
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

PlusApps: Towards a Privacy Risk Analysis for
Android Plus Applications

Abdullah J. Alzahrani
Computer Engineering Department

College of Computer Science and Engineering
University of Ha’il, Hail, Saudi Arabia

Abstract—The Android platform leads the mobile operating
system marketplace and subsequently has drawn the interest
of malware authors and researchers. The significant number
of proposed malware detection techniques, classification models
and practical reverse engineering solutions are insufficient and
there is a lack of perfection. Also, the number of Android apps
has increased significantly in recent years, as has the number of
apps revealing confidential data. It is essential to investigate the
applications and make sure that none of them are leaking privacy
data, and consequently a privacy leak analysis approach is
needed. Therefore, this paper investigates plus apps behavior and
data leakages with a machine-learning algorithm to determine the
best features for differentiating plus apps from original apps. The
result of the analysis discloses that the SVM classifier presents
the greatest accuracy. Further investigation demonstrates that
the classifier with the ranking algorithm that uses correlation
coefficient (CorEvel) and information gain (InfGain) methods
offers more exceptional precision than the other correlation
algorithms. The result of this experiment proves that the ranking
algorithm is able to decrease the dimension of features and
produce an accuracy of 96.60%.

Keywords—Android security; malware detection; permission
analysis; privacy risk; plus application

I. INTRODUCTION

Operating systems (OSes) such as Android used in various
applications today can be prone to certain risks. Since its
inception, Android has come a long way and is prevalently
used today. Android has changed the world of smartphones.
However, certain risks, such as privacy leakage, can influence
the use of Android applications. Android applications can be
attacked by malicious codes. According to Zhang et al. [1],
malicious code is the “general term used for various hostile or
intrusive software, such as viruses, worms, Trojans, spyware,
botnets, Rootkits, and backdoors, among others”. Malicious
code can steal information and essential data from computer
users, which greatly affects a user’s privacy. When malicious
code gets access to a user’s personal data and computer,
controlling illegal computer systems and cyber source may
be possible. In this case, the computer and network credi-
bility, integrity and availability can be destroyed. Meanwhile,
Casey [2] noted that malicious code is usually not created using
a robust software development lifecycle, with the essential
testing and assessment phases needed to work out bugs.
Because of this, attackers can crash a target application or OS,
which then serves as a warning that a security issue exists. An
administrator could not treat every OS or application error as
an attack, but certain characteristics that a security issue exists
can be looked into. Some of these include crash outcomes

after opening an e-mail attachment and after viewing a certain
web page in a web browser. There are several diverse Android
applications that can be accessed in different parts of the world.
But in this variety, there are those that are considered the most
popular based on the number of downloads. The top five of
the top 20 list of Android applications presented by Price [3]
are shown in Table I. A plus application is an APK used to
modify the features of the original app for Android. WhatsApp
application versions will be investigated, both the plus and the
original version from its existence.

TABLE I. THE 5 MOST POPULAR ANDROID APPS IN THE GOOGLE PLAY
STORE.

No. Android Application Description No. of Downloads

1. WhatsApp
Instant messaging tool,
under the ownership of
Facebook since 2014

5.875 billion

2. Facebook Popular social networking site 5.478 billion
3. Facebook Messenger Instant messaging 3.756 billion

4. Instagram Photo and video-sharing
social networking service 2.796 billion

5. Subway Surfers Game application 1.249 billion

As mentioned earlier, smartphones can be prone to leakage
of a user’s sensitive and personal data. Data leakage is known
to be a serious threat to individuals and enterprise operations,
as loss of sensitive information can result in significant repu-
tational damage and financial losses and can be detrimental to
the long-term stability of an organization [4]. Apparently, the
concept of user awareness in the case of smartphone leakage
does not only cover the technical aspects of the device, such
as the functioning of Android applications. Alsaleh et al. [5]
underscored that both human and technological factors are
involved in the multi-dimensional problem of security threats
in smartphones. There are also social factors representing the
users in terms of user awareness and behavior for securing
their smartphone and smartphone applications. For example,
Alsaleh et al. [5] found that some smartphone users still chose
to share their private data via instant messaging platforms, such
as WhatsApp, even though they were aware of the privacy
risk. This implies that they accepted the risks associated with
their less protected sharing habits as the services offered by
these platforms allow them to easily communicate with people
they know. This implies that the smartphone’s convenience
and usefulness, alongside its features and applications, can
sometimes affect the decision to behave in a risky manner.
There is a lack of user understanding of privacy and security
risks linked with installing smartphone applications. In a
conducted survey, only 17% of users paid attention to the
permissions in their applications, including those that grant

www.ijacsa.thesai.org 684 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

application access to the privacy-sensitive, particularly when
an application is being installed. The results showed that only
3% of the survey respondents had a full understanding of the
permissions screen [6].

Malicious code can wreak havoc on IoT and mobile de-
vices [7]. The functioning of installed applications in mobile
devices will also be negatively affected in the form of data
breaches or privacy leakage. For example, data leakage can
bring serious threats to organizations. Meanwhile, data leak-
ages are privacy-sensitive data transmitted off the smartphone,
through the applications in an unexpected manner. It is there-
fore important for the malware to be detected during leakage to
avoid further or extreme damage. However, it is challenging to
detect an application as malware, especially when information
leakage occurs [7]. In addition, Cheng et al. [4] stressed that
detecting internal data leaks is very challenging as the internal
breaches typically involve users having legitimate access to the
facilities and data. Doing such actions may also be successful
without a trace, as the perpetrators are already knowledgeable
about the organization and know how to bypass detection. The
prevalent use of the Android OS and the fact that Android ap-
plications are often downloaded from third party sources makes
it essential to accurately detect those that can be malicious [8].
Additionally, the popularity of Android applications opens the
door to several threats and risks from malware applications.
According to Singh et al. [9], these simultaneously increasing
mobile malware apps can perform malicious activities, such
as misusing the private information of users when sending
messages and accessing their contacts and other information.
Apart from these, confidential information stored in mobile de-
vices can also be illegally exploited. Because of these threats,
malware classification and identification becomes a crucial
issue. However, permission mechanisms can still be considered
great defense mechanisms in ensuring that certain applications
cannot harm the user data. Because of this, Singh et al. [9]
proposed that malware characterization is determined from the
manifest file, allowing the user to enhance the efficiency of
Android permissions. In this way, the user will be informed of
the risks of Android permissions and applications.

