
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Recovering UML2 Sequence Diagrams from
Execution Traces

EL Mahi BOUZIANE1, Abdeslam JAKIMI3

Software Engineering and Information Systems Team
Faculty of Sciences and Technics, My Ismail University

Errachidia, Morocco

Chafik BAIDADA2

Laboratory of Information Technologies
ENSA, Chouaib Doukkali University

El Jadida, Morocco

Abstract—Reverse engineering is a proven and efficient
technique for automatically generating UML2 models from
object-oriented legacy systems with missing or obsolete
documentation. To perform reverse engineering, two techniques
are used: dynamic and static analysis. Dynamic analysis refers to
collecting information when the system is running while static
analysis corresponds to inspecting the source code. Dynamic
analysis is preferred than static one in order to extract dynamic
models that represents the behavior of a systems because of
polymorphism and dynamic binding. In this paper, we present
new different methodology that use Colored Petri Nets (CPNs) to
recover UML2 Sequence Diagram (SD). First, it generates
execution traces corresponding to the different scenarios
representing the system behavior. Then, CPNs are used to model
and analyze these execution traces to extract UML2 sequence
diagram. Our case study illustrates the process of our approach
and show that sequence diagram can be extracted with a good
accuracy.

Keywords—Execution traces; Reverse engineering; UML2;
Sequence Diagram; Colored Petri Nets

I. INTRODUCTION
Today object-oriented systems, are becoming increasingly

larger and more complex. This increases the cost of their
development and maintenance. According to [1], the cost of
software maintenance represents 50% to 75% of the total cost.
Despite the progress made in software engineering and
development methods, several legacy systems still suffer from
many problems such as unavailability of developers, obsolete
development methods used to code the software, outdated
documentation and non-compliance with the design when
coding the software. In the software lifecycle, understanding its
architecture and behavior is the main task in the maintenance
phases. It is a tedious and time-consuming task that requires
the mobilization of a large number of human resources. As
mentioned in [2], up to 60% of maintenance time is spent on
understanding the software. Therefore, it is important to
develop techniques to obtain an abstract representation that
facilitate the understanding of these systems.

A proven and effective technique to face this problem is
reverse engineering of UML2 models. It can be defined as a
process of analyzing the source code of systems and
representing it in models with a higher level of abstraction.
Reverse engineering is mostly used to extract high level
abstraction models or semantics from the source code [3].
Reverse engineering is used to help understanding existing

systems. The IEEE-1219 [4] standard considers reverse
engineering as a technological solution to deal with legacy
system. For the object-oriented software, the most used
modeling language is UML (Unified Modeling Language) [5].
Dynamic models are as important as static models because they
allow to understand the behavior of the system. One of the
major UML dynamic model is SD. Indeed, it allows to
represent complex interactions between its objects [6]. As
described in [7], dynamic analysis allows to remove the
ambiguity of message sending when inheritance, delegation,
polymorphism, dynamic links, reflection are used intensively.
For this, we will give more importance to this type of analysis.

This paper draws on our previous work [8, 9] to propose a
new, more coherent and precise approach for reverse
engineering the UML2 SD. This new approach allows to
extract the conditions for combined fragment operator alt, opt
and loop. For this purpose, improvements in the generation of
execution traces and modeling with CPNs have been made.
Indeed, the CPNs used have a smaller size and are more
coherent. However, this approach does not currently apply to
multi-threaded systems.

The remainder of this paper is organized as follows.
Section II includes related works. Section III introduces a
background in reverse engineering of UML2 SDs using CPNs.
Section IV outlines the proposed approach. Section V presents
a case study. Finally, Section VI concludes and points out
some of our future works.

II. RELATED WORK
Reverse engineering is defined as “the process of

identifying and analysis of software’s system components,
their interrelationships, and the representation of their entities
at a higher level of abstraction” [10]. Reverse engineering aims
to discover the technological principles of a system through the
analysis of its structure and behavior.

In the literature, depending on the type of analysis used,
there are two main categories in existing approaches: static and
dynamic. Static analysis consists in performing the analysis of
the source code or the binaries to generate UML dynamic
diagrams. This is done without running the system. There are
several approaches that perform reverse engineering through
static analysis [11, 12, 13, and 14]. One of the main works
based on static analysis is [14]. In this work, the authors
present an algorithm that builds UML 2.0 sequence diagrams
from Java code, using control flow graphs. They create an

105 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

algorithm that transform this graph on SD. This is done on
three phases. First, the algorithm associates subgraphs with
sequence diagram fragments operator alt, opt, break, and loop.
After that, a series of transformations are applied to the
obtained SD to in order to make it more understandable.

