
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 12, 2020 

Recovering UML2 Sequence Diagrams from 
Execution Traces 

EL Mahi BOUZIANE1, Abdeslam JAKIMI3 

Software Engineering and Information Systems Team 
Faculty of Sciences and Technics, My Ismail University 

Errachidia, Morocco 

Chafik BAIDADA2 

Laboratory of Information Technologies 
ENSA, Chouaib Doukkali University 

El Jadida, Morocco 
 
 

Abstract—Reverse engineering is a proven and efficient 
technique for automatically generating UML2 models from 
object-oriented legacy systems with missing or obsolete 
documentation. To perform reverse engineering, two techniques 
are used: dynamic and static analysis. Dynamic analysis refers to 
collecting information when the system is running while static 
analysis corresponds to inspecting the source code. Dynamic 
analysis is preferred than static one in order to extract dynamic 
models that represents the behavior of a systems because of 
polymorphism and dynamic binding. In this paper, we present 
new different methodology that use Colored Petri Nets (CPNs) to 
recover UML2 Sequence Diagram (SD). First, it generates 
execution traces corresponding to the different scenarios 
representing the system behavior. Then, CPNs are used to model 
and analyze these execution traces to extract UML2 sequence 
diagram. Our case study illustrates the process of our approach 
and show that sequence diagram can be extracted with a good 
accuracy. 
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I. INTRODUCTION 
Today object-oriented systems, are becoming increasingly 

larger and more complex. This increases the cost of their 
development and maintenance. According to [1], the cost of 
software maintenance represents 50% to 75% of the total cost. 
Despite the progress made in software engineering and 
development methods, several legacy systems still suffer from 
many problems such as unavailability of developers, obsolete 
development methods used to code the software, outdated 
documentation and non-compliance with the design when 
coding the software. In the software lifecycle, understanding its 
architecture and behavior is the main task in the maintenance 
phases. It is a tedious and time-consuming task that requires 
the mobilization of a large number of human resources. As 
mentioned in [2], up to 60% of maintenance time is spent on 
understanding the software. Therefore, it is important to 
develop techniques to obtain an abstract representation that 
facilitate the understanding of these systems. 

A proven and effective technique to face this problem is 
reverse engineering of UML2 models. It can be defined as a 
process of analyzing the source code of systems and 
representing it in models with a higher level of abstraction. 
Reverse engineering is mostly used to extract high level 
abstraction models or semantics from the source code [3]. 
Reverse engineering is used to help understanding existing 

systems. The IEEE-1219 [4] standard considers reverse 
engineering as a technological solution to deal with legacy 
system. For the object-oriented software, the most used 
modeling language is UML (Unified Modeling Language) [5]. 
Dynamic models are as important as static models because they 
allow to understand the behavior of the system. One of the 
major UML dynamic model is SD. Indeed, it allows to 
represent complex interactions between its objects [6]. As 
described in [7], dynamic analysis allows to remove the 
ambiguity of message sending when inheritance, delegation, 
polymorphism, dynamic links, reflection are used intensively. 
For this, we will give more importance to this type of analysis. 

This paper draws on our previous work [8, 9] to propose a 
new, more coherent and precise approach for reverse 
engineering the UML2 SD. This new approach allows to 
extract the conditions for combined fragment operator alt, opt 
and loop. For this purpose, improvements in the generation of 
execution traces and modeling with CPNs have been made. 
Indeed, the CPNs used have a smaller size and are more 
coherent. However, this approach does not currently apply to 
multi-threaded systems. 

The remainder of this paper is organized as follows. 
Section II includes related works. Section III introduces a 
background in reverse engineering of UML2 SDs using CPNs. 
Section IV outlines the proposed approach. Section V presents 
a case study. Finally, Section VI concludes and points out 
some of our future works. 

II. RELATED WORK 
Reverse engineering is defined as “the process of 

identifying and analysis of software’s system components, 
their interrelationships, and the representation of their entities 
at a higher level of abstraction” [10]. Reverse engineering aims 
to discover the technological principles of a system through the 
analysis of its structure and behavior. 

In the literature, depending on the type of analysis used, 
there are two main categories in existing approaches: static and 
dynamic. Static analysis consists in performing the analysis of 
the source code or the binaries to generate UML dynamic 
diagrams. This is done without running the system. There are 
several approaches that perform reverse engineering through 
static analysis [11, 12, 13, and 14]. One of the main works 
based on static analysis is [14]. In this work, the authors 
present an algorithm that builds UML 2.0 sequence diagrams 
from Java code, using control flow graphs. They create an 
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algorithm that transform this graph on SD. This is done on 
three phases. First, the algorithm associates subgraphs with 
sequence diagram fragments operator alt, opt, break, and loop. 
After that, a series of transformations are applied to the 
obtained SD to in order to make it more understandable. 