Android’s features somehow offer threats and risks to users.
According to Fang et al. [10], Android security has been
established in a “permission-based mechanism” that restricts
the access of third-party Android applications to the critical
resources on an Android device. However, the permission-
based mechanism has been widely criticized, because of the
“coarse-grained control of application permissions” as well as
“difficult management of permissions by developers, marketers
and even the end users” [10]. Some issues arising in Android
security are incompetent administration, coarse granularity of
permissions, insufficient permission documentation, incompe-
tent permission administration, permission escalation attack,
over-claim permissions and TOCTOU (Time of Check to Time
of Use) attacks. Other approaches and initiatives concerning
Android permissions were also studied [11].

The purpose of this research is to explore the privacy risks
in Android plus applications. To overcome the issues surround-
ing privacy data leakage, a classification model of plus and
original apps needs to be employed. This model examines all
permissions used in Android plus apps via ranking algorithms
and machine-learning approaches. It obtains features from the

apps by analyzing plus and original apps and producing the
best feature sets that are employed in the classification models.
These models improve assessment of spotting data leakages
of plus apps as these apps will be observed corresponding to
these features sets. This paper presents an analysis of Android
application behavior and data leakages using a variety of
classification models. It utilizes feature selection techniques
that need to nominate attributes that are engaged to construct
the classification model to predict unknown samples. The
proposed model examines the apps, differentiating plus apps
from original apps, and defines the risk level of the apps
using a ranking algorithm that uses correlation coefficient
(CorEvel) and information gain (InfGain) methods, offering
superior exceptional precision to other correlation algorithms.

The rest of this paper is organized as follows: in Section II,
overview of Android platform and security; in Section III, the
related work is presented; in Section IV, Android plus apps
privacy risk analysis is explained; in Section V, the experiment
and result is illustrated; in Section VI, the conclusion and
future work are summarized.

II. OVERVIEW OF ANDROID PLATFORM AND SECURITY

The Android Platform is defined as the platform for mobile
devices that uses a modified Linux kernel and was intro-
duced by the Open Handset Alliance. Applications running
on the Android platform are written in Java programming
language. The Java classes are compiled into what is known
as “Dalvik Executables” and are operated on the “Dalvik
Virtual Machine”. Although Android is considered as an open
development, it is not open for anyone to contribute, especially
when a certain version is under development. All of these
are undertaken behind closed doors in the Google office. A
developer would need the Android SDK in order to create an
application for the platform and this would include tools and
APIs. The SDK will also be integrated into the graphical user
IDEs (Integrated Development Environments) [12].

Android has developed several security mechanisms.
Elovici et al. [13] noted that the Android software stack is
established on the “Linux kernel” that is utilized for device
drivers, memory management, process management and even
networking. This is followed by the next level called the
“Android native libraries”, where several system components
in the upper layers are using the said libraries. The libraries
are incorporated into Android applications, which can be made
possible through Java native interfaces. This is then followed
by the Android “runtime” level, which is composed of the
“Dalvik virtual machine and the core libraries” (Elovici et
al. [13]). These core libraries are written in Java, while also
offering substantial subsets of the Java 5 SE packages and
some Android-specific libraries. The “application framework
layer” is also fully written in Java and covers the Google
tools and propriety tools extensions and services. The phone,
web browser and email client, among others, are considered
as the topmost application layer. Figure 1 shows the list of the
security mechanisms embedded in Android.

Indeed, the security system of Android uses the Linux
kernel and offers a set of security measures. It also permits
a user-based permissions model, process isolation, secure
IPC mechanisms and the ability to eradicate unnecessary or

www.ijacsa.thesai.org 685 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Fig. 1. Security Mechanisms Embedded in Android [13]

possibly insecure parts of the kernel in the operating system.
Also, it can go further and render additional efforts in order
to avert or prevent multiple system users from accessing and
eventually exhausting each other’s resources [14]. Fig. 2 shows
and summarizes the five key security features of Android that
should be carefully studied.

Fig. 2. Five Security Features of Android [14]

Data mining and machine learning are important measures
for the security of Android. According to Dua et al. [15], both
data mining and machine learning can offer unified reference
for a certain machine learning solution towards cyber security
issues. It can also supply a foundation for cyber security funda-
mentals and assess new challenges that detail the cutting-edge
machine learning and data mining techniques. It is important
for the managers to learn about these while considering the
different challenges in data mining and machine learning for
security. As Ahmad et al. [16] underscored, a large number
of industries are already dependent on network connections,
especially those that have sensitive business trading and secu-
rity matters. In this case, communications and networks are
extremely vulnerable to the challenges and threats or risks,
such as hacking. Data mining security therefore needs to be
applied.

III. RELATED WORK

With the growth in worldwide sales of smartphones, there
has been a significant increase in the number of malicious
applications that misuse private data without a user’s knowl-
edge, publishing it on the online market. Given the massive
evolution of the malware, security researchers are required
to analyze smartphone applications to identify the intent of
the software and to develop defense mechanisms. Previously,
application disassemble was achieved by employing tools
such as decompilers and runtime debuggers. These techniques
require significant amounts of time and are capable of causes
errors, depending on the proficiency of the analyst. In the fact
an automatic analysis model [17] examines the downloaded
applications without human involvement. A key technique
in automatic analysis is performing reverse engineering on
the application’s disassembling, smali code, code decryption,
pattern matching, static system call analysis, and Applica-
tion Programming Interface (API) calls. Meanwhile, malicious
code developers are improving their coding skills to find new
ways for the malware to evade the detection techniques [18].