Dynamic analysis consists of running the program to obtain
the necessary information in the form of an execution trace for
the creation of sequence diagrams. These traces represent the
values of the program variables, the state of the execution
stack, the occurrences of objects created, the signatures of the
methods called, the information about threads or any other
execution information considered useful. As a result, objects
under execution can be observed. There are several works that
use dynamic analysis. In [15], an approach to extract SD from
dynamic information of object-oriented programs is presented.
In order to reduce repetitions in the execution trace, four rules
are used to optimize the size of the execution traces by
detecting similarity between sub-trees and replace merging
them. The author in [16] propose an approach that allows
extracting UML High Level Sequence Diagrams (HLSD) from
java code by constructing control flow graphs. They proposed
a method for switching between the general control flow graph
(FCG) and UML sequence diagrams. The combination process
is done by analyzing the different states of the system. In [17],
it is proposed an approach based on dynamic analysis using
Labeled Transition System (LTS). These LTSs are used for
modeling execution traces in order to facilitate there analyzing.
For each trace a corresponding LTS is generated. After that
come the step to merge these LTSs in order to have one LTS
modeling the behavior of the system. Finally, an HLSD is
generated from the obtained LTS using regular expressions.

The approaches listed before were able to extract SDs that
represent the system behavior. However, the diagrams obtained
are incomplete and suffer from several problems. These
problems include information filtering problems. As listed in
the catalog of abstractions and filtering in the context of
reverse engineering of sequence diagrams [18]. In addition,
these approaches fail to extract the conditions in the combined
fragment operators like loop, opt and alt.

III. BACKGROUND OF THE APPROACH
In this section, we first explain what a sequence diagram in

UML 2.x is. Second, we give some definitions regarding
execution traces and how they are obtained. Finally, we
introduce CPN and how we used it to represent an HLSD.

A. UML2 Sequence Diagrams
The SD is a form of behavioral diagram that allows to

specify in a chronological way the interactions that exist
between a group of objects from the temporal point of view. It
has been significantly changed in UML 2.0 [5]. Indeed, the
sequence diagram in UML2 is considered as partially ordered
collections of events, which introduces new concepts such as
combined fragment, parallelism and a synchronism and allows
the definition of more complex behaviors.

An HLSD is obtained by combining Basic Sequence
Diagram (BSD) using interaction operators. The most
commonly used combined fragment operators in the UML2

sequence diagram are seq to express sequence, opt for optional,
alt for alternatives and loop for iterative actions.

B. Execution Traces
Dynamic analysis, starts by generating traces. These traces

are then analyzed to extract a HLSD. In our approach, for each
scenario a trace execution is generated. In what follows, we
introduce a set of definitions that are necessary to understand
the approach.

Def. 1: A trace line is a method invocation or a control
structure.

Def. 2: A method invocation is a triplet T1=<Sender,
Message, Receiver> where:

Sender is the caller object, expressed in the form
package:class:object.

Message is the invoked method of the receiver object,
expressed in the form methodName (par1, par2, …).

Receiver is the called object, expressed in the form
package:class:object.

Def. 3: A control structure is a triplet T2 = <controlType,
status, condition> where:

ControlType has one of the following values: IF, ELSE,
SWITCH, CASE or DEFAULT.

Status expresses the start or the end of the control structure.

Condition (optional) is the condition expression associated
with IF, CASE, FOR, or WHILE.

Def. 4: (Equivalence between method invocations): The
method invocations l1 = <s1, m1, r1> and l2 = <s2, m2, r2> are
equivalent if and only if:

• The objects s1 and s2 (respectively, r1 and r2) are
equivalent if they are instances of the same class.

• The messages m1 and m2 concern the same method
and have the same arguments.

Def. 5: An execution trace is a set of trace lines.

An example of execution traces in the format described
before are shown in Table 1. For each Scenario correspond a
trace (ex: Trace1 refers to Scenario1). The trace Trace1 is
composed of lines from L0 to L5. Lines L6 to L10 belongs to
Trace2. Pack1 represent the packages to which classes A and B
belong. m1() to m5() refers to the methods invocation
(messages) of objects a, b, c, and d.

C. CPN
Petri nets is a formal modeling language used to represent

the dynamic behavior of different systems (computer,
industrial, telecommunications ...) [19]. It was first introduced
in 1962 by the German mathematician and computer scientist
Carl Adam. CPN is an extension of Petri nets. CPN is an
extension of petri nets. This extension considerably reduces the
size of the network when extending the modeling with Net
Petri. It allows the distinction between places by attaching a
color to them.