Dynamic analysis consists of running the program to obtain 
the necessary information in the form of an execution trace for 
the creation of sequence diagrams. These traces represent the 
values of the program variables, the state of the execution 
stack, the occurrences of objects created, the signatures of the 
methods called, the information about threads or any other 
execution information considered useful. As a result, objects 
under execution can be observed. There are several works that 
use dynamic analysis. In [15], an approach to extract SD from 
dynamic information of object-oriented programs is presented. 
In order to reduce repetitions in the execution trace, four rules 
are used to optimize the size of the execution traces by 
detecting similarity between sub-trees and replace merging 
them. The author in [16] propose an approach that allows 
extracting UML High Level Sequence Diagrams (HLSD) from 
java code by constructing control flow graphs. They proposed 
a method for switching between the general control flow graph 
(FCG) and UML sequence diagrams. The combination process 
is done by analyzing the different states of the system. In [17], 
it is proposed an approach based on dynamic analysis using 
Labeled Transition System (LTS). These LTSs are used for 
modeling execution traces in order to facilitate there analyzing. 
For each trace a corresponding LTS is generated. After that 
come the step to merge these LTSs in order to have one LTS 
modeling the behavior of the system. Finally, an HLSD is 
generated from the obtained LTS using regular expressions. 

The approaches listed before were able to extract SDs that 
represent the system behavior. However, the diagrams obtained 
are incomplete and suffer from several problems. These 
problems include information filtering problems. As listed in 
the catalog of abstractions and filtering in the context of 
reverse engineering of sequence diagrams [18]. In addition, 
these approaches fail to extract the conditions in the combined 
fragment operators like loop, opt and alt. 

III. BACKGROUND OF THE APPROACH 
In this section, we first explain what a sequence diagram in 

UML 2.x is. Second, we give some definitions regarding 
execution traces and how they are obtained. Finally, we 
introduce CPN and how we used it to represent an HLSD. 

A. UML2 Sequence Diagrams 
The SD is a form of behavioral diagram that allows to 

specify in a chronological way the interactions that exist 
between a group of objects from the temporal point of view. It 
has been significantly changed in UML 2.0 [5]. Indeed, the 
sequence diagram in UML2 is considered as partially ordered 
collections of events, which introduces new concepts such as 
combined fragment, parallelism and a synchronism and allows 
the definition of more complex behaviors. 

An HLSD is obtained by combining Basic Sequence 
Diagram (BSD) using interaction operators. The most 
commonly used combined fragment operators in the UML2 

sequence diagram are seq to express sequence, opt for optional, 
alt for alternatives and loop for iterative actions. 

B. Execution Traces 
Dynamic analysis, starts by generating traces. These traces 

are then analyzed to extract a HLSD. In our approach, for each 
scenario a trace execution is generated. In what follows, we 
introduce a set of definitions that are necessary to understand 
the approach. 

Def. 1: A trace line is a method invocation or a control 
structure. 

Def. 2: A method invocation is a triplet T1=<Sender, 
Message, Receiver> where: 

Sender is the caller object, expressed in the form 
package:class:object. 

Message is the invoked method of the receiver object, 
expressed in the form methodName (par1, par2, …). 

Receiver is the called object, expressed in the form 
package:class:object. 

Def. 3: A control structure is a triplet T2 = <controlType, 
status, condition> where: 

ControlType has one of the following values:  IF, ELSE, 
SWITCH, CASE or DEFAULT. 

Status expresses the start or the end of the control structure. 

Condition (optional) is the condition expression associated 
with IF, CASE, FOR, or WHILE. 

Def. 4: (Equivalence between method invocations): The 
method invocations l1 = <s1, m1, r1> and l2 = <s2, m2, r2> are 
equivalent if and only if: 

• The objects s1 and s2 (respectively, r1 and r2) are 
equivalent if they are instances of the same class. 

• The messages m1 and m2 concern the same method 
and have the same arguments. 

Def. 5: An execution trace is a set of trace lines. 

An example of execution traces in the format described 
before are shown in Table 1. For each Scenario correspond a 
trace (ex: Trace1 refers to Scenario1). The trace Trace1 is 
composed of lines from L0 to L5. Lines L6 to L10 belongs to 
Trace2. Pack1 represent the packages to which classes A and B 
belong. m1() to m5() refers to the methods invocation 
(messages) of objects a, b, c, and d. 

C. CPN 
Petri nets is a formal modeling language used to represent 

the dynamic behavior of different systems (computer, 
industrial, telecommunications ...) [19]. It was first introduced 
in 1962 by the German mathematician and computer scientist 
Carl Adam. CPN is an extension of Petri nets. CPN is an 
extension of petri nets. This extension considerably reduces the 
size of the network when extending the modeling with Net 
Petri. It allows the distinction between places by attaching a 
color to them. 
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TABLE I. AN EXAMPLE OF TRACES 

Trace1 
L6. Pack1:B:b|m3()|Pack1:A:a 
L7. WHILE |BEGIN |condition1 
L8. Pack1:B:b|m4()|Pack1:A:a 
L9. Pack1:B:b|m5()|Pack1:A:a 
L10. WHILE|END 
L6. Pack1:B:b|m3()|Pack1:A:a 