Android sensitive data leaks have recently been drawing
attention. PlusApps seems to be the first to systematically study
a technique to understand users who installed plus apps without
knowing its bad side effects. All current Android privacy
leakage detection techniques merely identify privacy leakage.
Static Taint Analysis (STA) [19] [20] [21] aims to discover the
potential sensitive data leaks with the support of deep analysis
and program debugging. On the other hand, these methods
generally present false positives and are unable to distinguish
between user-intended and unintended operations because user
intention and context information is absent. On the other side,
Dynamic Taint Analysis (DTA) [22] monitors the sensitive
data at runtime by using profiling code instrumentation to
the original app code. This technique cannot be employed
to automatically identify leaking sensitive data in application
markets for the reason that privacy leakages are reported while
the apps are executed, and dangerous propagation happens.

BLADE [23] identifies malware downloaded from the web
by knowing whether it has the user’s permission or not.
Nevertheless, smartphone applications usually do not require
end-user license agreements (EULA) or warnings, even though
the user approves the data (e.g. text forwarding). Pegasus [24]
spots abnormal behaviors that can be described as APIs and
permissions of applications using the historical order and, sim-
ilar to this paper, it concentrates on identifying malicious ap-
plication behaviors that are not consistent with the GUI events.
However, sensitive data leakages cannot be shaped as app
usage of permissions or APIs, therefore several sensitive data
leakages cannot be discovered by such techniques. Moreover,
Pegasus validates application behaviors based on application-
specific properties, which are complicated to indicate with
no understanding of application code. Lately, VetDroid [25]
improves Dynamic Taint Analysis by creating requirements
for sensitive processes. However, the requirement primarily
concentrates on the application rationality, not observing each
function and the trigger condition for it.

AppIntent [26] investigates user-intended sensitive data
transmission on the Android platform. Woodpecker [27] an-
alyzes potential leakages which dissect the reachability of
a critical permission from a public, unprotected interface.

www.ijacsa.thesai.org 686 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Yajin et al. [18] presented inactive content leaks that altered
applications to passively reveal application data. However, it
does not examine system calls into the Android platform itself.
Felt et. al [6] presented privacy and security risk techniques.
The researchers conducted an Internet survey on 308 Android
users and a laboratory study of 25 Android users. They found
that only 17% of users pay attention to the permissions in the
applications when an application is installed. Oglaza et al. [11]
focused on the Identity Based Access Control (IBAC) models,
which were used as permissions-management solutions on
mobile devices. The researchers considered the results of a
survey from Google in 2013 which showed that French users
have on average 32 applications on their Android smartphones.
The users would have to manage hundreds of permissions
in order to protect their privacy. Apparently, IBAC can be
complex aside from its scalability issues.

Some researchers approached data leakage detection by
different methods from information flow analysis. Bayes-
Droid [28] performs privacy enforcement by examining a
comparison between the sensitive data with sinking-values. It
can identify sensitive data leakage more precisely than taint
analysis techniques, although it only focuses on EIFs and is
not applicable to IIF detection. AGRIGENTO [29] utilizes
a black-box variance analysis method to show data leakage
exposure for obfuscated apps. Given that it only examines
sources of sensitive data and network traffic, it cannot maintain
locations of IIFs. In addition, it is not an efficient technique for
privacy policy enforcement. Barbon et al. [30] uses a hybrid
of data flow and quantitative assessment methods to identify
IIFs. DAPA [31] also presented a method founded on abstract
interpretation framework. Nevertheless, these methods are not
relevant to IIFs other than control reliance.

Various researchers have studied permissions-based mod-
els, however PlusApp is focused more on the plus apps’
behavior and data leakages. The proposed system has the
ability to differentiate plus from original apps based on
ranking methods and the application’s misbehavior in using
risky permissions techniques. This model employs Correlation
Coefficient (CorEvel) and information gain (InfGain) methods
that have the ability to rank the permissions.

IV. PROPOSED SYSTEM

The contribution of this research is to examine how per-
missions are abused by attackers to steal data or damage
the mobile device. This paper analyzes these permissions
after removing permissions with the normal attribute to see
if the proposed system could distinguish between plus and
normal apps concerning these permissions. The approach of
this research has four phases: plus data collection, plus apps
analysis, plus APK projection and plus evaluation. Fig. 3
illustrates the entire workflow of the proposed approach with
the corresponding components.

A. Data Collection

In the data collection phase, original and plus app sam-
ples are collected that need to be analyzed to be adequate
for machine learning approaches. The data creation process
began with the data cleansing that was performed to eliminate
identical apps and decrease the data amount. Next was the

Fig. 3. PlusApps Model Architecture and Components.

disassembling of the Android applications, making use of re-
verse engineering tools to retrieve the source code of the apps.
Finally the code was analyzed to get the used permissions and
the permission occurrences. The first stage, the data cleansing,
involves having unique samples and decreasing the features set
to accelerate the training phase with highly accurate results.
One substantial standpoint that effects data quality is data
replication, which impacts the data mining outcomes, and hash
techniques were used to identify the identical apps and label
these apps by the MD5 hash names. Eliminating replicated data
is required in order to have precise and reliable data because
inappropriate features have a harmful impact on machine
learning [32]. Consequently, replicated samples are excluded
from the dataset. There were no duplicate samples found in the
original apps, however, many plus samples were duplicated.
The dataset was prepared using 454 samples of unique plus

www.ijacsa.thesai.org 687 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

applications. Also, 1,000 samples were downloaded from the
Uptodown store. The original samples were separated such that
300 apps were included in the test set and the other 700 APK
files assigned to the train set. From the 454 plus APK samples,
317 files were included in the test set and the remaining 137
files assigned to the train set.

