
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Hybrid Solution for Container Placement and Load
Balancing based on ACO and Bin Packing

Oussama SMIMITE1

LabSIV, Department of Computer Science
Faculty of Science, Ibn Zohr University

BP 8106, 80000 Agadir, Morocco

Karim AFDEL2

LabSIV, Department of Computer Science
Faculty of Science, Ibn Zohr University

BP 8106, 80000 Agadir, Morocco

Abstract—Currently, data centers energy consumption in the
cloud is attracting a lot of interest. One of the most approaches
to optimize energy and cost in data centers is virtualization.
Recently, a new type of container-based virtualization has ap-
peared, containers are considered very light and modular virtual
machines, they offer great flexibility and the possibility of migra-
tion from one environment to another, which allows optimizing
applications for the cloud. Another approach to saving energy is
to consolidate the workload, which is the amount of processing
that the computer has to perform at any given time. In this
article, we will study the container placement algorithm that
takes into account the QoS requirements of different users in
order to minimize energy consumption. Thus, we proposed a
Hybrid approach for managing resources and workload based
on ant colony optimization (ACO) and the first-fit decreasing
(FFD) algorithm to avoid unnecessary power consumption. The
results of the experiment indicate that using the first-fit decreasing
algorithm (FFD) for container placement is better than ant colony
optimization especially in a homogeneous systems. On the other
hand the ant colony optimization shows very satisfying results in
the case of workload management.

Keywords—Cloud; virtualization; container; placement; Green
IT; containerization

I. INTRODUCTION

Recently, Cloud computing is considered as a new model
that offered virtually immense resources. Customers can al-
locate resources as needed and pay as much as they have
used. Thus, resources are managed by the cloud provider
according to customer demand. In 2017, data centers in the
United States consumed more than 90 billion kilowatt hours
of electricity. Globally, data center power consumption was
approximately 416 terawatts, or about 3% of all electricity
produced on the planet.In a sense, the energy consumption
of data centers worldwide was 40% more than all the energy
consumed by the United Kingdom, an industrialized country
with more than 65 million inhabitants. And this consumption
will double every four years. [1, 2, 3, 4] From a business
perspective, reducing energy consumption can lead to massive
cost reductions. Moreover, in addition to the huge energy costs,
heat dissipation inevitably increases with increasing energy
consumption and doubles the probability of hardware failure
[5, 6]. Therefore, reducing energy consumption not only saves
a large amount of money and improves system reliability, but
also helps protect our environment. According to [7], data
centers emit CO2 like Argentina entirely, and their emissions
are likely to exponentially increase in the coming years.

II. BACKGROUND

There are different approaches to energy conservation. Be-
sides the possibility of using more energy-efficient Hardware,
reducing energy wasted due to the overuse of hardware is very
important. The existing data center infrastructure is generally
over-provisioned to maintain the availability of service during
periods of high demand. However, the average use is low in
datacenter due to tot he fort demand for resources in existing
data centers.

Consequently, stopping or suspending unnecessary servers
can impact a large part of the resources, which can influence
performance constraints on clients.

Virtualization technologies such VMware, Xen, and Hyper
V [8, 9, 10] are widely used in cloud datacenter due to their
ease of use, flexibility of resource ,cost efficiency and the
simplicity of enabling the high availability. More precisely,
virtualization technologies offer the possibility of fine-tuning
the resources allocation by associating processors, RAM, disk
space and network bandwidth to a specific Virtual Machine
[11, 12]. This approach has allowed the development of
solutions such as Software as a Service (SaaS) and Platform
as a Service (PaaS), on top of the usual Infrastructure as a
Service (IaaS), where services providers can quickly make
available virtual machines with the required resources to their
customers almost in no time, and not burden them with the
pain of infrastructure management.

Unlike traditional IT systems, Virtualization makes cloud
computing more suitable for marketing, it provides promising
approach to divide the resources of one or more physical
servers into various parts and each part runs in an isolated
environment [13]. To better manage resources, we can create
isolated virtual machines (VMs) for each application, which
allows us to parameterize the size of the resource such as the
memory and the size of the processor according to the variable
demand of the customers.