Scenario1 

Trace2 
L0. IF | BEGIN | condition2 
L1. Pack1:A:a |m1()|Pack1:B:b 
L2. ELSE | BEGIN 
L3. Pack2:C:c |m2()|Pack2:D:d  
L4. ELSE| END 
L5. IF | END 
L1. Pack1:A:a |m1()|Pack1:B:b 

Scenario2 

A Petri Net block is a subnet of the Petri Net with one 
initial place and one final place. Those places refer respectively 
to the precondition and the post-condition of the subnet. In 
[20], CPN is used to integrate scenarios   represented in the 
form of SDs. They use four combined fragment operators 
(conditional, sequential, iterative and concurrent) to combine 
scenarios. CPNs are suitable for our approach as they can be 
transformed easily into an HLSD (see Fig. 1). 

Transitions represent BSD or the operator such as seq, opt 
or control type as defined in Def 3. Places can represent a state 
of the system or the beginning or the end of the operator alt and 
loop. Colors are used to distinguish between traces. 

Fig. 1 shows how a CPN can be transformed easily into a 
HLSD and vice-versa. Pi and Pf represent respectively the 
initial and the final place of the Petri Net block. The first 
transition a | m1() |b corresponds to the first BSD. In this BSD 
the object a of class A call to the object b of the class B with 
the message m1(). The place LOOP | BEGIN represents the 
state before the start of the operator loop that leads to two 
transitions. The transition IF | BEGIN| C1 allows entering in 
the loop statement. This is done when the condition C1 of loop 
is equal to the value true. 

 
Fig. 1. A HLSD Mapped onto CPN with Operators Loop and Alt. 

After that, comes the place ALT | BEGIN which represents 
the state that also leads to two transitions. The first transition 
labeled IF | BEGIN| C2 refers to the case when the condition of 
alt is satisfied and leads to the transition b | m2() | a. This 
transition describes that the message m2() is sent by the object 
a of the class A to the object b of class B. The transition ELSE | 
BEGIN| C2 represents the second transition of alt and 
consequently occurs when its condition is not verified. The 
transition a| m3() | b refers to the BSD which describes that the 
object a calls the object b using the message m3(). The second 
transition of loop is ELSE | BEGIN refers to its end and thus 
occurs when its condition is not verified. 

In this section, we have presented and explained the most 
important concepts about SD, trace and CPN. This is the 
background on which our approach is based. 

IV. PROPOSED APPROACH 
Our objective is to extract SD from execution traces for an 

object oriented system using CPNs. 

In this section, we present our approach for reverse 
engineering of the HLSD. As illustrated in Fig. 2, the approach 
is divided in four main steps. First, the step trace collection. 
Second, the trace filtering step. Third the step of trace merging. 
Finally, the step of HLSD extraction. In the next subsections, 
each step is described in details. 

A. Traces Collection 
In order to generate an accurate HLSD, our approach use 

dynamic analysis technic. In [6], it’s described that dynamic 
analysis is more efficient than static one in the context of the 
reverse engineering of UML dynamic models such as SDs. 
This analysis is based on analyzing traces execution. These 
traces can be generated using several technics [2]. These 
technics includes the instrumentation of the source code, bytes 
code or the use of a customized debugger. In our approach we 
use the byte code instrumentation. 

We choose to use AspectJ [21] as trace collection tools. 
This tool concerns java software systems. It allows to report all 
information created during the execution of the program. This 
includes methods invocations, occurrence of objects, sending 
and receiving messages between objects, loops and conditions. 

 
Fig. 2. Overview of our Approach. 
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The behavior of the system is highly dependent on the input 
data entered by the user. Therefore, it is necessary to identify 
the majority of input variable values in order to specify all 
system behavior. This can be done with the help of a system 
functional expert. This can be done with the help of a system 
functional expert. After running the system with different input 
data values, execution traces are generated, each corresponding 
to a given scenario. Since execution trace formats differ from 
one tool to another, we have developed a tool that will allow to 
standardize the format of execution traces. This format is 
defined in the definitions 1, 2, and 3. The objective of this tool 
is to format the trace execution to facilitate the processing of 
merging traces. 

B. Trace Filtering 
The generated execution traces contain a lot of information 

about all classes composing the system. For example, these 
classes can be divided into three types: data access classes, 
business classes and presentation classes. The business classes 
are the classes that describe the behavior of the business logic 
of the system. Our objective in this step is to concentrate on 
traces lines that describe this behavior and ignore other traces 
lines. This is the objective of the trace filtering step. We have 
developed an algorithm that allows us to delete execution 
traces which belong to data access or presentation classes. 

C. Traces Merging 
As mentioned before, one execution of the system doesn’t 

allow an accurate description of all the system behavior. 
Therefore, the system must be run several times and thus 
generate different traces. The challenge is to be able to merge 
these different traces to identify the behavior of the system as a 
whole. In [22], several well-defined merging techniques were 
listed. 