B. Plus Apps Analysis

This model involves static analysis for plus application
classification that implements machine learning techniques.
It analyzes APK applications before executing to determine
whether they are harmful applications or not. Many features
that can be used towards distinct feature classes are obtained
and employed to optimize the feature space. Androguard [33]
is utilized for extracting features needed for recognizing plus
and original apps. Plus analysis of components consist of two
steps: dissembling APK files and feature extraction. An APK
file contains all the program’s source code, resources, assets,
certificates and manifest files. However, the permissions from
each APK file are also obtained using the Androguard tool.
The distinct features are then used for classification in the
first step, followed by the investigation with joint features.
The distinct feature model generation requires features that are
extracted from distinct categories. Different types of features
are used. Permissions: the activities of an Android application
must request permission to access sensitive user data. These
permissions must be declared statically and a permission-
based model is used to offer security for Android architecture.
Permission total: this feature set is produced by calculating the
set of used permissions by an application.

1) Feature Extraction : A feature in machine learning is a
distinct measurable property or characteristic of a phenomenon
being observed. This model takes APK files, originally in
binary format, as input to the disassembler Androguard tool.
One of the output files is the AndroidManifest.xml file that is
readable, produced from the input .apk files using Androguard
script. The permissions defined in manifest files, which can
be extracted, then determines the number of used permissions
in each APK file. Also, the amount of permissions used in
APK files is a second feature for producing the proposed
approach. Since Android APK files and their features have
a great importance in Plus Android classification, the basic
features are extracted. Moreover, some combined features
based on statistical measurements were obtained. The number
of dangerous permissions over the total number of permissions
requested is an example of the ratio feature.

The total number of permissions of one application and the
risk level of each permission are illustrated in Algorithm 1.
This algorithm scans all dissembled APK applications and
extracts all the features. In addition, it obtains permissions
and the occurrence of each permission per application. These
permissions are then labeled based on the level of protection
and type of risk. These features and their values are saved in
a “.csv” file.

C. APK Projection

1) Feature Selection: In this step, feature pruning is con-
ducted to remove the attributes that result in misclassification.
After eliminating the inappropriate attributes, joint features to

both the modules (P ∩ O) are measured. Joint features are
given higher priority over the other groups of attributes, such as
the union of plus and original features (P ∪O), differentiating
original and plus features as they are considered to be irrelevant
for the classification of plus samples [34]. Determining the
significance of a feature and its attributes is known as feature
ranking in machine learning, which has the aim of choosing
the most revealing features and refining the performance of
learned models [35]. This model utilized correlation Coeffi-
cient (CorEvel) and information gain (InfGain) methods

Feature selection is applied to produce the input data into
the appropriate size to obtain a subset of k significance features
from a set of n features. The nominated attributes are em-
ployed to construct the classification model to predict unknown
samples. The permissions requested by the applications are
classified according to their persistency. These methods are
useful to the top 67 common permissions and distinguished
202 features to both plus and original train sets to minimize
the feature space.

2) Plus Apps Classifier: From the above phases, the model
obtains the requested permissions recognizable with each class
label of samples, the total number of the request permissions,
and the ratio of risky permissions to the level of risk. To
differentiate plus apps from original apps, a classifier is
constructed based on selected features that recognize risky
applications. The classifier is implemented utilizing four clas-
sification algorithms: Support Vector Machine (SVM) [36],
Naive Bayes (NB) [36], Decision Tree (J48) [37] and Random
Forest (RF) [38], due to their good performance in predicting
accuracy.

Support Vector Machine (SVM): SVM tries to find the
optimum hyperplane that splits two or more data points from
one class on one hand and others on the other hand. In order
to separate two classes optimally, the top hyperplane is defined
by maximizing margins of both classes. The margins are the
distance between the hyperplane and the neighboring point in
the classification that can be expressed using the Duality and

Algorithm 1 Total number of permissions of one application
and risk level of each permission
Inputs

APKDataset (dissembled APK applications)
Labelled Risk Permission

Outputs
FeatureSet (appearance of each permission in Manifest.xml files)

1: PermiList=[]
2: featureSet[]← 0
3: for e doach Manifest.xml in APKDataset
4: perm← 0
5: currentFeature← get Read(“Manfest.xml”)
6: for e doach permission in PermList
7: appearance← count#ofpermissionsin
8: TypeofRisk ← compare(permission,RiskLevel)
9: featureSet[perm] ← featureSet[perm] +
appearance

10: featureSet[perm] ← featureSet[perm] + perm +
TypeofRisk

11: perm++
12: Return featureSet[]

www.ijacsa.thesai.org 688 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

Lagrange Multipliers [39].

Decision Tree (J48): The decision tree can be utilized for
unravelling regression and classification issues by learning a
training model that that can be used to predict the class with
a tree structure [37]. The nodes are the features and leaves
that determine class labels. The branches between nodes and
leaves are connected with simple decision rules. Predicting a
class label for an instance is dependent on the training objects
which are all in the root of the tree, and then comparing the
root attribute values with the instance’s attribute recursively
based on selected features. The selection of features is based on
an empirical or arithmetic measure. For each recursive stage,
the chosen top feature outstandingly decreases the indecision
for classification. Thus, the decision tree algorithm naturally
holds the function of feature selection.

Random Forest: Random Forest (RF) is an ensemble
knowledge method that can be independently learned from
a set of decision trees on reduced training sets [38]. To get
improved predictive performance, a reduced training set is
shaped by arbitrarily sampling with replacement of features.
The last choice of classification is completed by choosing
between all learned trees. This method performs better than
a single tree on classification accuracy.

Naive Bayes (NB) is a supervised learning classifier based
on Bayes’ theorem that considers the “naive” assumption,
finding the relation between every set of elements with equal
impact to the target class. The NB classifier considers each
feature as unique and does not cooperate with other features.
Each class has independent and distinctive features that sim-
ilarly distributes to the probability of a sample. Naive Bayes
is straightforward to develop and is computationally quick,
works well on large scale datasets and is not hypersensitive to
noise [36].

V. EXPERIMENTS AND RESULTS

This section presents the results of risky permission rank-
ing, application evolution, the extracted explicit privacy leak-
ages features based on level of protection and PlusApps’
classification performance evaluation. To further evaluate the
performance of the proposed approach, Weka version 3.8.4
software was used [40]. Weka offers resources to train and
evaluate classification models for any given features set.