As virtualization allows us to create virtual instances,
whether virtual machines (VM) or a container, the problem
of virtual instances placement has become an important re-
search subject in cloud computing. placement involves finding
an optimal method for placing virtual instances on physical
servers in order to efficiently use cloud resources [14, 15].
To maintain the servers in the data center, a lot of energy is
consumed and the cost of cooling the installations is very high,
which can translate to a very high cost [16]. Therefore, the goal
of placement of virtual instances is to efficiently use physical

www.ijacsa.thesai.org 606 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

resources to host virtual resources, in order to reduce the
number of running physical servers. In a cloud environment,
good placement of virtual instances means placing the VMs
in a way that the service level agreement (SLA) is guaranteed
without signaling losses at the provider level. Within a data
center, it is possible to place VMs with the main objective of
reducing energy consumption and cost. Several studies have
been developed in this context. We will present them in the
following.

Besides the importance of the placement of virtual in-
stances in a cloud environment, load management is a cru-
cial issue to be resolved in order to maintain the system
stability and improve the reliability of the cloud environment.
[17, 18, 19] Load balancing ensures that all system instance
do roughly the same amount of work at all times.

The organization of the paper is as follows. in Section
III ,Containerization technologies, the Placement problem ,and
load balancing problem are discussed . Section IV covers the
Proposed System Architecture and the two Proposed types of
algorithms: First Fit Decreasing (FFD)algorithm as a classic
algorithm and Ant colony optimization (ACO) algorithm as
a metaheuristic algorithm. Section V presents a analysis of
experimental results and evaluation.In the last section, conclu-
sions and future work are discussed.

III. FORMAL PROBLEM DEFINITION

A. Containerization

Containerization, or virtualization that uses containers, is a
technology that virtualizes hardware resources in a container
and ships applications and their dependencies across multiple
operating systems. at the time of migration, the containers
guarantee that their content is identical, and that it is secure,
thanks to the isolation.

Fig. 1. Container Deployed in VMs VS Container Deployed in Bare-Metal.

1) Container deployed in Bare-Metal: Running containers
on bare metal have many advantages, such as makes it possible
to deploy applications with high performance in environments
that can easily switch from the host server to another because
there is no hardware emulation layer separating the containers
from a host server [20, 21]. Furthermore, containerization
allows for application isolation. Even if containers may not
offer the same level of isolation as VMs, they set strict limits
on the privileges and accessibility of resources associated
with each container. But there are considerable difficulties
that prevent the direct deployment of containers on the bare-
metal host’s server, such as the problem of updating physical
servers. In fact, to replace a bare metal server, you must
recreate the container environment from scratch while using
virtualization makes it easy to migrate VMs to a new server.
Another problem is that the containers depend on the type
of the operating system, for example, Linux containers run in
Linux hosts and Windows containers run on Windows hosts,
also there are a few hosts that offer bare-metal solutions,most
cloud platforms require VMs (see Fig. 1(a)).

2) Container deployed in virtual machines: deploying con-
tainers on Vms, offer advantages such as applications can be
easily moved from one host to another by transferring images
from one server to another. from a security point of view,
applications that run in different VMs are isolated What makes
management easier [22]. Also the possibility of grouping the
same types of containers in a VM which allows creating a more
coherent system. But virtual machines also have disadvantages
such as under utilization of resources because of the pre-
allocation of these resources even if not used. also, the VMs
cannot directly access the physical hardware in order to unload
it in the event of an overload (see Fig. 1(b)).

B. Container Placement Problem

Virtualization is a technique used to take better advantage
of hardware resources, so it is useful for deploying more test
environments thanks to the use of virtual machines. However,
the appearance of containers has been evaluated as an improve-
ment of virtualization. For this, we can consider the container
placement as an improved version of virtual machine place-
ment, to better managing resources in a cloud environment.The
placement of containers is an important operation that has
a direct effect on resource utilization, energy consumption,
and Resource utilization cost. an efficient placement optimizes
the use of material resources by minimizing the number of
physical machines active in a data center, which allows both to
minimize the cost of resources utilization and reduces energy
consumption by stopping the inactive physical machine.

C. Load Balancing Problem

load balancing is an approach of distributing workloads
across various computing resources to improve response time
and resource utilization. load balancing is used to balance
the load between the different resources of the system to
avoid having idle resources and overused resources. [23] in a
homogeneous environment where all resources are identical,
the load must be distributed equally.but in heterogeneous
environments, resources that have more capacity should be
used more than other resources.

www.ijacsa.thesai.org 607 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 2. Proposed System Architecture.

IV. PROPOSED SYSTEM AND ALGORITHMS

A. Proposed System Architecture

Fig. 2 shows the proposed architecture of the system, which
consists of:

1) The Brokers: The Broker is the main component of the
System, it serves as an agent between service providers and
customers. he may also sign SLA terms with cloud providers in
place of the client. When the customer request has been sent,
the broker initiates the process and submits those requests to
the other modules. after that, based on information provided by
the monitor module he makes the decision whether to approve
or reject the request. It provides an interface for multiple clouds
and sharing resources.