106 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE I. AN EXAMPLE OF TRACES

Trace1
L6. Pack1:B:b|m3()|Pack1:A:a
L7. WHILE |BEGIN |condition1
L8. Pack1:B:b|m4()|Pack1:A:a
L9. Pack1:B:b|m5()|Pack1:A:a
L10. WHILE|END
L6. Pack1:B:b|m3()|Pack1:A:a

Scenario1

Trace2
L0. IF | BEGIN | condition2
L1. Pack1:A:a |m1()|Pack1:B:b
L2. ELSE | BEGIN
L3. Pack2:C:c |m2()|Pack2:D:d
L4. ELSE| END
L5. IF | END
L1. Pack1:A:a |m1()|Pack1:B:b

Scenario2

A Petri Net block is a subnet of the Petri Net with one
initial place and one final place. Those places refer respectively
to the precondition and the post-condition of the subnet. In
[20], CPN is used to integrate scenarios represented in the
form of SDs. They use four combined fragment operators
(conditional, sequential, iterative and concurrent) to combine
scenarios. CPNs are suitable for our approach as they can be
transformed easily into an HLSD (see Fig. 1).

Transitions represent BSD or the operator such as seq, opt
or control type as defined in Def 3. Places can represent a state
of the system or the beginning or the end of the operator alt and
loop. Colors are used to distinguish between traces.

Fig. 1 shows how a CPN can be transformed easily into a
HLSD and vice-versa. Pi and Pf represent respectively the
initial and the final place of the Petri Net block. The first
transition a | m1() |b corresponds to the first BSD. In this BSD
the object a of class A call to the object b of the class B with
the message m1(). The place LOOP | BEGIN represents the
state before the start of the operator loop that leads to two
transitions. The transition IF | BEGIN| C1 allows entering in
the loop statement. This is done when the condition C1 of loop
is equal to the value true.

Fig. 1. A HLSD Mapped onto CPN with Operators Loop and Alt.

After that, comes the place ALT | BEGIN which represents
the state that also leads to two transitions. The first transition
labeled IF | BEGIN| C2 refers to the case when the condition of
alt is satisfied and leads to the transition b | m2() | a. This
transition describes that the message m2() is sent by the object
a of the class A to the object b of class B. The transition ELSE |
BEGIN| C2 represents the second transition of alt and
consequently occurs when its condition is not verified. The
transition a| m3() | b refers to the BSD which describes that the
object a calls the object b using the message m3(). The second
transition of loop is ELSE | BEGIN refers to its end and thus
occurs when its condition is not verified.

In this section, we have presented and explained the most
important concepts about SD, trace and CPN. This is the
background on which our approach is based.

IV. PROPOSED APPROACH
Our objective is to extract SD from execution traces for an

object oriented system using CPNs.

In this section, we present our approach for reverse
engineering of the HLSD. As illustrated in Fig. 2, the approach
is divided in four main steps. First, the step trace collection.
Second, the trace filtering step. Third the step of trace merging.
Finally, the step of HLSD extraction. In the next subsections,
each step is described in details.

A. Traces Collection
In order to generate an accurate HLSD, our approach use

dynamic analysis technic. In [6], it’s described that dynamic
analysis is more efficient than static one in the context of the
reverse engineering of UML dynamic models such as SDs.
This analysis is based on analyzing traces execution. These
traces can be generated using several technics [2]. These
technics includes the instrumentation of the source code, bytes
code or the use of a customized debugger. In our approach we
use the byte code instrumentation.

We choose to use AspectJ [21] as trace collection tools.
This tool concerns java software systems. It allows to report all
information created during the execution of the program. This
includes methods invocations, occurrence of objects, sending
and receiving messages between objects, loops and conditions.

Fig. 2. Overview of our Approach.

107 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

The behavior of the system is highly dependent on the input
data entered by the user. Therefore, it is necessary to identify
the majority of input variable values in order to specify all
system behavior. This can be done with the help of a system
functional expert. This can be done with the help of a system
functional expert. After running the system with different input
data values, execution traces are generated, each corresponding
to a given scenario. Since execution trace formats differ from
one tool to another, we have developed a tool that will allow to
standardize the format of execution traces. This format is
defined in the definitions 1, 2, and 3. The objective of this tool
is to format the trace execution to facilitate the processing of
merging traces.

B. Trace Filtering
The generated execution traces contain a lot of information

about all classes composing the system. For example, these
classes can be divided into three types: data access classes,
business classes and presentation classes. The business classes
are the classes that describe the behavior of the business logic
of the system. Our objective in this step is to concentrate on
traces lines that describe this behavior and ignore other traces
lines. This is the objective of the trace filtering step. We have
developed an algorithm that allows us to delete execution
traces which belong to data access or presentation classes.