A. Risky Permissions Ranking

To distinguish between plus and original apps, Correlation
Coefficient (CorEvel) and information gain (InfGain) methods
have the ability to rank the permissions. This ranking uses
to determine the plus and original apps and all the data are
used to the permission ranking for the experiments. The top
30 risky permissions are illustrated in Table II. As described
in the table, the Correlation Coefficient and information gain
produced various orders of risky permissions. The results of
ranking contain the same risky permissions, with five unique
risky permissions in both methods.

Fig. 4 illustrates the existence rate of each top placed
permission with CorEvel in original and plus apps. As is
shown, the top risky permission differentiate plus apps from
the original apps by the rate of occurrence. The top four risky

TABLE II. TOP 30 RISKY PERMISSIONS RANKED BY COREVEL AND
INFGAIN.

Rank Correlation Ranker InfoGainProtection
Level Score CorEvel

1 Special 0.5854 KILL BACKGROUND PROCESSES KILL BACKGROUND PROCESSES
2 Dangerous 0.3549 sticker.READ sticker.READ
3 Special 0.3549 SYSTEM ALERT WINDOW SYSTEM ALERT WINDOW
4 Special 0.3162 WRITE USE APP FEATURE SURVEY WRITE USE APP FEATURE SURVEY
5 Dangerous 0.1696 READ SETTINGS READ SETTINGS
6 Dangerous 0.1696 UPDATE SHORTCUT UPDATE SHORTCUT
7 Signature 0.1584 BROADCAST BADGE BROADCAST BADGE
8 Special 0.1576 WRITE SETTINGS WRITE SETTINGS
9 Dangerous 0.1486 READ EXTERNAL STORAGE BLUETOOTH
10 Dangerous 0.1412 USE FULL SCREEN INTENT BROADCAST
11 Normal 0.1334 BROADCAST STICKY BILLING
12 Dangerous 0.1334 BROADCAST BROADCAST STICKY
13 Normal 0.1334 BLUETOOTH MAPS RECEIVE
14 Dangerous 0.1334 BILLING WRITE
15 Signature 0.1301 REQUEST INSTALL PACKAGES CAMERA
16 Signature 0.1294 REGISTRATION INSTALL SHORTCUT
17 Dangerous 0.1191 WRITE READ
18 Normal 0.1191 INSTALL SHORTCUT MODIFY AUDIO SETTINGS
19 Dangerous 0.1191 READ READ GSERVICES
20 Special 0.1191 MODIFY AUDIO SETTINGS CHANGE WIFI STATE
21 Signature 0.1191 MAPS RECEIVE UNINSTALL SHORTCUT
22 Dangerous 0.1191 READ GSERVICES READ SYNC STATS
23 Dangerous 0.1191 CAMERA READ SYNC SETTINGS
24 Special 0.1191 CHANGE WIFI STATE WAKE LOCK
25 Normal 0.1175 FOREGROUND SERVICE WRITE SYNC SETTINGS
26 Dangerous 0.103 READ PHONE STATE READ PROFILE
27 Signature 0.103 UNINSTALL SHORTCUT RECEIVE
28 Normal 0.103 READ SYNC SETTINGS VIBRATE
29 Dangerous 0.103 READ PROFILE WRITE CONTACTS
30 Normal 0.103 READ SYNC STATS RECEIVE BOOT COMPLETED

Fig. 4. Occurrence Percentage of the Top 30 Ranked Risky Permissions in
Plus Apps and Normal Apps.

permissions are uniquely utilized in the plus apps, ranked by
two ranking methods. 40% of the top 30 ranked permissions
are dangerous permissions. The occurrence rate for original
apps is higher than for plus apps. The top four occurrence
rates for plus apps is above 15%, with the following
permissions: KILL BACKGROUND PROCESSES,
sticker.READ, SYSTEM ALERT WINDOW, and
WRITE USE APP FEATURE SURVEY, with no occurrence
rates for original apps. Most of the ranked permissions are
similar due to applying the experiments on the WhatsApp
application versions only. The result shows that the use pattern
of system modification and data collection permissions is
vastly different between the plus apps and the original apps,
and many plus apps try to collect data using read and system
modification permissions. These permission are consistent
with the paper published by Shrivastava et al. [41], which
implies that the number of dangerous permissions used to
identify the untrustworthy applications and 68% of mobile
threats are SMS abuse and data stealer accounts. Billing is
also a risky permission that is more likely to be demanded by

www.ijacsa.thesai.org 689 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

plus apps, and CALL PHONE and INTERNET are sensitive
permissions. These latter two permissions are not placed in
the top risky permissions demanded by plus and original
apps.

Fig. 5. Permission Evolution of WhatsApps Benign Apps.

Permissions are put into categories of protection levels
as “normal”, “dangerous”, “signature” or “special”. The pro-
tection level affects whether runtime permission requests are
required [42]. The 30 ranking results are almost consistent
with the protection levels of Android APIs. The levels of
protection are shown in Table II, based on Android 9 API
level 28. The number of used permissions is increased in new
versions of Android apps, and the occurrence of dangerous
permissions in plus apps is significantly higher than the
number of dangerous permissions in original apps. There are
6 normal permissions, 13 dangerous permissions, 5 signature
permissions and 6 special permissions in ranked permissions.
17 of the top 30 ranked permissions are read, write and change
or modification permissions that are categorized as dangerous,
signature or special. Most of the plus apps induce users to gain
permissions to the app that triggered these permissions to break
the system privacy without the awareness of the users. For
example, permission KILL BACKGROUND PROCESSES is
recognized as “special” by Android. However, it is requested
by 51% of plus apps in order to allow the plus apps to kill
background processes of running applications to activate the
suspicious behaviors. This study indicates that most of the
ranked permissions are trying to access system resources.

With new development of Android APIs, the requested
permissions of Android apps are increased with extra permis-
sions. Fig. 5 presents the permission evolution of WhatsApp’s
original apps that shows a significant increase. The permission
evolution of WhatsApp’s plus apps are illustrated in Fig. 6,
which are similar to the original app’s permission evolution,
with the range of 40 to 57 permissions per version.