2) The Monitor of containers: This module’s key role
is to control resource state, RAM use, processor utilization,
SLA violation, and power consumption. Once an exception in
resource usage is triggered, The controller must send a warning
to The Global Resources Manager to take necessary action.

3) The Global Resource Manager: The main function
of this module is to analyze user requests and check the
QoS requirements before choosing to accept or refuse the
request. To guarantee that no SLA violation persists the module
requests updated information from the Containers Monitor to
reallocate resources efficiently.

4) The Physical Machines (PM): Also known as the ”bare-
metal server” is the physical machine, which is the support of
hardware to create and host Container. The PM can host several
Containers depending on their capacity.

5) The Containers (CNT): Containers are the layer of
virtualization that runs within the operating system. Therefore
containers are relatively light and take only seconds to get
started, unlike VM. The speed, flexibility, and portability of
containers permit them to Help optimizing software devel-
opment. Process of transferring Containers from one PM to
another called Container migration.

B. Proposed Algorithms

C. First Fit Decreasing algorithm (FFD)

The bin packing In operational research is an algorithmic
problem that involves storing objects with a minimum number
of boxes. It can be applied in IT such as the storage of files on
IT support.[24] To solve the bin packing problem, we often use
simple algorithms like first-fit decreasing (FFD) which works
as follows: we sort the list of articles in decreasing order of
size, then we put each article in order. In first-fit, we put the
current article in the first box that can contain it (see Fig. 3) .
This algorithm allow to obtain very good results in practice. In
our case, we used the FFD algorithm to allocate the containers
in the hosts as the Container placement is considered a Bin
Packing problem [25, 26, 27]. The bin represents the physical
machine and the items are the containers to be assigned to
the Bin. The containers are sorted first in descending order of
their Ram memory capacity. The pseudo-code of containers
placement is presented in algorithm 1.

www.ijacsa.thesai.org 608 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 3. FFD illustration example.

Algorithm 1 Container placement (FFD).

Require: ContainerList ,HostListOutput /: ContainerPlace-
ment
Sort the containers in descending order according to the

RAM memory
while container in containerList do

if container.Ram < container.Ram.next then
Exchange (container, container.next)

end if
end while
max=VmRAM *threshold
while Host in HostList do

while container in containerList do
if V mRamEstimate(V m, container) < max then

Allocate (Host ,Container)
end if

end while
end while

D. Ant Colony Optimization algorithm (ACO)

Ant Colony Optimization (ACO) is a meta-heuristic in-
spired from the natural food-discovery behavior of real ants.
due to the limited memory of the ants they have developed a
system of communication based on chemical substance called
pheromone, this last is used by each ant to mark their tracks
.Other ants can smell the concentration of this substance and
chose the paths probabilistically according to the quantity of
the pheromone. after a while, the entire ant colony move to-
wards the shortest path to the food source. at first, the algorithm
was developed to solve the Traveling Salesman Problem (TSP).
after that, it has been successfully adapted to solve many other
complex combinatorial optimization problems.in our case, we
try to use this algorithm to solve the placement problem,
and also the load balancing issues [28]. The pseudo-codes
of containers placement and the load balancing are presented
consecutively in algorithm 2 and algorithm 3. The containers

placement is represented as a graph g= (N, E) where N is the
Set of Containers and the physical machines, and E represent
the connections between Containers and physical machines
as mentioned in Fig. 4(A) we can also represent the load
balancing issue as graph G1= (N1, E1) where N1 is the set of
Tasks and containers and E1 the connections between the task
and containers as shown in 4(B)

1) ACO Container Placement: In virtualization, once the
virtual machine starts, the RAM memory (R) allocated by the
VM becomes unavailable for the physical machine.for that in
our approach, we focus on Ram memory as being an important
parameter for placing containers in the host.

In the proposed algorithm for containers placement, each
ant receives all the containers and try to assign them to the host
using the probabilistic decision (Prob) rule mentioned equation
1

ProbHost = PH(Host)alpha ∗H(Host)beta (1)

the probabilistic calculation (Prob) is based on the present
concentration of pheromone (PH), and a heuristic (H) which
help ants to chose the most optimizing hosts.Besides, two
parameters alpha, beta ≥ 0 are used to point out more the
heuristic information or the pheromone.

for each container(CNT) we calculated the possible
ram allocation (RA) for every host(PM) using the equa-
tion 2 we can represented the results as a graph G1 =
(C, ((H1, A1), (H2, A1), .., (Hn,An))) whereby, C is the
container,H is the host and A is the possible allocation for
every host.