For merging execution traces, we choose to use CPNs. The 
process is done in two successive sub-steps: first CPN 
initialization, then CPN merging. 

1) CPN Initialization: In this sub-step, a basic CPN is 
generated for each execution trace. All the trace lines are 
transformed into transitions in CPNs except those which refers 
to the start or the end of iterative control structure like LOOP | 
START and LOOP | END. These line traces are transformed 
into places. This reduces the size of CPN and makes it more 
consistent. A same color is assigned to all places that belong to 
the same execution trace. We use these colors to differentiate 
between scenarios. Each color refers to specific scenario. This 
allows subdividing an HLSD into less complex HLSDs to 
facilitate understanding the behavior of the system. 

2) CPN Merging: In this sub-step, all the CPNs 
corresponding to execution traces are merged to obtain a single 
CPN. The algorithm kBehavior [23] is used for this reason. 
This algorithm has points in common with the known Ktail 
algorithm. [24]. These algorithms are used to construct finite-
state automaton (FSA) that abstracts execution traces. The 
algorithms iteratively merge the equivalent states in order to 
generalize the resulting FSA. kBehavior can reuse already 
learned path to adapt it in the FSA with newly generated traces. 
This is not the case for Ktail. In our approach, we have 

developed an algorithm called adapted kBehavior which is 
totally inspired by kBehavior. It’s a new version adapted to 
deal with CPNs. Adapted kBehavior does not need to pre-
process the new traces it receives. However, it needs to explore 
the already generated CPN when it tries to learn again. When a 
new sequence of transition and places needs to be added to the 
CPN, it must be ensured that this sequence is not already 
present in the CPN. Since the generated CPN is generally not 
non-deterministic, the path of the CPN is quite inexpensive and 
the additional cost generated by this method remains 
reasonable. 

To make the CPN more coherent, a final transformation is 
carried out. This transformation concerns the processing of an 
iterative behavior. This processing includes adding two test 
transitions after the place LOOP | BEGIN | CONDITION. The 
first transition labeled IF | BEGIN | CONDITION is executed 
when the condition of Loop is satisfied. The second transition 
labeled LOOP | END is executed in the other case. This 
transition leads to the place labeled LOOP | END and 
consequently indicating the end of Loop. The output place of 
the last transition inside loop does not refer anymore its end but 
to its beginning. The labeling of this place is changed by 
removing the indication of its condition in order to avoid 
redundancy as illustrated in Fig. 3. 

D. HLSD Extraction 
In this step, we can easily build an HLSD by mapping the 

resulting CPN using the following transformation rules. 

• Rule 1: all names of objects in the CPN are transformed 
into lifelines in SD. 

• Rule 2: a transition T1 with the method invocation 
0:a:B | m1 ()| b:B is transformed into a BSD where 
object a:A sends message m1() to object b:B 

• Rule 3: A Place P1 that contains the operator ALT | 
BEGIN or OPT |BEGIN or LOOP | BEGIN refers 
respectively to BSD with the operators alt, opt and loop. 

• Rule 4: the CPN paths coming after the place ALT | 
BEGIN and ending on the transition ALT | END are 
transformed into combined fragments with the operators 
ALT. 

• Rule 5: the CPN paths coming after the place OPT | 
BEGIN and ending on the transition OPT | END are 
transformed into combined fragments with the operators 
OPT. 

• Rule 6: The cyclic CPN paths coming after the 
transition IF | BEGIN | CONDITION which comes after 
the place LOOP | BEGIN is transformed into combined 
fragments with the operator loop. 

• Rule 7: The CPN paths coming after the transition 
ELSE | BEGIN | CONDITION which comes after the 
place LOOP | BEGIN is transformed into BSD after the 
fragment corresponding to the operator loop. 

The rules listed below can be combined to map a CPN to an 
HLSD representing system behavior (Fig. 2). 
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Fig. 3. CPN Corresponding to Scenario1. 

V. CASE STUDY 
To test and illustrate the different steps of our approach, we 

have developed an application called Sales. It allows vendors 
to create sales of several articles. It gives the possibility to print 
an invoice, delivery or a payslip. All these operations are saved 
in a database. The application developed in Java provides 
different types of behavior (iterative, optional, sequential and 
alternative) which are the objective of our case study. The 
application has a layered architecture with two layers: business 
logic and data access layer and therefore is structured in two 
packages BLL (for business logic) and DAL (for data access 
layer). The BLL package contains six business classes (see 
Listing 1): Vendor, Sale, Calculation, Invoice, Payslip, and 
Delivery. The DAL package is composed of the following 
classes (see Listing 2): VendorDAL, SaleDAL, InvoiceDAL, 
PayslipDAL, and DeliveryDAL. 

To create sales, the vendor makes an order to start a new 
sale. The vendor can add articles repetitively and calculate the 
total amount of the sales (repetitive behavior). When the 
vendor completes the sale, he chooses to print a delivery slip or 
an invoice in order to be signed (alternative behavior). Finally, 
if the customer wants it, a pay slip must be printed (optional 
behavior). 