B. Evaluation Methodology

The evaluation methodology ensures that the PlusApps
classifier modules perform well and are able to spot plus
apps abnormal behavior intelligently. The development of the
classification model consists of four steps: input data selection,

Fig. 6. Permission Evolution of WhatsApp’s Plus Apps.

data pre-processing and splitting (including selecting the fea-
tures and addressing class), the setting of model parameters
and model implementation. The first step in developing the
classification models is input variable selection. The APK files
vary for each type of dataset that contain plus and original
apps. The second step is data pre-processing and splitting.
Data pre-processing is an essential step to prepare the data,
eliminate outliers and balance the features to the same range.
Datasets are typically pre-processed before they can be used
for training to speed up convergence. Data is normalized using
a linear transformation, which is the method of re-scaling
one or more attributes to the range of 0 to 1. Data pre-
processing is the process of data conversion that necessitates
each data instance is reproduced as a vector of real numbers.
Consequently, data has to be converted to numeric data if
they are definite attributes [39]. For app classification, they are
typically classified to be normal or plus apps, being represented
as 0 or 1, before they can be provided to the classifiers. After
that the datasets are separated into two parts, which are a
training and a testing set. There is no regulation to choose
the data partition of training and testing datasets [43]. In many
situations, the researchers applied various combinations of data
division and adjusted corresponding to the problems.

TABLE III. SUMMARY OF THE 10-FOLD CROSS VALIDATION ACCURACY
METRICS.

Accuracy Kappa Plus Normal
TP FN TN FP

95.8% 0.902 423 31 970 30

The third step is defining the model parameter and is
extremely vital. The appropriate model parameters can enhance
the J48, Naive Bayes, Random Tree and SVM classification
accuracy performances. There are three types of parameters
that should be considered for training the J48 algorithm,
which have influence on the resulting decision tree, namely,
minimum number of instances in a leaf, use of unpruned trees,
confidence factor used in post-pruning and the subtree-raising
operation in post-pruning. For the Naive Bayes classifier, all
model parameters can be estimated with relative frequencies
from the training set namely, class priors, useKernelEstimator

www.ijacsa.thesai.org 690 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

and feature probability distributions. Random Forest is a meta
estimator that suits a number of decision tree algorithms on
a variety of sub-instances of the data. The most important
parameters of Random Forest use averaging to enhance the
projecting precision and reduce over-fitting. The sub-instance
size is managed with the max samples parameter if boot-
strap=True (default), otherwise the entire dataset is utilized to
construct each tree. It then optimizes the random forest, which
can be done through a random search using the Randomized-
Search. For the SVM classifier model, there are two important
parameters that are considered in the RBF kernel function,
namely, regularization C parameter and gamma parameter [44].
The tradeoff cost between minimizing the training error and
the complexity of the model are verified by the C parameter,
which identifies the non-linear drawing from the low-level
space to some high-level dimensional space [44]. In this paper,
a parameter search is performed to identify the finest values
of parameter C, using trial and error approaches.

The last steps in developing the classification models are
model implementation. For the J48 model, the algorithm uses
attribute selection to decrease dataset size by eliminating
irrelevant/redundant attributes. This algorithm discovers the
minimum set of attributes and the resulting probability dis-
tribution of data classes, which should be near to the original
distribution. In the Naive Bayes classifier, the NB trains until
all the features are evaluated, and the one with the highest
probability (score) the the winner. For Random Forest, an
additional action is to improve the random forest using a
random search. Optimization implies obtaining the best hyper-
parameters for a model on the dataset. The finest hyper-
parameters differ among datasets and perform model tuning.
For SVM classification, the model is trained until the finest sets
of parameters (C, Y) are taken. To train and test the generated
models, a 10-fold cross-validation technique was performed.
In this technique, the instances were divided into training sets
(90%) and testing sets (10%), in which the testing set was
not part of the training set [45]. Ten unique datasets were
produced; in each a different 10% data partition was held out
for testing and the rest of the data was used for training. The
benefits of k-fold cross validation are that the influence of
data dependency is reduced and the consistency of results can
be increased. The model’s performance was measured using
values of true positive rate, false positive rate and AUC (the
area under the ROC curve).

C. Performance Evaluation

To differentiate between plus and original application,
classification techniques are usually employed in order to
evaluate the proposed approaches . The confusion matrix is the
best way of representing the classification result (Table V). Due
to the two-class nature of the classifier, there are four measures
as follows:

• True positive (TP): represents a plus application clas-
sified correctly as a plus version.

• False negative (FN): refers to a plus application clas-
sified incorrectly as an original version.

• True negative (TN) represents an original application
classified correctly as an original version.

• False positive (FP) refers to an original application
classified incorrectly as a plus version.

In addition, the performance of different classifier modules
is measured using the standard metrics true positive rate,
false positive rate and AUC (the area under the ROC curve).
The standard metrics extract part of the information from the
confusion matrix to produce a numeric value. The higher the
true positive rate and the lower the false positive rate, the better
the classification is.

1) True Positive Rate (TPR): TPR is the proportion
between the plus applications classified correctly as
plus version (Equation 1).

TPR(recall) =
TP

TP + FN
(1)

2) False Positive Rate (FPR): FPR is the ratio between
the number of misclassified original applications and
the total number of original applications (Equation 2).

FPR =
FP

FP + TN
(2)

3) The ROC curves are used to visualize the relation
between true and false positive rates of a certain
classifier while tuning it, and on the other hand to
compare the accuracy of several classifiers [43]. This
metric has two limitations but is nevertheless very
effective. The first shortcoming is that the ROC curve
is based on the ratio of attack to normal data. It
is used for the comparison of detection approaches
that run on the same dataset, but the graph of the
ROC curve is completely mislead when using it
to compare different detection methods that run on
different datasets. The second shortcoming is that
it may be misleading and basically inadequate for
understanding the strengths and weaknesses of a
proposed method [43].