RAPM
CNT = CNTR/PMR (2)

the heuristic (H) is calculated based on 2 as mentioned
in equation 3 we can also represented that as a graph
G2 = ((H1,

∑
A/A1), (H2,

∑
A/A2), .., (Hn,

∑
A/An))

whereby, H is the host and
∑

A is a is the sum of the possible
allocation of each container .

HPM
CNT+ =

∑
RA(CNT )/RA(CNT )PM (3)

the pheromone (PH) concentration of the host is initialized
by the RAM memory capacity of each host .after a host has
been chosen by an ant the pheromone concentration is updated
according to the equation 4

PHBestPM = PH(BestPM)∗(1−rho)+Q/RA(BestPM)
(4)

as, the constant rho,0 6 rho 6 1 is used to simulate
pheromone evaporation.and Q is an adaptive parameter. in
the end, we compare all ants allocation proposition for each
container and choose the best solution.

2) ACO load balancing: As mentioned before, the objec-
tive of this approach is to distribute the workloads on the
cloud resources in a balanced way.to do this we consider the
workload as a list of cloudlets that must be run on a set of
containers. In the proposed algorithm for load balancing, each
ant receives all the cloudlets (Cl) the and try to execute them in
the appropriate container(CNT) using the probabilistic (Prob)
decision rule mentioned equation 5

ProbCNT = PH(CNT )alpha ∗ ET (CNT )beta (5)

www.ijacsa.thesai.org 609 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 4. Problem representation Based on ACO.

Algorithm 2 ACO-based Container placement

Require: ContainerList ,HostList Output /: ContainerPlace-
ment
Initialize parameters, Set pheromone value
for all ContainerList do

for all HostList do
T= container.getRam()/Host.getRam()

end for
initializeRamAllocation(T);

end for
for all HostList do

C = host.getRam();
initializePheromone(C);

end for
for t=1 to t=tmax do

for all ContainerList do
calculate allocation percentage of each container ac-
cording to Eq 3
for all HostList do

Calculate probability according to Eq 1
initializeProbability(P);

end for
Compare ants solutions and vote for best solution
for i=1 to k do

vote(Hosts,probab)
end for
for all HostList do

if MaxV ote then
Allocate (BestHost ,Container)
UpdatePheromones according to Eq 4

end if
end for

end for
end for

the probabilistic calculation (Prob) is based on the present
concentration of pheromone (PH), and a heuristic (ET) which
help ants to chose the most optimizing container. Besides, two
parameters alpha, beta ≥ 0 are used to point out more the
heuristic information or the pheromone.

for each cloudlet, we calculate the estimate Exe-
cution time for every container using the equation 6
we can represented the results as a graph G3 =
(Cl, ((C1, T1), (C2, T1), .., (Cn, Tn))) whereby, Cl is the
cloudlet ,C is the container and T is the estimate Execution
time for every container.

ETCNT
Cl = ClLength/(CNTNbrPes ∗ CNTMips (6)

the heuristic (H) is calculated based on 6 as mentioned in
equation 7 we can also represented that as a graph G4 =
((C1,

∑
T/T1), (C2,

∑
T/T2), .., (Cn,

∑
T/Tn)) C is the

container and
∑

T is a is the sum of the estimate Execution
time of each cloudlet.

HCNT
Cl + =

∑
ET (Cl)/ET (Cl)CNT (7)

the pheromone concentration of the host is initialized by
the Number of MIPS of each container. After a container has
been chosen by an ant the pheromone concentration is updated
according to the equation 8

PHBestCNT = PH ∗ (1− rho) +Q/ET (BestCNT ); (8)

as, the constant rho,0 6 rho 6 1 is used to simulate
pheromone evaporation, and Q is an adaptive parameter. in
the end, we compare all ants proposition for each Cloudlet
and choose the best solution.

www.ijacsa.thesai.org 610 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Algorithm 3 ACO-based Load Balancing

Require: CloudletList ,HostList Output /: Load Balancing
Initialize parameters, Set pheromone value
for all CloudletList do

for all ContainerList do
T=Cloudlet.Length()/(Container.NbrPes()*Container.Mips())

end for
initializeExecTimes(T);

end for
for all ContainerList do

C = Container.NbrPes()*Container.Mips()
initializePheromone(C);

end for
for t=1 to t=tmax do

for all CloudletList do
calculate estimate Execution time of each Cloudlet
according to Eq 6
for all ContainerList do

Calculate probability according to Eq 5
initializeProbability(P);

end forCompare ants solutions and vote for best solu-
tion
for i=1 to k do

vote(Container,probab)
end for
for all ContainerList do

if MaxV ote then
Allocate (BestContainer,Cloudlet)
UpdatePheromones according to Eq 8

end if
end for

end for
end for

V. EXPERIMENTAL SETUP AND RESULTS

To evaluate our proposed method, simulation experiments
are implemented on CloudSim[29, 30] to study the effects.