C. Traces Merging
As mentioned before, one execution of the system doesn’t

allow an accurate description of all the system behavior.
Therefore, the system must be run several times and thus
generate different traces. The challenge is to be able to merge
these different traces to identify the behavior of the system as a
whole. In [22], several well-defined merging techniques were
listed.

For merging execution traces, we choose to use CPNs. The
process is done in two successive sub-steps: first CPN
initialization, then CPN merging.

1) CPN Initialization: In this sub-step, a basic CPN is
generated for each execution trace. All the trace lines are
transformed into transitions in CPNs except those which refers
to the start or the end of iterative control structure like LOOP |
START and LOOP | END. These line traces are transformed
into places. This reduces the size of CPN and makes it more
consistent. A same color is assigned to all places that belong to
the same execution trace. We use these colors to differentiate
between scenarios. Each color refers to specific scenario. This
allows subdividing an HLSD into less complex HLSDs to
facilitate understanding the behavior of the system.

2) CPN Merging: In this sub-step, all the CPNs
corresponding to execution traces are merged to obtain a single
CPN. The algorithm kBehavior [23] is used for this reason.
This algorithm has points in common with the known Ktail
algorithm. [24]. These algorithms are used to construct finite-
state automaton (FSA) that abstracts execution traces. The
algorithms iteratively merge the equivalent states in order to
generalize the resulting FSA. kBehavior can reuse already
learned path to adapt it in the FSA with newly generated traces.
This is not the case for Ktail. In our approach, we have

developed an algorithm called adapted kBehavior which is
totally inspired by kBehavior. It’s a new version adapted to
deal with CPNs. Adapted kBehavior does not need to pre-
process the new traces it receives. However, it needs to explore
the already generated CPN when it tries to learn again. When a
new sequence of transition and places needs to be added to the
CPN, it must be ensured that this sequence is not already
present in the CPN. Since the generated CPN is generally not
non-deterministic, the path of the CPN is quite inexpensive and
the additional cost generated by this method remains
reasonable.

To make the CPN more coherent, a final transformation is
carried out. This transformation concerns the processing of an
iterative behavior. This processing includes adding two test
transitions after the place LOOP | BEGIN | CONDITION. The
first transition labeled IF | BEGIN | CONDITION is executed
when the condition of Loop is satisfied. The second transition
labeled LOOP | END is executed in the other case. This
transition leads to the place labeled LOOP | END and
consequently indicating the end of Loop. The output place of
the last transition inside loop does not refer anymore its end but
to its beginning. The labeling of this place is changed by
removing the indication of its condition in order to avoid
redundancy as illustrated in Fig. 3.

D. HLSD Extraction
In this step, we can easily build an HLSD by mapping the

resulting CPN using the following transformation rules.

• Rule 1: all names of objects in the CPN are transformed
into lifelines in SD.

• Rule 2: a transition T1 with the method invocation
0:a:B | m1 ()| b:B is transformed into a BSD where
object a:A sends message m1() to object b:B

• Rule 3: A Place P1 that contains the operator ALT |
BEGIN or OPT |BEGIN or LOOP | BEGIN refers
respectively to BSD with the operators alt, opt and loop.

• Rule 4: the CPN paths coming after the place ALT |
BEGIN and ending on the transition ALT | END are
transformed into combined fragments with the operators
ALT.

• Rule 5: the CPN paths coming after the place OPT |
BEGIN and ending on the transition OPT | END are
transformed into combined fragments with the operators
OPT.

• Rule 6: The cyclic CPN paths coming after the
transition IF | BEGIN | CONDITION which comes after
the place LOOP | BEGIN is transformed into combined
fragments with the operator loop.

• Rule 7: The CPN paths coming after the transition
ELSE | BEGIN | CONDITION which comes after the
place LOOP | BEGIN is transformed into BSD after the
fragment corresponding to the operator loop.

The rules listed below can be combined to map a CPN to an
HLSD representing system behavior (Fig. 2).

108 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 3. CPN Corresponding to Scenario1.

V. CASE STUDY
To test and illustrate the different steps of our approach, we

have developed an application called Sales. It allows vendors
to create sales of several articles. It gives the possibility to print
an invoice, delivery or a payslip. All these operations are saved
in a database. The application developed in Java provides
different types of behavior (iterative, optional, sequential and
alternative) which are the objective of our case study. The
application has a layered architecture with two layers: business
logic and data access layer and therefore is structured in two
packages BLL (for business logic) and DAL (for data access
layer). The BLL package contains six business classes (see
Listing 1): Vendor, Sale, Calculation, Invoice, Payslip, and
Delivery. The DAL package is composed of the following
classes (see Listing 2): VendorDAL, SaleDAL, InvoiceDAL,
PayslipDAL, and DeliveryDAL.