Data mining techniques were used to detect the behavior of
plus apps based on permissions features. In this experiment,
the analysis of different classifiers was used and applied on
the dataset to verify whether the app was plus or normal. The
results of the analysis were saved in “.csv” file that converted
the arff extension in order to process it in Weka. The dataset
consisted of 454 plus samples and 1,000 original samples.
There were 202 feature vectors with a related label, and the last
feature was classification either to plus or normal. The Random
Forest classifier with a 10-fold cross validation was used for
testing our model. Table III shows the results of evaluation
metrics and reveals a high predictive performance.

The precision of recognizing 1,454 different plus and
original apps is 95.8% and the Kappa measurement is 0.902,
which indicates the performance of the Random Forest clas-
sifier using cross validation in this experiment. The False
Positive Ratio (FPR) is 3% and 6% for plus and original
apps respectively. Moreover, 30 original samples (6.8%) are
incorrectly recognized as plus and 93.2% of original apps are
correctly identified. 97% of plus apps out of 454 were detected
and only 30 plus apps misclassified as legitimate apps. The
number of plus apps correctly classified (TP) is 423 and the
number of original apps precisely categorized (TN) is 970
apps. Table IV illustrates the results.

www.ijacsa.thesai.org 691 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

TABLE IV. AREA UNDER THE RECEIVER (AUC) AND FALSE POSITIVE RATIO FOR DIFFERENT CLASSIFIERS.

Classifiers TP Rate FP Rate Precision F-Measure MCC ROC Area PRC Area
SVM 96.60% 5.00% 96.60% 96.60% 92.10% 95.80% 94.90%
NB 93.90% 11.40% 94.10% 93.80% 85.80% 95.50% 96.20%
J48 91.10% 19.30% 92.00% 90.70% 79.50% 85.70% 87.10%
RF 95.80% 5.60% 95.80% 95.80% 90.20% 98.10% 97.90%

TABLE V. THE CONFUSION MATRIX.

Original Plus
Original TN FP
Plus FN TP

1) Discussion and Comparison: Other machine learning
algorithms were used with 10-fold cross validation in the ex-
periment. These algorithms were Decision Trees (J48), Naive
Bayes, Random Tree and Support Vector Machine (SVM).
Table IV shows that all classifiers provided high detection
accuracy. An SVM with an RBF kernel classifier accomplished
the highest accuracy for the proposed approaches, followed by
Random Forest with a high achievement of 95.8% detection
rate. The Naive Bayes classifier has a close result with 93.9%,
and the Decision Tree (J48) classifier demonstrated the lowest
outcome with a 91.10% detection rate. Hence, due to the high
similarity of the samples, the Decision Tree (J48) performed
the lowest in the proposed model.

Most malware detection approaches consider dangerous
permissions are malicious such as SMS permissions. In the
paper presented by Wang et al. [21], the SMS-related per-
missions are always ranked very top risky permissions by the
three defined ranking methods. The proposed model has not
rated SMS related permission as unsafe permissions in plus
application. Also, bill-related and system-related permissions
are ranked risky permission in the proposed approach, but the
paper published by Wang et al. [21] which not deem these
permissions as malicious permissions due to the difference in
the behavior of the Plus apps from the malicious application.
Other ranked risky permissions are almost similar in both
works.

VI. CONCLUSIONS AND FUTURE WORK

The Android platform is an open ecosystem that allow its
developers to tailor some of its default features and settings.
Many of these settings can be easily customized and use read,
write or modified settings of the devices. A plus application
is the modified version of an original application with extra
features that could result privacy data leakages or misbehavior
of these applications. It is crucial that mobile scientific analyz-
ers pay close attention to the types of permissions that these
Android applications can request. Therefore, it is important
that the many plus applications which are identical to the
original application with extra features are investigated in order
to study the application’s behavior and observe its privacy
handling. This paper presents a risk analysis of Android
plus applications that investigates the plus apps’ behavior
and data leakages using classification algorithms. It reveals
classification modes to distinguish plus apps from original apps
through identifying the effectiveness of Android permissions.
The research has shown that it is possible to retrieve some

artifacts from plus applications when users installed and used
these types of plus applications. These artifacts included kill
processes, sticker read, system alert and billing features. The
research has also shown that some unique permissions can be
used by plus applications that are considered risky features,
which results in permissions abuse and data stealer accounts.
The analysis reveals that the SVM classifier presented the
highest accuracy and additional investigation demonstrates that
the classifier with the ranking algorithm use Correlation Co-
efficient (CorEvel) and Information Gain (InfGain) methods.

REFERENCES

[1] B. Y. Zhang, X. A. Yan, and D. Q. Tang, “Survey on malicious code
intelligent detection techniques,” Journal of Physics: Conference Series,
vol. 1087, p. 062, sep 2018.

[2] E. Casey, C. Daywalt, and A. Johnston, “Intrusion investigation,”
in Handbook of Digital Forensics and Investigation. San Diego:
Academic Press, 2010, pp. 135–206.

[3] D. Price, “The 20 most popular android apps in the google play store.”
New York ,USA, 03 2020.

[4] L. Cheng, F. Liu, and D. D. Yao, “Enterprise data breach: causes,
challenges, prevention, and future directions,” WIREs Data Mining and
Knowledge Discovery, vol. 7, no. 5, pp. 1–11, 2017.

[5] M. Alsaleh, N. Alomar, and A. Alarifi, “Smartphone users: Under-
standing how security mechanisms are perceived and new persuasive
methods,” PLOS ONE, vol. 12, 03 2017.

[6] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: Association for Computing
Machinery, 2012.

[7] Y. Kim, T. Oh, and J. Kim, “Analyzing user awareness of privacy data
leak in mobile applications,” Mobile Information Systems, vol. 2015,
pp. 1–12, 12 2015.

[8] S. Rai, R. Dhanesha, S. Nahata, and B. Menezes, Malicious Application
Detection on Android Smartphones with Enhanced Static-Dynamic
Analysis, 01 2017, pp. 194–208.