We tried to apply the two proposed algorithms (ACO and
FFD) on the Container placement and load balancing.

For the Container placement we adapt two approach , in
The first we use a homogeneous system, where hosts has
the same characteristic (CPU, RAM, Bandwidth), in the other
approach we use hosts with different characteristics for the
load balancing, in the heterogeneous system, we use a different
types of containers, and in the other scenario we use many
identical containers .

A. Containers Placement

1) Homogeneous system: In this experiment, our config-
uration consists in using 3 identical hosts, 90 containers as
shown in the Table I.

a) Scenario 1: In this Scenario,we apply the FFD
algorithm to assign all container in the hosts based on RAM
memory. Container placement can be considered a Bin Packing
problem,The bin represents the Host and the items being
the containers to be assigned to the Bin. The containers are
sorted first in descending order of their Ram memory capacity
Before applying the FFD algorithm to the allocation problem,

TABLE I. CHARACTERISTICS OF HOSTS AND CONTAINERS IN
EXPERIMENT 1.

Number MIPS RAM BW
Host -type 1- 3 37274/8 32768 1000000

CONTAINER -type 1- 21 2358 128 2500
CONTAINER -type 2- 23 4658 256 2500
CONTAINER -type 3- 23 9320 512 2500
CONTAINER -type 4- 23 18636 1024 2500

we should first make sure that the total memory capacity of
the containers does not exceed the host’s available memory
capacity. in order to avoid a probable performance degradation
because of the overloading of ram memory, we define a
maximum threshold, 80% of host RAM memory, which can
reduce the risk of Service Level Agreement (SLA) violation.

b) Scenario 2: In this Scenario, we repeat the previous
scenario but we sorted first all hosts in descending order
of their Ram memory capacity before applying the FFD
algorithm.

c) Scenario 3: In this Scenario,we apply the ACO
algorithm and inspected their efficiency by experimentation.
The parameters (alpha, Beta,rho, tmax, m the number of
ants and Q) considered here are those that affect directly or
indirectly the computation of the algorithm Table II. showing
the selected ACO parameter. in order to avoid a probable
performance degradation because of the overloading of ram
memory, we define a maximum threshold, 80% of host RAM
memory, which can reduce the risk of SLA violation.

TABLE II. SELECTED PARAMETERS OF ACO

Parameter alpha beta rho Q m Tmax
Value 1 2 0.7 100 10 100

Fig. 5. Used Host Ram after Allocation (Homogeneous System).

As it is presented in Fig. 5 using the FFD algorithm allows
us to use the totality of RAM memory of host 1 and reduce
the total number of Hosts used. on the other hand, when using
ACO algorithm the three hosts are used and the Ram memory
used of each host does not exceed 46

Regarding the distribution of RAM memory of the contain-
ers on the hosts, we notice that in the case of using the FFD

www.ijacsa.thesai.org 611 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 6. Distribution of the Ram Container on the Hosts (Homogeneous
System).

algorithm the first host has favored compared to the others
hosts. on the other hand, when we use the ACO algorithm the
distribution is done in a balanced way. (see Fig. 6)

2) Heterogeneous system: In this experiment, our configu-
ration consists in using three different hosts, 80 containers as
shown in Table III.

TABLE III. CHARACTERISTICS OF HOSTS AND CONTAINERS IN
EXPERIMENT 2 .

Number MIPS RAM BW
Host -type 1- 1 37274/8 32768 1000000
Host -type 2- 1 37274/4 16384 1000000
Host -type 3- 1 37274/2 8162 1000000

CONTAINER -type 1- 20 2358 128 2500
CONTAINER -type 2- 20 4658 256 2500
CONTAINER -type 3- 20 9320 512 2500
CONTAINER -type 4- 20 18636 1024 2500

In this approach, we repeat the three preceding scenarios
(FFD sorted ,FFD unsorted and ACO ) and compare the results.