Listing1 and listing2 shows the source code of some classes 
of the application. Listing1 refers to the BLL package and 
Listing2 correspond to the DAL package. 

Listing 1 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

package BLL; 
import DAL.*; 
class Vendor { 
 public  Vendor(){ 
 }  
  public static void signInvoice(){ 
  System.out.println("Invoice signed"); 
aVendorDAL.saveUpdate(this); 
 } 
 public static void signDelivery(){ 
  System.out.println("Delivery signed"); 
aVendorDAL.saveUpdate(this); 
 } 
 public static void signPayslip(){ 
  System.out.println("Payslip signed"); 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
90 
100 
101 

aVendorDAL.saveUpdate(this); 
 } 
} 
class Sale { 
 public void newSales(Vendor V, int nbr_article, boolean 
isInvoice,   Boolean isPayslip){ 
  float oldValue=0; 
  System.out.println("New sale created"); 
  for(int i=1;i<=nbr_article;i++){ 
   float newValue=addArticle(); 
   Calculation calcul= new Calculation(); 
   oldValue=calcul.calculAmount(newValue, oldValue); 
  } 
  if(isInvoice){ 
  Invoice invoice= new Invoice(); 
  invoice.waitMessage(); 
  invoice.start(); 
 } 
 else { 
 Delivery delivery= new Delivery(); 
 delivery.getDelivery(); 
 } 
 if(isPayslip){ 
  Payslip payslip=new Payslip(); 
  payslip.getPayslip(); 
 } 
 } 
 public  float addArticle(){ 
  SalesDAL saleDAL =new SalesDAL(); 
  saleDAL.saveUpdate(this); 
  System.out.println("New article added"); 
  return 1000; 
 } 
} 
class Invoice extends Thread { 
  public void preparingInvoice(){ 
   System.out.println("Preparing Invoice "); 
 } 
  public void waitMessage(){ 
   System.out.println("waiting for Invoice "); 
 }    
 public void getInvoice(){ 
 System.out.println("Invoice printed"); 
 Vendor.signInvoice();InvoiceDAL Inv1= new 
InvoiceDAL(); 
 Inv1.saveUpdate(this); 
 } 
 @Override 
   public void run() { 
    try { 
          preparingInvoice(); 
          Thread.sleep(1000); 
          getInvoice();            
    }  
    catch (InterruptedException ex) { } 
 } 
} 
class Payslip { 
 public void getPayslip(){ 
  System.out.println("Payslip printed"); 
  Vendor.signPayslip(); 
  PayslipDAL Pay1 = new PayslipDAL(); 
  Pay1.saveUpdate(this); 
 } 
} 
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Listing 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

package DAL; 
import BLL.*; 
 
class DeliveryDAL  { 
public  void saveUpdate (Delivery d){ 
    System.out.println 
("Delivery updated in database  "); 
       /* 
...sending sql query to database using jdbc */ 
 } 
} 
 
class SaleDAL { 
// if new one a sale is created and updated  
// else the existing sale is updated 
 public  void saveUpdate (Sales s){ 
    System.out.println 
("sales updated in database  "); 
      /* 
 ... sending sql query to database using jdbc */ 
 } 
 
public class PayslipDAL { 
 public  void saveUpdate (Payslip s){ 
 System.out.println 
("Payslip updated in database  "); 
       /* 
... sending sql query to database using jdbc */ 
 } 
} 
 
class VendorDAL { 
 public   void saveUpdate (Vendor s){ 
   System.out.println("Vendor updated in database  "); 
    /* 
  ... sending sql query to database using jdb */   
 } 
} 

A. Trace Collection 
At this stage, the generated execution traces that represent 

the behavior of the systems are organized   in text files 
according to the format proposed by our approach. To do that, 
we use a java program that we have developed. It takes as input 
the traces generated after instrumentation with AspectJ. Then, 
it adapts them according to the adequate format as it shown in 
Table II, Table III and Table IV. 

B. Trace Filtering 
As input for this step, we have formatted traces that each 

correspond to a given scenario. These traces include calls of all 
objects that belong to packages BLL and DAL. In this case 
study, we consider that the main behavior of our application is 
illustrated in the business logic layer. So, we will ignore all 
trace lines that refers to the data access layer (trace lines with 
red color). For that, the algorithm will delete all lines traces 
that includes the package: DAL. Therefore, the line traces in 
red in Table II will be deleted. The final traces will contain 
only traces that include the BLL package. 

C. Trace Merging 
This step consist in generating for every filtered trace a 

corresponding CPN (Fig. 4, 5 and 6). These CPNs include as 
transitions the events generated by the system like the 
invocation of methods and performing tests. The places of 

CPN contains only the stars and the end of structure controls: 
LOOP | BEGIN |, LOOP | END, ALT | BEGIN |, ALT | END. 
To do this, we have developed an algorithm that transforms 
every trace into a CPN. 