To create sales, the vendor makes an order to start a new
sale. The vendor can add articles repetitively and calculate the
total amount of the sales (repetitive behavior). When the
vendor completes the sale, he chooses to print a delivery slip or
an invoice in order to be signed (alternative behavior). Finally,
if the customer wants it, a pay slip must be printed (optional
behavior).

Listing1 and listing2 shows the source code of some classes
of the application. Listing1 refers to the BLL package and
Listing2 correspond to the DAL package.

Listing 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

package BLL;
import DAL.*;
class Vendor {
 public Vendor(){
 }
 public static void signInvoice(){
 System.out.println("Invoice signed");
aVendorDAL.saveUpdate(this);
 }
 public static void signDelivery(){
 System.out.println("Delivery signed");
aVendorDAL.saveUpdate(this);
 }
 public static void signPayslip(){
 System.out.println("Payslip signed");

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
69
70
71
72
73
74
75
76
77
78
79
80
90
100
101

aVendorDAL.saveUpdate(this);
 }
}
class Sale {
 public void newSales(Vendor V, int nbr_article, boolean
isInvoice, Boolean isPayslip){
 float oldValue=0;
 System.out.println("New sale created");
 for(int i=1;i<=nbr_article;i++){
 float newValue=addArticle();
 Calculation calcul= new Calculation();
 oldValue=calcul.calculAmount(newValue, oldValue);
 }
 if(isInvoice){
 Invoice invoice= new Invoice();
 invoice.waitMessage();
 invoice.start();
 }
 else {
 Delivery delivery= new Delivery();
 delivery.getDelivery();
 }
 if(isPayslip){
 Payslip payslip=new Payslip();
 payslip.getPayslip();
 }
 }
 public float addArticle(){
 SalesDAL saleDAL =new SalesDAL();
 saleDAL.saveUpdate(this);
 System.out.println("New article added");
 return 1000;
 }
}
class Invoice extends Thread {
 public void preparingInvoice(){
 System.out.println("Preparing Invoice ");
 }
 public void waitMessage(){
 System.out.println("waiting for Invoice ");
 }
 public void getInvoice(){
 System.out.println("Invoice printed");
 Vendor.signInvoice();InvoiceDAL Inv1= new
InvoiceDAL();
 Inv1.saveUpdate(this);
 }
 @Override
 public void run() {
 try {
 preparingInvoice();
 Thread.sleep(1000);
 getInvoice();
 }
 catch (InterruptedException ex) { }
 }
}
class Payslip {
 public void getPayslip(){
 System.out.println("Payslip printed");
 Vendor.signPayslip();
 PayslipDAL Pay1 = new PayslipDAL();
 Pay1.saveUpdate(this);
 }
}

109 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Listing 2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

package DAL;
import BLL.*;

class DeliveryDAL {
public void saveUpdate (Delivery d){
 System.out.println
("Delivery updated in database ");
 /*
...sending sql query to database using jdbc */
 }
}

class SaleDAL {
// if new one a sale is created and updated
// else the existing sale is updated
 public void saveUpdate (Sales s){
 System.out.println
("sales updated in database ");
 /*
 ... sending sql query to database using jdbc */
 }

public class PayslipDAL {
 public void saveUpdate (Payslip s){
 System.out.println
("Payslip updated in database ");
 /*
... sending sql query to database using jdbc */
 }
}

class VendorDAL {
 public void saveUpdate (Vendor s){
 System.out.println("Vendor updated in database ");
 /*
 ... sending sql query to database using jdb */
 }
}

A. Trace Collection
At this stage, the generated execution traces that represent

the behavior of the systems are organized in text files
according to the format proposed by our approach. To do that,
we use a java program that we have developed. It takes as input
the traces generated after instrumentation with AspectJ. Then,
it adapts them according to the adequate format as it shown in
Table II, Table III and Table IV.

B. Trace Filtering
As input for this step, we have formatted traces that each

correspond to a given scenario. These traces include calls of all
objects that belong to packages BLL and DAL. In this case
study, we consider that the main behavior of our application is
illustrated in the business logic layer. So, we will ignore all
trace lines that refers to the data access layer (trace lines with
red color). For that, the algorithm will delete all lines traces
that includes the package: DAL. Therefore, the line traces in
red in Table II will be deleted. The final traces will contain
only traces that include the BLL package.

