(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

Reducing Energy Consumption in
Microcontroller-based Systems with Multipipeline
Architecture

Cristian Andy Tanase
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava
Str. Universitatii 13, 720229 Suceava, Romania

Abstract—Current mobile battery powered systems require
low power consumption as possible without affecting the overall
performance of the system. The purpose of this article is to
present a multi-pipeline architecture implemented on a RISC
V processor with 4 levels pipeline. Each thread has an assigned
CLKSCALE registry that allows to use a clock with a lower
or higher frequency, depending on the value written in the
CLKSCALE registry. Depending on the importance and the need
to be executed at a lower or higher speed each thread will enter
into execution with its frequency given by CLKSCALE. It is
known that each system has its own ‘“real time”. The notion of
real time is very relative depending on the environment in which
the system operates. Thus, if the system responds to external
stimulus for a time that does not affect the operation of the whole,
then we say the system is in real time. The system response can
be quick or slow. It is important that this response does not
lead to malfunction in operation. Therefore, certain threads can
work at lower frequencies (those responding to slower external
stimulus) and others must operate at high frequencies to allow
quick response to fast external stimulus. It is known that the
consumed power is directly proportional to the frequency of
computing. Thus, the threads that do not require to run at
maximum frequency, will consume less energy when they run.
The entire system will consume less energy without affecting
its performance. This architecture was implemented on a Xilinx
FPGA ARTY A7 kit using the Vivado 2018.3 development tools.

Keywords—Multi-pipeline register; RISC V (Reduced Instruc-
tion Set Computer); power consumption; multi-threading; FPGA
(Field Programmable Gate Array); variable frequency

I. INTRODUCTION

With the development of integrated systems, energy con-
sumption has become a more important constraint in the RTL
design. As these integrated systems become more sophisti-
cated, they also need a higher level of performance. The task
of satisfying the energy consumption and performance require-
ments of these embedded systems is a rather difficult task to
ensure. One of the most used techniques of enhancing CPU
performance is the use of ILP (Instruction Level parallelism)
through pipeline technology. The instruction pipeline allows
an increased clock frequency by reducing the amount of work
to be performed for an instruction in each clock cycle [1].

A reduced energy consumption can increase the standby-
time of the terminal which reduces the user annoyance related
to recharging the battery too often. A reduced energy consump-
tion could also mean that one can get the same standby-time

as earlier but with a smaller sized battery, which reduces the
overall size and weight of the terminal. A smaller battery is
beneficial from an environmental aspect as well.

Energy consumed in CMOS devices is a product of time
and power consumption and is measured in Joules (eq. 1).
Power consumption in a CMOS device is consumed both
statically and dynamically. Currently, the majority of the power
is consumed dynamically, but devices implemented using
future process technologies will most likely consume as much
static as dynamic power consumption due to increased leakage
currents (eq. 2). As can be seen from eq. 3, dynamic power is
a function of the voltage level (Vy4), frequency (f), capacitive
load (C), and the activity factor (). The activity factor
represents the number of transitions between a logic zero and a
logic one, which corresponds to charging of capacitances. One
observation is that a near-cubic reduction of dynamic power
consumption can be achieved by reducing the voltage and
frequency. Dynamic power consumption can also be lowered
by reducing or eliminating the transistor switching activity.
Another source of dynamic power consumption is the current
dissipated from short circuits in transistors during switching.
Short circuit currents are dissipated when a logical value of a
transistor is in the process of doing a transition of its output.
During this transition there is a small period of time, where
there is a direct path from the supply voltage and the ground,
which results in dissipated currents (see eq. 4) The static
power consumption comes from non-ideal switch behaviour
of transistors, thus the transistors leak currents (see eq. 5) [2]
-[12].