Fig. 7. Used Host Ram after Allocation (Heterogeneous System).

As it is shown in Fig. 7 when we use the FFD algorithm
in heterogeneous unsorted system all hosts are used and the

Ram memory used of Host 1 does not exceed 58%. but sorting
host before applying the FFD algorithm allows us to use the
totality of RAM memory of host 1 and reduce the total number
of Hosts used. on the other hand, when using ACO algorithm
the three hosts are used and the Ram memory used of each
host depends on the characteristics of each host.

Fig. 8. Distribution of the Ram Container on the Hosts (Heterogeneous
System).

Regarding the distribution of RAM memory of the contain-
ers on the hosts, we notice that in the case of using the FFD
algorithm in an unsorted system the load which can handle
by two hosts is distributed into three hosts, what is shown in
the sorted system. on the other hand, when we use the ACO
algorithm the distribution is done in a balanced way based on
the percentage of each host in Ram’s total memory (see Fig.
8).

To better evaluate the algorithms proposed or to propose
a scenario where we combined between the two preceding
systems ,we use several group of hosts as shown in Table IV.

TABLE IV. CHARACTERISTICS OF HOSTS AND CONTAINERS IN
EXPERIMENT 3 .

Number MIPS RAM BW
Host -type 1- 10 37274/8 32768 1000000
Host -type 2- 10 37274/4 16384 1000000
Host -type 3- 10 37274/2 8162 1000000

CONTAINER -type 1- 75 2358 128 2500
CONTAINER -type 2- 75 4658 256 2500
CONTAINER -type 3- 75 9320 512 2500
CONTAINER -type 4- 75 18636 1024 2500

The third experiment gives us a general idea of the use-
fulness of each algorithm. for container placement, the most
important thing is to allocate all containers using the minimum
host taking under consideration the maximum threshold for
RAM usage Fig. 9 shows that the use of the FFD algorithm
reduced the total number of hosts used from 30 hosts in the
case of ACO to 17 hosts in an unsorted system and to 6 in
a sorted system. which allowed us to optimize nearly 40% to
80% of the host used.

www.ijacsa.thesai.org 612 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 9. Used Host Ram after Allocation.

Fig. 10. Distribution of the Ram Container on the Hosts.

As shown in Fig. 10 the ACO curve can be divided into
three parts according to the characteristics of the host. each part
can be considered as a homogeneous system where the hosts
are identical, this is why in each party the load is distributed
in a balanced way.

To take advantage of the two algorithms, we propose a
hybrid solution (ACO-FFD) where we apply first the FFD
algorithm to optimize the number of hosts after that apply
the ACO algorithm on the chosen hosts to balance the load
between them. Fig. 11 and 12 show the results.

Fig. 11. Used Host Ram after Allocation (Hybrid Approach).

Fig. 12. Distribution of the Ram Container on the Hosts (Hybrid Approach).

B. Task Scheduling and Load Balancing

To assess the impact of our algorithm proposed on the
task Scheduling and Load Balancing, we consider each task
as cloudlet identified by its length must be performed in
containers according to the MIPS number of each container.

1) Heterogeneous system: In this experiment, our config-
uration consists in using four different containers and 100
Cloudlet where their size varies between 100 and 400 mips
as shown in Table V.

TABLE V. CHARACTERISTICS OF CONTAINERS AND CLOUDLETS IN
EXPERIMENT 4.

Number MIPS RAM Lenght
CONTAINER -type 1- 1 2358 128
CONTAINER -type 2- 1 4658 256
CONTAINER -type 3- 1 9320 512
CONTAINER -type 4- 1 18636 1024

Cloudlet 100 100 /400

a) Scenario 1: In this Scenario, we apply the FFD
algorithm to allocate all Cloudlet in Containers based on the

www.ijacsa.thesai.org 613 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

length of each cloudlet and the Mips of each container. in order
to avoid a probable performance degradation because of the
overloading of container, we define a maximum threshold, 80%
of container Mips, which can reduce the risk of degradation
of the quality of service.

b) Scenario 2: In this Scenario, we apply the ACO
algorithm and inspected their efficiency by experimentation.
The parameters (alpha, Beta, rho, tmax, m the number of
ants and Q) considered here are those that affect directly or
indirectly the computation of the algorithm. Table VI showing
the selected ACO parameter.

TABLE VI. SELECTED PARAMETERS OF ACO

Parameter alpha beta rho Q m Tmax
Value 1 2 0.7 100 10 100

Fig. 13. Workload Distribution on Containers (Heterogeneous System).