C. Trace Merging
This step consist in generating for every filtered trace a

corresponding CPN (Fig. 4, 5 and 6). These CPNs include as
transitions the events generated by the system like the
invocation of methods and performing tests. The places of

CPN contains only the stars and the end of structure controls:
LOOP | BEGIN |, LOOP | END, ALT | BEGIN |, ALT | END.
To do this, we have developed an algorithm that transforms
every trace into a CPN.

First, our algorithm creates the initial place that represents
the start of the CPN. Then, if it finds a method invocation, a
correspondent transition is created and attached to the CPN. If
a loop control structure is found, it creates places to indicate
the start and the end of the iteration and create transitions
corresponding to methods invocations between them. When, an
alternative structure control is found, the algorithm checks if
there is trace line with IF and ELSE. Then, it creates two places
labeled ALT | BEGIN | CONDITION and ALT | END that
indicate the start and the end of the if else test. After that, it
checks if there is a method invocation after the trace line IF |
BEGIN, a transition with the same label is created then another
transition with the method invocation. Otherwise, a transition
with the label ELSE | BEGIN is created. In the case when only
IF is found without ELSE the algorithm creates two places
labeled OPT | BEGIN | CONDITION and OPT | END.

TABLE II. EXECUTION TRACE CORRESPONDING TO SCENARIO 1

Trace1 (nbr_article = 3, isInvoice = false, isPayslip = false):
L0. 1:BLL:Vendor:vendor | Vendor () | DAL:VendorDAL:vendorDAL
L1. 1:BLL:Vendor:vendor | newSales (nbr_article, isInvoice, isPayslip) |
BLL:Sale:sale
L2. FOR | BEGIN | i<=nbr_article
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL:Sale: sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL:Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL:Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L6. FOR | END
L7. IF | BEGIN | isInvoice
L8. ELSE | BEGIN
L9. 1:BLL:Sale:sale | getDelivery () | BLL:Delivery:delivery
L10. 1:BLL:Delivery:delivery | signDelivery () | BLL:Vendor:vendor
L11. 1:BLL:Delivery:delivery | getDelivery () | DAL: DeliveryDAL:deliveryDAL
L12. IF | END
L13 IF | BEGIN | isPayslip
L14. IF | END

Sc
en

ar
io

1

TABLE III. EXECUTION TRACE CORRESPONDING TO SCENARIO 2

Trace2 (nbr_article = 1, isInvoice = true, isPayslip = true):
L0. 1:BLL:Vendor:vendor | Vendor () | DAL:VendorDAL:vendorDAL
L1. 1:BLL:Vendor:vendor | newSales (nbr_article, isInvoice, isPayslip) |
BLL:Sale:sale
L2. FOR | BEGIN | i<=nbr_article
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL:Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L6. FOR | END
L7. IF | BEGIN | isInvoice
L15. 1:BLL:Sale:sale | getInvoice() | BLL:Invoice:invoice
L16. 1:BLL:Sale:sale | waitMessage () | BLL:Vendor:vendor
L17 PAR | BEGIN
L18. 10:BLL:Invoice:invoice | preparingInvoice () | BLL:Invoice:invoice
L19. 10:BLL:Invoice:invoice | signInvoice () | BLL:Vendor:vendor
L20. 10: BLL:Invoice:invoice | addArticle () | DAL:InvoiceDAL:invoiceDAL
L21. PAR | END
L8. ELSE | BEGIN
L12. IF | END
L13 IF | BEGIN | isPayslip
L22. 1:BLL:Sale:sale | getPayslip () | BLL: Payslip: paySlip
L23. 1:BLL: Payslip: paySlip | signPayslip () | BLL:Vendor:vendor
L24. 1:BLL: Payslip: paySlip | getPayslip () | DAL: PayslipDAL: paySlipDAL
L14. IF | END Sc

en
ar

io
 2

110 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

TABLE IV. EXECUTION TRACE CORRESPONDING TO SCENARIO 3

Trace3 (nbr_article = 4, isInvoice = false, isPayslip = true):
L0. 1:BLL:Vendor:vendor | Vendor () | DAL:VendorDAL:vendorDAL
L1. 1:BLL:Vendor:vendor | newSales (nbr_article, isInvoice, isPayslip) |
BLL:Sale:sale
L2. FOR | BEGIN | i<=nbr_article
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL:Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | v:Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL :Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L3. 1:BLL:Sale:sale | addArticle () | DAL:SaleDAL:saleDAL
L4. 1:BLL:Sale:sale | addArticle () | BLL :Sale:sale
L5. 1:BLL:Sale:sale | calculAmount(newValue, oldValue) | BLL:Calcul:calcul
L6. FOR | END
L7. IF | BEGIN | isInvoice
L8. ELSE | START
L9. 1:BLL:Sale:sale | getDelivery () | BLL:Delivery:delivery
L10. 1:BLL:Delivery:delivery | signDelivery () | BLL:Vendor:vendor
L11. 1:BLL:Delivery:delivery | getDelivery () | DAL: DeliveryDAL:deliveryDAL
L12. IF | END
L13 IF | BEGIN | isPayslip
L22. 1:BLL:Sale:sale | getPayslip () | BLL: Payslip: paySlip
L23. 1:BLL: Payslip: paySlip | signPayslip () | BLL:Vendor:vendor
L24. 1:BLL: Payslip: paySlip | getPayslip () | DAL: PayslipDAL: paySlipDAL
L14. IF | END