First, our algorithm creates the initial place that represents 
the start of the CPN. Then, if it finds a method invocation, a 
correspondent transition is created and attached to the CPN. If 
a loop control structure is found, it creates places to indicate 
the start and the end of the iteration and create transitions 
corresponding to methods invocations between them. When, an 
alternative structure control is found, the algorithm checks if 
there is trace line with IF and ELSE. Then, it creates two places 
labeled ALT | BEGIN | CONDITION and ALT | END that 
indicate the start and the end of the if else test. After that, it 
checks if there is a method invocation after the trace line IF | 
BEGIN, a transition with the same label is created then another 
transition with the method invocation. Otherwise, a transition 
with the label ELSE | BEGIN is created. In the case when only 
IF is found without ELSE the algorithm creates two places 
labeled OPT | BEGIN | CONDITION and OPT | END. 

TABLE II. EXECUTION TRACE CORRESPONDING TO SCENARIO 1 

Trace1 (nbr_article = 3, isInvoice = false, isPayslip = false): 
L0. 1:BLL:Vendor:vendor  | Vendor () | DAL:VendorDAL:vendorDAL 
L1. 1:BLL:Vendor:vendor  | newSales (nbr_article, isInvoice, isPayslip ) | 
BLL:Sale:sale 
L2. FOR |  BEGIN | i<=nbr_article 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () |  BLL:Sale: sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue) | BLL:Calcul:calcul 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () |  BLL:Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue) |  BLL:Calcul:calcul 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () | BLL:Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue)  | BLL:Calcul:calcul 
L6. FOR | END  
L7. IF |  BEGIN | isInvoice 
L8. ELSE |  BEGIN 
L9. 1:BLL:Sale:sale  | getDelivery () | BLL:Delivery:delivery 
L10. 1:BLL:Delivery:delivery | signDelivery () |  BLL:Vendor:vendor  
L11. 1:BLL:Delivery:delivery | getDelivery () | DAL: DeliveryDAL:deliveryDAL 
L12. IF | END 
L13   IF | BEGIN |  isPayslip 
L14. IF | END 

Sc
en

ar
io

1 

TABLE III. EXECUTION TRACE CORRESPONDING TO SCENARIO 2 

Trace2 (nbr_article = 1, isInvoice = true, isPayslip = true): 
L0. 1:BLL:Vendor:vendor | Vendor () | DAL:VendorDAL:vendorDAL 
L1. 1:BLL:Vendor:vendor | newSales (nbr_article, isInvoice, isPayslip ) | 
BLL:Sale:sale 
L2. FOR | BEGIN | i<=nbr_article 
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () | BLL:Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue) | BLL:Calcul:calcul 
L6. FOR | END  
L7. IF | BEGIN | isInvoice 
L15. 1:BLL:Sale:sale  | getInvoice() | BLL:Invoice:invoice   
L16. 1:BLL:Sale:sale  | waitMessage ()  | BLL:Vendor:vendor 
L17   PAR | BEGIN 
L18. 10:BLL:Invoice:invoice  | preparingInvoice () | BLL:Invoice:invoice  
L19. 10:BLL:Invoice:invoice  | signInvoice () | BLL:Vendor:vendor 
L20. 10: BLL:Invoice:invoice | addArticle () | DAL:InvoiceDAL:invoiceDAL   
L21. PAR | END 
L8. ELSE | BEGIN 
L12. IF | END 
L13   IF | BEGIN |  isPayslip 
L22. 1:BLL:Sale:sale  | getPayslip () |  BLL: Payslip: paySlip 
L23. 1:BLL: Payslip: paySlip | signPayslip () |  BLL:Vendor:vendor   
L24. 1:BLL: Payslip: paySlip | getPayslip () | DAL: PayslipDAL: paySlipDAL 
L14. IF | END Sc

en
ar

io
 2
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TABLE IV. EXECUTION TRACE CORRESPONDING TO SCENARIO 3 

Trace3 (nbr_article = 4, isInvoice = false, isPayslip = true): 
L0. 1:BLL:Vendor:vendor | Vendor () | DAL:VendorDAL:vendorDAL 
L1. 1:BLL:Vendor:vendor | newSales (nbr_article, isInvoice, isPayslip ) |  
BLL:Sale:sale 
L2. FOR | BEGIN | i<=nbr_article 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () |  BLL:Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue)  |  BLL:Calcul:calcul 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () | v:Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue)  |  BLL:Calcul:calcul 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () |  BLL :Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue)  |  BLL:Calcul:calcul 
L3. 1:BLL:Sale:sale  | addArticle () | DAL:SaleDAL:saleDAL 
L4. 1:BLL:Sale:sale  | addArticle () |  BLL :Sale:sale 
L5. 1:BLL:Sale:sale  | calculAmount(newValue, oldValue)  |  BLL:Calcul:calcul 
L6. FOR | END  
L7. IF | BEGIN | isInvoice 
L8. ELSE | START  
L9. 1:BLL:Sale:sale  | getDelivery () |  BLL:Delivery:delivery 
L10. 1:BLL:Delivery:delivery | signDelivery () | BLL:Vendor:vendor 
L11. 1:BLL:Delivery:delivery | getDelivery () | DAL: DeliveryDAL:deliveryDAL  
L12. IF | END  
L13   IF | BEGIN |  isPayslip 
L22. 1:BLL:Sale:sale  | getPayslip () |  BLL: Payslip: paySlip 
L23. 1:BLL: Payslip: paySlip | signPayslip () |  BLL:Vendor:vendor   
L24. 1:BLL: Payslip: paySlip | getPayslip () | DAL: PayslipDAL: paySlipDAL 
L14. IF | END 