Regarding the Workload Distribution on containers, we
notice that in the case of using the FFD algorithm until we
reach the maximum threshold, the first containers are favored
compared to the others hosts and container 4 is not used.
On the other hand, when we use the ACO algorithm the
distribution is done in a balanced way based on the percentage
of each host in MIPS’s total (see Fig. 13).

2) Homogeneous system: In this experiment, our config-
uration consists using 100 Cloudlet where their size varies
between 100 and 400 mips and four identical containers as
shown in Table VII.

TABLE VII. CHARACTERISTICS OF HOSTS AND CONTAINERS IN
EXPERIMENT 2 .

Number MIPS RAM Lenght
CONTAINER -type 3- 4 9320 512

Cloudlet 100 100/400

In this approach, we repeat the two preceding scenarios
(FFD and ACO ) and compare the results.

As it is shown in Fig. 14 using the FFD algorithm we notice
that almost 90% of the workload is managed by the first three
containers and that just 11% is managed by container 4.

Fig. 14. Workload Distribution on Containers (Homogeneous System).

on the other hand, when we use the ACO algorithm the
distribution is done in a balanced way. almost 25 % of
workload for each container.

VI. CONCLUSION AND FUTURE WORK

In this work, we try to present Containerization technolo-
gies, the Placement problem, load balancing problem and there
impact in a cloud environment. In addition, we provide a
container allocation approach based on the ACO and FFD
algorithm, taking into account QoS requirements and service
level agreement. The use of the FFD algorithm has allowed
us to better manage the placement of containers using a
minimum number of hosts, which reduces power consumption.
The use of ACO shows very acceptable results for a balanced
workload management. At the end, a hybrid approach was
proposed between the two methods in order to benefit from
the advantages of each of these algorithms. As a perspective
of our research work, we plan to track under-utilized Hosts by
proposing solutions based on the Metaheuristic algorithm to
optimize our architecture based on containerization.

REFERENCES

[1] A. Shehabi, S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey,
E. Masanet, N. Horner, I. Azevedo, and W. Lintner, “United states data
center energy usage report,” Lawrence Berkeley National Lab.(LBNL),
Berkeley, CA (United States), Tech. Rep., 2016.

[2] X. Zhang, T. Lindberg, N. Xiong, V. Vyatkin, and A. Mousavi, “Cooling
energy consumption investigation of data center it room with vertical
placed server,” Energy procedia, vol. 105, pp. 2047–2052, 2017.

[3] W. Jiye, Z. Biyu, Z. Fa, S. Xiang, Z. Nan, and L. Zhiyong, “Data center
energy consumption models and energy efficient algorithms,” Journal of
Computer Research and Development, vol. 56, no. 8, p. 1587, 2019.

[4] S. Pang, K. Xu, S. Wang, M. Wang, and S. Wang, “Energy-saving virtual
machine placement method for user experience in cloud environment,”
Mathematical Problems in Engineering, vol. 2020, 2020.

[5] M. I. Green, “Cloud computing and its contribution to climate change,”
Greenpeace International, vol. 83, 2010.

[6] S. K. Mishra, B. Sahoo, and P. P. Parida, “Load balancing in cloud
computing: a big picture,” Journal of King Saud University-Computer
and Information Sciences, vol. 32, no. 2, pp. 149–158, 2020.

[7] J. M. Kaplan, W. Forrest, and N. Kindler, “Revolutionizing data center
energy efficiency,” Technical report, McKinsey & Company, Tech. Rep.,
2008.

[8] P. K. Das, “Comparative study on xen, kvm, vsphere, and hyper-v,” in
Emerging Research Surrounding Power Consumption and Performance
Issues in Utility Computing. IGI Global, 2016, pp. 233–261.

www.ijacsa.thesai.org 614 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

[9] F. Rodrı́guez-Haro, F. Freitag, L. Navarro, E. Hernánchez-sánchez,
N. Farı́as-Mendoza, J. A. Guerrero-Ibáñez, and A. González-Potes, “A
summary of virtualization techniques,” Procedia Technology, vol. 3, pp.
267–272, 2012.

[10] S. S. Kolahi, V. S. Hora, A. P. Singh, S. Bhatti, and S. R. Yeeda,
“Performance comparison of cloud computing/iot virtualization software,
hyper-v vs vsphere,” in 2020 Advances in Science and Engineering
Technology International Conferences (ASET). IEEE, 2020, pp. 1–6.