Energy = Power - Time H

Piotal = Pswiteh + Pshortcireuit + Pleakage ()
Puyiten = Vg - f-Cr - a 3)
Piportcircuit(se) = Vad * Ise 4)
Preakage = Via * Ticakage)

II. RELATED WORK

In [13] the authors propose an runtime environment for
next-generation dual-core MCU platforms. These platforms
complement a single-core with a low area overhead, reduced
design margin shadow-processor. The runtime decreases the

www.ijacsa.thesai.org

16| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

Program/data memory

Fetch F Decode D Execute1 X1/M Execute 2 X2/W
F/D Grrese| |D/Ex| Memory Ex/Wb |Writeback Whb/F
detect a
il Immed & :
9 and sH 2 E
N - address & B 2
o5 e mux 2 'M_ < 2
9 Reg file RF .tIEJ- [4 Barrel shifter g E.
[o a a
2
< &IRQ
s m e LS e
Memory ﬁ Memory Memory
request request load
X1 stage bypass
reqfil .
branch PC i _ Peripheral
L v] ¥ ___Interface
| port D port D port

/0 bridge |[——p>

Fig. 1. RISCV Processor (Block Diagram) [17]

overall energy consumption by exploiting design corner het-
erogeneity between the two cores, rather than increasing the
throughput. This allows the platform’s power envelope to
be dynamically adjusted to application-specific requirements.
Depending on the ratio of core to platform energy, total energy
savings can be up to 20%.

In [14] the authors realized a single-ISA (Instruction Set
Architecture) heterogeneous multi-core architecture, including
four Alpha cores and a MIPS R4700 (Microprocessor without
Interlocked Pipelined Stages). The allocation of tasks among
cores is integrated as part of the operating system.

In [15] the authors show that at NTC (Near-Threshold
Voltage Computing - the supply voltage is only slightly higher
than the transistor’s threshold voltage), is a promising approach
to reduce the energy per operation and a simple chip with a
single V4 domain can deliver a higher performance per watt
than one with multiple V4 domains.

Compared to high-end systems, there has been very little
attention paid to task allocation/scheduling on low-cost, limited
performance systems. The closest work in this domain would
be [16], which focuses on optimal resource management for
control tasks in MCUs using a minimal real-time kernel.

III. BACKGROUND

The proposed architecture was implemented on a RISC V
core with four levels pipeline, presented in Fig. 1 [17].

RISC V employs a modified Harvard architecture: code and
data reside in a shared 32-bit memory space, but are accessed
through separate memory interfaces. Instructions are executed
by a four-stage, single-issue pipeline, shown in Fig. 1 and
consisting of the following stages:

1) Fetch(F), calculating the address of the next instruc-
tion and requesting it from the code memorys;

2) Decode(D), which also computes the immedi-
ate values (sign-extensions and bit reordering),
pre-computes the operand values for the Exe-
cutel/Memory(X1/M) stage and manages the haz-
ards by inserting empty instructions into the Execute
stage;

3) Executel/Memory(X1/M), which executes most of
the instructions, generates memory addresses and
issues memory read/write requests;

4) Execute2/Writeback(X2/W), which completes execu-
tion of Load, Multiply and Shift instructions and
writes the result back to the CPU registers.

In parallel to the D stage, there is a Register File (RF),
hosting the 32 architectural registers(x0 - x31). The RF is
built on top of two FPGA RAM blocks, providing two read
ports and one write port, with a single clock cycle latency.
The core includes a platform-optimized barrel shifter and
multiplier (both with 2 cycle latency). Most of the instruction
results are bypassed to achieve interlock-free execution of
dependent instructions, either by the Read-After-Writer (RAW)
bypass path in the RF or after the X2/W stage. The RISCV
Control and Status Registers (CSRs), interrupts and a limited
set of exceptions, although the interrupt CSR layout has been
simplified to minimize the occupied FPGA area. There is
another block to manage the exceptions and interrupts.