Sc
en

ar
io

 3
 

The Places Pi and Pf are added to the CPN to indicate 
respectively the initial place and the final trace. To simplify the 
CPNs, all repeated method invocation between places “LOOP | 

BEGIN” and “LOOP | END” is deleted. All places 
representing trace lines are colored with the same color. These 
colors are used to diferentiat between the different scenarios. 

After merging CPNs that refers to scenario1, scenario2 and 
scenario3, using the adapted Kbehavior, a new CPN is 
generated (Fig. 7). This CPN includes diferent paths with 
differents colors. Scenario1 has a yellow color, scenario2 has 
the green color while scenario3 has the red color. 

The condition C1 refers to when the variable i is less than 
nbr_article while the condition C2 corresponds to if the 
variable isinvoice is true. Now, we apply our last 
transformation on loop places to make the obtained CPN more 
coherent (Fig. 8). 

D. HLSD Extraction 
The objective of this step is to extract the HLSD that 

represent the system behavior. For that, we use the 
transformation rules described in Section 4.4 to transform the 
final CPN into HLSD (Fig. 9). 

The approach, as shown in following figure, is able to 
extract HLSD with the main UML2 fragment operators 
(seq,opt, alt and loop). Unlike other approaches using dynamic 
analysis, our approach succeeds in extracting the conditions 
corresponding to the combined fragment operators loop, opt 
and alt. 

 
Fig. 4. CPN Corresponding to Scenario1. 

 
Fig. 5. CPN Corresponding to Scenario2. 
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Fig. 6. CPN Corresponding to Scenario3. 

 
Fig. 7. The Merged CPN. 

 
Fig. 8. The Finale CPN. 
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Fig. 9. Extracted HLSD. 

In addition, our approach can be generalized to all object-
oriented languages since it only uses text files for execution 
traces. 

The colors are used to facilitate understinding the behavior 
of the system by subdividing it into several HLSD. 

VI. CONCLUSION 
Our work consists on proposing a new methodology for 

recovering an UML2 HLSD from execution trace using CPNs. 
For this, we first present a background of SD, CPN and reverse 
engineering. Then, we define several concepts which are 
essential for the understanding of our new approach. The 
approach starts by generating and collecting traces. Then, these 
traces are filtered and represented on CPNs in order to merge 

them. This merging is performed using an adapted version of 
the kBehavior algorithm that we have created. These CPNs are 
less complexes and more coherent than CPN in [8, 9]. The final 
obtained CPN use colors to differentiate between paths that 
represents different scenarios of the behavior of the system. 
This facilitates the understanding of the system. The approach 
succeeds to extract SD fragments operators such as seq, loop, 
alt and opt. It’s also extracts UML2 operator conditions 
relating on alt, opt and loop which is not the case in [8, 9]. 

Our future work is to extract the fragment operator par 
which is important for multi-threading systems. Besides, we 
will try to handle the problem of extracting others UML2 
diagrams like a state diagram and activity diagram. 

113 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 12, 2020 

REFERENCES 
[1] Sommerville, I., “Software Engineering” Addison Wesley, 2000. 
[2] B. Cornelissen, A. Zaidman, et A. Deursen, “A Controlled Experiment 

for Program Comprehension Through Trace Visualization,” pp 2. IEEE 
Trans. on Software Engineering, 2011. 

[3] K.-K. Lau and R. Arshad, “A Concise Classification of Reverse 
Engineering Approaches for Software Product Lines”,vol. 4, 2016. 

[4] IEEE. std 1219: Standard for Software Maintenance. IEEE Computer 
Society Press, Los Alamitos, CA, USA, 1998. 

[5] OMG. Unified Modeling Language (OMG UML), Superstructure, Vol. 
2, 2007. 

[6] L. C. Briand, Y. Labiche, J. Leduc, “Towards the Reverse Engineering 
of UML Sequence Diagrams for Distributed Java Software,” IEEE 
Transactions on Software Engineering, vol. 32, no. 9, pp. 642-663, 2006. 

[7] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet, M. 
Salois, and P. Charland, “A survey and evaluation of tool features for 
understanding reverse-engineered sequence diagrams,” J. Softw. Maint. 
E vol., vol. 20, no. 4, pp. 291–315, 2008. 