[11] S. J. Vaughan-Nichols, “New approach to virtualization is a lightweight,”
Computer, vol. 39, no. 11, pp. 12–14, 2006.

[12] R. Bachu, “A framework to migrate and replicate vmware virtual
machines to amazon elastic compute cloud: Performance comparison
between on premise and the migrated virtual machine,” 2015.

[13] A. Abohamama and E. Hamouda, “A hybrid energy–aware virtual
machine placement algorithm for cloud environments,” Expert Systems
with Applications, vol. 150, p. 113306, 2020.

[14] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective ant colony
system algorithm for virtual machine placement in cloud computing,”
Journal of Computer and System Sciences, vol. 79, no. 8, pp. 1230–
1242, 2013.

[15] C. Vijaya and P. Srinivasan, “A hybrid technique for server consoli-
dation in cloud computing environment,” Cybernetics and Information
Technologies, vol. 20, no. 1, pp. 36–52, 2020.

[16] M. Uddin, Y. Darabidarabkhani, A. Shah, and J. Memon, “Evaluating
power efficient algorithms for efficiency and carbon emissions in cloud
data centers: A review,” Renewable and Sustainable Energy Reviews,
vol. 51, pp. 1553–1563, 2015.

[17] A. Hota, S. Mohapatra, and S. Mohanty, “Survey of different load bal-
ancing approach-based algorithms in cloud computing: a comprehensive
review,” in Computational Intelligence in Data Mining. Springer, 2019,
pp. 99–110.

[18] V. Priya, C. S. Kumar, and R. Kannan, “Resource scheduling algorithm
with load balancing for cloud service provisioning,” Applied Soft Com-
puting, vol. 76, pp. 416–424, 2019.

[19] P. Kumar and R. Kumar, “Issues and challenges of load balancing
techniques in cloud computing: a survey,” ACM Computing Surveys
(CSUR), vol. 51, no. 6, pp. 1–35, 2019.

[20] I. Odun-Ayo, V. Geteloma, I. Eweoya, and R. Ahuja, “Virtualization,
containerization, composition, and orchestration of cloud computing

services,” in International Conference on Computational Science and
Its Applications. Springer, 2019, pp. 403–417.

[21] A. Abuabdo and Z. A. Al-Sharif, “Virtualization vs. containerization:
Towards a multithreaded performance evaluation approach,” in 2019
IEEE/ACS 16th International Conference on Computer Systems and
Applications (AICCSA). IEEE, 2019, pp. 1–6.

[22] S. C. Mondesire, A. Angelopoulou, S. Sirigampola, and B. Goldiez,
“Combining virtualization and containerization to support interactive
games and simulations on the cloud,” Simulation Modelling Practice
and Theory, vol. 93, pp. 233–244, 2019.

[23] R. Mishra and A. Jaiswal, “Ant colony optimization: A solution of
load balancing in cloud,” International Journal of Web & Semantic
Technology, vol. 3, no. 2, p. 33, 2012.

[24] L. Tadic, P. Afric, L. Sikic, A. S. Kurdija, V. Klemo, G. Delac, and
M. Silic, “Analysis and comparison of exact and approximate bin packing
algorithms,” in 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO).
IEEE, 2019, pp. 919–924.

[25] X. Tang, Y. Li, R. Ren, and W. Cai, “On first fit bin packing for
online cloud server allocation,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2016, pp. 323–332.

[26] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approximation
and online algorithms for multidimensional bin packing: A survey,”
Computer Science Review, vol. 24, pp. 63–79, 2017.

[27] G. Dósa and L. Epstein, “The tight asymptotic approximation ratio of
first fit for bin packing with cardinality constraints,” Journal of Computer
and System Sciences, vol. 96, pp. 33–49, 2018.

[28] E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony based
workload placement in clouds,” in 2011 IEEE/ACM 12th International
Conference on Grid Computing. IEEE, 2011, pp. 26–33.

[29] M. C. Silva Filho, R. L. Oliveira, C. C. Monteiro, P. R. Inácio, and
M. M. Freire, “Cloudsim plus: a cloud computing simulation framework
pursuing software engineering principles for improved modularity, ex-
tensibility and correctness,” in 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 2017, pp. 400–406.

[30] D. A. A. G. Singh, R. Priyadharshini, and E. J. Leavline, “Analysis
of cloud environment using cloudsim,” in Artificial Intelligence and
Evolutionary Computations in Engineering Systems. Springer, 2018,
pp. 325–333.

www.ijacsa.thesai.org 615 | P a g e