Sc
en

ar
io

 3

The Places Pi and Pf are added to the CPN to indicate
respectively the initial place and the final trace. To simplify the
CPNs, all repeated method invocation between places “LOOP |

BEGIN” and “LOOP | END” is deleted. All places
representing trace lines are colored with the same color. These
colors are used to diferentiat between the different scenarios.

After merging CPNs that refers to scenario1, scenario2 and
scenario3, using the adapted Kbehavior, a new CPN is
generated (Fig. 7). This CPN includes diferent paths with
differents colors. Scenario1 has a yellow color, scenario2 has
the green color while scenario3 has the red color.

The condition C1 refers to when the variable i is less than
nbr_article while the condition C2 corresponds to if the
variable isinvoice is true. Now, we apply our last
transformation on loop places to make the obtained CPN more
coherent (Fig. 8).

D. HLSD Extraction
The objective of this step is to extract the HLSD that

represent the system behavior. For that, we use the
transformation rules described in Section 4.4 to transform the
final CPN into HLSD (Fig. 9).

The approach, as shown in following figure, is able to
extract HLSD with the main UML2 fragment operators
(seq,opt, alt and loop). Unlike other approaches using dynamic
analysis, our approach succeeds in extracting the conditions
corresponding to the combined fragment operators loop, opt
and alt.

Fig. 4. CPN Corresponding to Scenario1.

Fig. 5. CPN Corresponding to Scenario2.

111 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 6. CPN Corresponding to Scenario3.

Fig. 7. The Merged CPN.

Fig. 8. The Finale CPN.

112 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 9. Extracted HLSD.

In addition, our approach can be generalized to all object-
oriented languages since it only uses text files for execution
traces.

The colors are used to facilitate understinding the behavior
of the system by subdividing it into several HLSD.

VI. CONCLUSION
Our work consists on proposing a new methodology for

recovering an UML2 HLSD from execution trace using CPNs.
For this, we first present a background of SD, CPN and reverse
engineering. Then, we define several concepts which are
essential for the understanding of our new approach. The
approach starts by generating and collecting traces. Then, these
traces are filtered and represented on CPNs in order to merge

them. This merging is performed using an adapted version of
the kBehavior algorithm that we have created. These CPNs are
less complexes and more coherent than CPN in [8, 9]. The final
obtained CPN use colors to differentiate between paths that
represents different scenarios of the behavior of the system.
This facilitates the understanding of the system. The approach
succeeds to extract SD fragments operators such as seq, loop,
alt and opt. It’s also extracts UML2 operator conditions
relating on alt, opt and loop which is not the case in [8, 9].

Our future work is to extract the fragment operator par
which is important for multi-threading systems. Besides, we
will try to handle the problem of extracting others UML2
diagrams like a state diagram and activity diagram.

113 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

REFERENCES
[1] Sommerville, I., “Software Engineering” Addison Wesley, 2000.
[2] B. Cornelissen, A. Zaidman, et A. Deursen, “A Controlled Experiment

for Program Comprehension Through Trace Visualization,” pp 2. IEEE
Trans. on Software Engineering, 2011.

[3] K.-K. Lau and R. Arshad, “A Concise Classification of Reverse
Engineering Approaches for Software Product Lines”,vol. 4, 2016.

[4] IEEE. std 1219: Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1998.

[5] OMG. Unified Modeling Language (OMG UML), Superstructure, Vol.
2, 2007.

[6] L. C. Briand, Y. Labiche, J. Leduc, “Towards the Reverse Engineering
of UML Sequence Diagrams for Distributed Java Software,” IEEE
Transactions on Software Engineering, vol. 32, no. 9, pp. 642-663, 2006.

[7] C. Bennett, D. Myers, M.-A. Storey, D. M. German, D. Ouellet, M.
Salois, and P. Charland, “A survey and evaluation of tool features for
understanding reverse-engineered sequence diagrams,” J. Softw. Maint.
E vol., vol. 20, no. 4, pp. 291–315, 2008.