[9] P. Singh, P. Tiwari, and S. Singh, “Analysis of malicious behavior of
android apps,” Procedia Computer Science, vol. 79, pp. 215–220, 2016,
proceedings of International Conference on Communication, Computing
and Virtualization (ICCCV) 2016.

[10] Z. Fang, W. Han and Y. Li, “Permission based android security: Issues
and countermeasures,” Computers & Security, vol. 43, pp. 205–218,
2014.

[11] A. Oglaza, R. Laborde, P. Zarate, A. Benzekri and F. Barrere, “A new
approach for managing android permissions: learning users’ prefer-
ences,” EURASIP Journal on Information Security, vol. 2017, 07 2017.

[12] Technopedia, “Android platform.” New York ,USA, 08 2011.
[13] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer,

“Google android: A comprehensive security assessment,” IEEE Security
Privacy, vol. 8, no. 2, pp. 35–44, 2010.

[14] V. Code, “Android security: Guide to android os.” Burlington, MA
,USA, 01 2020.

[15] S. Dua and X. Du, Data Mining and Machine Learning in Cybersecu-
rity, 1st ed. USA: Auerbach Publications, 2011.

[16] B. Ahmad, J. Wan, and Z. A. Ali, “Role of machine learning and
data mining in internet security: Standing state with future directions,”
Journal Comp. Netw. and Communic., vol. 18, p. 10, 2018.

www.ijacsa.thesai.org 692 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 11, 2020

[17] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” vol. 44, no. 2, 2008.

[18] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE Symposium on Security and Privacy,
2012, pp. 95–109.

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” SIGPLAN Not., vol. 49, no. 6, pp. 259—269, Jun. 2014.

[20] M. Gordon, K. deokhwan, J. Perkins, L. Gilham, N. Nguyen, and M. Ri-
nard, “Information-flow analysis of android applications in droidsafe,”
01 2015.

[21] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Ex-
ploring permission-induced risk in android applications for malicious
application detection,” IEEE Transactions on Information Forensics and
Security, vol. 9, no. 11, pp. 1869–1882, 2014.

[22] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. USA: USENIX Association, 2010, pp. 393—407.

[23] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: An attack-
agnostic approach for preventing drive-by malware infections,” in
Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security. New York, NY, USA: Association for Computing
Machinery, 2010, pp. 440—450.

[24] K. Z. Chen, N. Johnson, S. Dai, K. Macnamara, T. Magrino, E. Wu,
M. Rinard, and D. Song, “Contextual policy enforcement in android
applications with permission event graphs,” 2013.

[25] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps with permission
use analysis,” in Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. New York, NY, USA:
Association for Computing Machinery, 2013, pp. 611—622.

[26] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for pri-
vacy leakage detection,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13.
New York, NY, USA: Association for Computing Machinery, 2013, pp.
1043—1054.

[27] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock android smartphones.” in NDSS, 2012.

[28] O. Tripp and J. Rubin, “A bayesian approach to privacy enforcement
in smartphones,” in Proceedings of the 23rd USENIX Conference on
Security Symposium, ser. SEC’14. USA: USENIX Association, 2014,
pp. 175—190.

[29] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand,
C. Kruegel, and G. Vigna, “Obfuscation-resilient privacy leak detection
for mobile apps through differential analysis,” 01 2017.

[30] G. Barbon, A. Cortesi, P. Ferrara, M. Pistoia, and O. Tripp, “Privacy
analysis of android apps: Implicit flows and quantitative analysis,” in
Computer Information Systems and Industrial Management. Cham:
Springer International Publishing, 2015, pp. 3–23.

[31] G. Barbon, A. Cortesi, P. Ferrara, and E. Steffinlongo, “Dapa:
Degradation-aware privacy analysis of android apps,” in STM, 2016.

[32] E. Rahm and H. H. Do, “Data cleaning: Problems and current ap-
proaches,” IEEE Data Engineering Bulletin, vol. 23, p. 20, 2000.

[33] Androguard, available at: http://github.com/androguard/androguard./ ac-
cessed on Feb 14, 2020.

[34] A. M. Aswini and P. Vinod, “Droid permission miner: Mining prominent
permissions for android malware analysis,” in The Fifth International
Conference on the Applications of Digital Information and Web Tech-
nologies (ICADIWT 2014), vol. 5, no. 1, 2014, pp. 81–86.

[35] I. Guyon, “An introduction to variable and feature selection,” Journal
of Machine Learning Research, vol. 3, pp. 1157–1182, 2003.

[36] S. Misra and H. Li, Noninvasive fracture characterization based on the
classification of sonic wave travel times, 2020, pp. 243–287.

[37] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81—106, 1986.

[38] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5—32, 2001.

[39] C. Burges, “A tutorial on support vector machines for pattern recogni-
tion.” Data Mining and Knowledge Discovery, vol. 2, no. 1, p. 121-167,
1998.

[40] E. Frank, M. Hall, G. Holmes, R. Kirkby, B. Pfahringer, I. Witten, and
L. Trigg, Weka - A Machine Learning Workbench for Data Mining, 07
2010, pp. 1269–1277.

[41] G. Shrivastava and P. Kumar, “Intent and permission modeling for
privacy leakage detection in android,” Energy Systems, 10 2019.

[42] G. Developer, “Permissions overview,” New York ,USA, 07 2020.
[43] S. Alsoghyer and I. Almomani, “Ransomware detection system for

android applications,” Electronics, vol. 8, p. 868, 08 2019.
[44] H.-L. Chen, B. Yang, J. Liu, and D.-Y. Liu, “A support vector machine

classifier with rough set-based feature selection for breast cancer
diagnosis,” Expert Systems with Applications, vol. 38, no. 7, pp. 9014–
9022, 2011.

[45] R. Kohavi, “A study of cross-validation and bootstrap for accuracy es-
timation and model selection,” in Proceedings of the 14th International
Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’95.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp.
1137–1143.

www.ijacsa.thesai.org 693 | P a g e