[8] Chafik B., El Mahi B. and Abdeslam J.: A “Dynamic Analysis for 
Reverse Engineering of Sequence Diagram Using CPN,” Lecture Notes 
in Computer Science (ISSN: 0302-9743), 2018. 

[9] Chafik B., El Mahi B., Abdeslam J. “A New Approach for Recovering 
High-Level Sequence Diagrams from Object-Oriented Applications,” 
Elsevier Procedia Computer Science Journal (ISSN: 1877-0509), 2019. 

[10] E. J. Chikofsky and J. H. Cross, II, “Reverse Engineering and Design 
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990. 

[11] R. Kollmann and M. Gogolla, “Capturing Dynamic Program Behaviour 
with UML Collaboration Diagrams,” in Proceedings of the 5th 
Conference on Software Maintenance and Reengineering (CSMR’01), 
pp 58-67. IEEE Computer Society, 2001. 

[12] R. Kollmann, P. Selonen, E. Stroulia, T. Syst¨a, and A. Z¨undorf. “A 
Study on the Current State of the Art in Tool-Supported UML-based 
Static Reverse Engineering,” in Proceedings of the 9th Working 
Conference on Reverse Engineering (WCRE’02), pp 22-32. IEEE 
Computer Society, 2002. 

[13] A.Rountev, O. Volgin, and M. Reddoch, “Static Control-Flow Analysis 
for Reverse Engineering of UML Sequence Diagrams,” in ACM 
SIGSOFT Software Engineering Notes, ACM, vol.31, no.1, pp. 96-102, 
2005. 

[14] A. Rountev and B.H. Connell, “Object Naming Analysis for Reverse-
Engineered Sequence Diagrams,” in Proceedings of the 27th 
International Conference on Software Engineering (ICSE’05), pp 254-
263. ACM, 2005. 

[15] Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Extracting 
Sequence Diagram from Execution Trace of Java Program,” 
International Workshop on Principles of Software Evolution 
(IWPSE’2005), pp. 148-151, 2005. 

[16] Romain Delamare, Benoit Baudry, Yves Le Traon, “Reverse-
engineering of UML 2.0 Sequence Diagrams from Execution Traces”, in 
Proceedings of the workshop on Object-Oriented Reengineering at 
ECOOP 06, 2006. 

[17] Tewfik Ziadi, Marcos Aur’elio Almeida da Silva, Lom Messan Hillah, 
Mikal Ziane. “A Fully Dynamic Approach to the Reverse Engineering 
of UML Sequence Diagrams,” 16th IEEE International Conference on 
Engineering of Complex Computer Systems, ICECCS, Las Vegas, 
United States, 2011. 

[18] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman, 
“Visualizing Test suites to Aid in Software Understanding,” In 
Proceedings of the 11th European Conference on Software Maintenance 
and Reengineering (CSMR’07), pages 213-222. IEEE Computer 
Society, 2007. 

[19] K. Jensen, “A brief introduction to coloured Petri nets,” in Proceeding of 
the Tools and Algorithms for the Construction and Analysis of Systems 
(TACAS’97) Workshop, LNCS, Springer-Verlag, vol. 1217. pp. 203–
208, 1997. 

[20] A. Jakimi, A. Sabraoui, E. Badidi, A. Salah, and M. El Koutbi, “Using 
UML Scenarios in B2b Systems,” IIUM Engineering Journal, 2010 

[21] AspectJ: The AspectJ project at Eclipse.org, http://www.eclipse.org/ 
aspectj/. 

[22] J. A. Brzozowski, “Derivatives of regular expressions,” J.ACM, vol. 11, 
no. 4, pp. 481–494, 1964. 

[23] L. Mariani, F. Pastore and M. Pezze. “Dynamic Analysis for Diagnosing 
Integration Faults,” in IEEE Transactions on Software Engineering, vol. 
37, no 4, pp. 486-508, 2011. 

[24] A. Biermann and J. Feldmann,. “On the synthesis of finite state 
machines from samples of their behavior,” IEEE Transactions on 
Computer, vol. 21, pp. 592–597, 1972. 

 

114 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work
	III. Background of the Approach
	A. UML2 Sequence Diagrams
	B. Execution Traces
	C. CPN

	IV. Proposed Approach
	A. Traces Collection
	B. Trace Filtering
	C. Traces Merging
	1) CPN Initialization: In this sub-step, a basic CPN is generated for each execution trace. All the trace lines are transformed into transitions in CPNs except those which refers to the start or the end of iterative control structure like LOOP | START and �
	2) CPN Merging: In this sub-step, all the CPNs corresponding to execution traces are merged to obtain a single CPN. The algorithm kBehavior [23] is used for this reason. This algorithm has points in common with the known Ktail algorithm. [24]. These algori�

	D. HLSD Extraction

	V. Case Study
	A. Trace Collection
	B. Trace Filtering
	C. Trace Merging
	D. HLSD Extraction

	VI. Conclusion