[8] Chafik B., El Mahi B. and Abdeslam J.: A “Dynamic Analysis for
Reverse Engineering of Sequence Diagram Using CPN,” Lecture Notes
in Computer Science (ISSN: 0302-9743), 2018.

[9] Chafik B., El Mahi B., Abdeslam J. “A New Approach for Recovering
High-Level Sequence Diagrams from Object-Oriented Applications,”
Elsevier Procedia Computer Science Journal (ISSN: 1877-0509), 2019.

[10] E. J. Chikofsky and J. H. Cross, II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

[11] R. Kollmann and M. Gogolla, “Capturing Dynamic Program Behaviour
with UML Collaboration Diagrams,” in Proceedings of the 5th
Conference on Software Maintenance and Reengineering (CSMR’01),
pp 58-67. IEEE Computer Society, 2001.

[12] R. Kollmann, P. Selonen, E. Stroulia, T. Syst¨a, and A. Z¨undorf. “A
Study on the Current State of the Art in Tool-Supported UML-based
Static Reverse Engineering,” in Proceedings of the 9th Working
Conference on Reverse Engineering (WCRE’02), pp 22-32. IEEE
Computer Society, 2002.

[13] A.Rountev, O. Volgin, and M. Reddoch, “Static Control-Flow Analysis
for Reverse Engineering of UML Sequence Diagrams,” in ACM
SIGSOFT Software Engineering Notes, ACM, vol.31, no.1, pp. 96-102,
2005.

[14] A. Rountev and B.H. Connell, “Object Naming Analysis for Reverse-
Engineered Sequence Diagrams,” in Proceedings of the 27th
International Conference on Software Engineering (ICSE’05), pp 254-
263. ACM, 2005.

[15] Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Extracting
Sequence Diagram from Execution Trace of Java Program,”
International Workshop on Principles of Software Evolution
(IWPSE’2005), pp. 148-151, 2005.

[16] Romain Delamare, Benoit Baudry, Yves Le Traon, “Reverse-
engineering of UML 2.0 Sequence Diagrams from Execution Traces”, in
Proceedings of the workshop on Object-Oriented Reengineering at
ECOOP 06, 2006.

[17] Tewfik Ziadi, Marcos Aur’elio Almeida da Silva, Lom Messan Hillah,
Mikal Ziane. “A Fully Dynamic Approach to the Reverse Engineering
of UML Sequence Diagrams,” 16th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS, Las Vegas,
United States, 2011.

[18] B. Cornelissen, A. van Deursen, L. Moonen, and A. Zaidman,
“Visualizing Test suites to Aid in Software Understanding,” In
Proceedings of the 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), pages 213-222. IEEE Computer
Society, 2007.

[19] K. Jensen, “A brief introduction to coloured Petri nets,” in Proceeding of
the Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’97) Workshop, LNCS, Springer-Verlag, vol. 1217. pp. 203–
208, 1997.

[20] A. Jakimi, A. Sabraoui, E. Badidi, A. Salah, and M. El Koutbi, “Using
UML Scenarios in B2b Systems,” IIUM Engineering Journal, 2010

[21] AspectJ: The AspectJ project at Eclipse.org, http://www.eclipse.org/
aspectj/.

[22] J. A. Brzozowski, “Derivatives of regular expressions,” J.ACM, vol. 11,
no. 4, pp. 481–494, 1964.

[23] L. Mariani, F. Pastore and M. Pezze. “Dynamic Analysis for Diagnosing
Integration Faults,” in IEEE Transactions on Software Engineering, vol.
37, no 4, pp. 486-508, 2011.

[24] A. Biermann and J. Feldmann,. “On the synthesis of finite state
machines from samples of their behavior,” IEEE Transactions on
Computer, vol. 21, pp. 592–597, 1972.

114 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	III. Background of the Approach
	A. UML2 Sequence Diagrams
	B. Execution Traces
	C. CPN

	IV. Proposed Approach
	A. Traces Collection
	B. Trace Filtering
	C. Traces Merging
	1) CPN Initialization: In this sub-step, a basic CPN is generated for each execution trace. All the trace lines are transformed into transitions in CPNs except those which refers to the start or the end of iterative control structure like LOOP | START and �
	2) CPN Merging: In this sub-step, all the CPNs corresponding to execution traces are merged to obtain a single CPN. The algorithm kBehavior [23] is used for this reason. This algorithm has points in common with the known Ktail algorithm. [24]. These algori�

	D. HLSD Extraction

	V. Case Study
	A. Trace Collection
	B. Trace Filtering
	C. Trace Merging
	D. HLSD Extraction

	VI. Conclusion

