOPSO method 
avoids all obstacles but takes a long distance in comparison 
with others algorithms. The NSGA-II algorithm gives a direct 
path but with a very low level of flight in the case of scenarios 
1, 2 and 5 as shown in Fig. 10. The planned path for this solver 
passes through an obstacle zone in scenarios 3 and 4 as 
depicted in Fig. 8 and Fig. 9. So, it is too difficult to take into 
account all the obstacles in certain scenarios. 

C. Algorithms’ Sensitivity Analysis 
In this section, the performance of the two considered main 

indicators, i.e. path length and execution time, is analyzed with 
the variations in the population size and iterations values of the 
competitive algorithms. The performance comparison is given 
under the 2nd scenario. The results are presented in Tables X 
and XI. Keeping the iterations constant, the path length 
decreases linearly with the augment of the population size for 
all algorithms, on the contrary, the execution time increases. 
When the population size is constant, the elapsed time varies 
with the iterations’ numbers on the contrary the path length is 
shorter. The proposed MOMVO algorithm remains robust 
under these variations and clearly outperforms all others 
proposed solvers with the shortest path and the minimum 
elapsed time in most cases. This main capability makes the 
proposed MOMVO algorithm more adapted for path planning 
problems. 
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TABLE XI. PATH LENGTH VARIATION UNDER ITERATIONS AND POPULATION SIZE PARAMETERS OF PROBLEM (6) 

Generation Population size 
Path length (km) 

MSSA MOMVO MOGWO NSGAII MOPSO 

50 

20 16.0348 13.8620 16.4859 15.0695 62.7104 

50 13.9310 13.8593 17.0208 13.9520 31.8837 

100 13.8869 13.8411 18.9750 13.8508 20.2795 

100 

20 15.0420 13.8603 18.4772 14.8723 29.9692 

50 13.9440 13.8549 17.0723 13.8661 23.4170 

100 13.8354 13.8235 15.8578 13.8421 20.6154 

200 

20 14.1662 13.8602 16.9149 14.5471 19.5114 

50 13.9049 13.8509 16.9512 13.8574 20.8871 

100 13.8244 13.8226 15.8345 13.8314 19.6975 

TABLE XII. ELAPSED TIME VARIATION UNDER ITERATIONS AND POPULATION SIZE PARAMETERS OF PROBLEM (6) 

Generation Population size 
Elapsed Time (sec) 

MSSA MOMVO MOGWO NSGAII MOPSO 

50 

20 57.3806 56.7261 179.4049 583.8650 279.4850 

50 141.9460 127.4121 371.6397 2851.5570 533.2424 

100 248.4768 279.4000 794.6620 4741.3340 1192.1590 

100 

20 74.5709 100.4210 574.5162 610.6982 126.6340 

50 176.4819 168.6157 638.9724 3294.8690 1336.0780 

100 365.5790 277.4627 1030.1680 5241.4120 3628.1100 

200 

20 150.4783 199.9634 432.3340 784.2150 1949.6250 

50 424.0723 420.8711 1121.6300 4145.1420 3980.8930 

100 936.5628 654.8361 2156.1890 5987.1240 4413.2450 

 
Fig. 8. Performance Comparisons in 3rd Scenario: 10 Threats’ Avoidance. 
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Fig. 9. Performance Comparisons in 4th Scenario: 12 Threats’ Avoidance.  

 
Fig. 10. Performance Comparisons in 5th Scenario: 16 Threats’ Avoidance. 

V. CONCLUSION 
In this paper, the path planning problem for unmanned 

aerial vehicles is reformulated by transforming the generation 
of each flight waypoint into a constrained multiobjective 
optimization problem. An offline path planning algorithm has 
been developed and applied within various flight scenarios 
containing an increasing number of the threats and static 
obstacles. For an efficient resolution of the formulated 
multiobjective optimization problem, a recent variant of the 
MOMVO metaheuristic has been proposed and successfully 
implemented. A set of competitive algorithms such as MSSA, 
MOGWO, MOPSO and NSGA-II are retained throughout the 
study as performance comparison tools. An empirical study of 
these algorithms has been firstly performed for solving 
different multi-criteria test functions from the literature. The 
proposed MOMVO algorithm outperforms all others reported 
methods in the majority of test functions cases as well as for 
the real path planning formulated problem. The demonstrative 
simulations as well as the nonparametric Friedman and paired 
comparison tests show the effectiveness and superiority of the 
proposed TOPSIS and MOMVO-based path planning approach 
in comparison with the reporter competitive algorithms. To 

further demonstrate the performance of the proposed MOMVO 
algorithm, several metrics and criteria are employed such as the 
elapsed time, the path length and threats avoidance capability. 
The simulation results and comparisons show that the proposed 
algorithms can successfully solve the 3D UAVs’ path planning 
problem with a remarkable superiority of the MOMVO-based 
approach. Other improvements should be made in future works 
as the extension to the paths planning of cooperative multi-
UAVs as well as the flight in an environment with dynamic 
obstacles. 
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