IV. EXPERIMENTAL RESOURCES

For this project the author used ARTY A7 board, Vivado
2018.3 and Vivado HLS tools. The ARTY A7, is a ready-
to-use development platform designed around the Artix-7

www.ijacsa.thesai.org

17|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

566888 5588888
ADIGILENT P

f | 'GE
! . 'm

EVAVNET

i SEEQ seasBE
5

id

J7

gim f : IIII |
o 5 jEEEdEE weesss
e SILL

Fig. 2. ARTY A7 Board

Field Programmable Gate Array (FPGA) from Xilinx (Fig. 2)
with features: Artix-7 XC7A35T-L1CSG3241 FPGA, On-chip
analog-to-digital converter (XADC), Programmable over JTAG
and Quad-SPI Flash, 256 MB DDR3L with a 16-bit bus @ 667
MHz, 16 MB Quad-SPI Flash, 10/100 Mb/s Ethernet, USB-
UART Bridge, Switches, Buttons, RGB LEDs, Four Pmod
interfaces (32 1/0), Arduino/ChipKit “‘shield” connector (49
1/0).

V. EXPERIMENTAL WORK
A. Variable Clock Generator

The hardware system implementation was done using the
Block Design facility in Vivado 2018.3. The system block
diagram is shown in Fig. 3. It contains an analog-digital
converter that allows to determine the current consumption of
the entire system. Channel 10 of the converter is connected
to an external circuit (INA199A1) of the current measurement
consumed by the FPGA. The circuit generates 500mV/A.

RISC V processor presents two external communication
pins (uart_rxd/uart_txd) and a pin for interruption (irq). The
instruction and data memory is implemented inside of the
CPU. All registry blocks have been multiplied: pipeline (F/D,
D/Ex, Ex/Wb, Wb/F) and the registers file RF. This allows to
retain, at some point, a maximum of four independent threads.
The context of each thread is retained in a set of registers. The
change of context is made through a switching of registers in
a single clock period. Also, each set of registers assigned to
a thread is piloted by a programmable clock through scaling
registers (CLKSCALE). These registers allow the generation
from the system clock of four independent CLK signals and
proportionate to the values written in the scaling registers.
Each thread will work with a frequency given by its own clock
register (Fig. 4).

The multi-pipeline architecture is shown in Fig. 5. It can
be seen from the Fig. 1 multiplication of pipeline registers
and registers file RF. There is also the clock generation block
with the four CLKSCALE registers. CLKSCALE registers

Vol. 11, No. 12, 2020

XADC

user temp_alarm_out
vecint_alarm_out
vecaux_alarm_out

ot_out

Vp_Vn D—" + Vp_Vn
Vaux10 D—" + Vaux10

channel_out[4:0]

clk D delk_in eoc_out
alarm_out =
e0s_out -
busy_out =
XADC Wizard
RISC_V
clk p
rst_i == 15t i
= o RTL wuart_txd o uart_txd_o
irg_i [o———— irq_i -
uart_mxd_i == uart_rxd_i

core

Fig. 3. System Block Diagram

T T T T

8 cycles | 15 cycles I 4 cycles I 26 cycles |

T T T
| N N I I N | L1l

Fig. 4. Schematic Presentation of 4 Threads Running

were mapped in free space of the CSR registers (Control
and Status Registers) to addresses 0xOE00-OxOEO3. In Fig.
5, the clock generator block diagram is also observed. Its
main components are the registry for dividing the clock and
the thread selection unit. When a specific thread is selected,
the clock signal assigned to it is also activated. That clock is
proportional to the value written in the CLKSCALE register
dedicated to the thread.

Listing 1: CLKSCALE registers selection.

/* 3k 3k 3k 3k 3k sk sk sk sk sk skosk sk sk sk sk sk skoskoske sk ok sk sk sk sk sk >k 3k sk sk sk sk sk sk sk ok */
wire wr_genclk;

assign wr_genclk = (dm_addr_o == 32’h0E00)
|| (dm_addr_o == 32 hO0EO1l)
|| (dm_addr_o == 32’hO0E02)
|| (dm_addr_o == 32’hOEO03);

clk_gen clkgen (

.clock (clkin),
.reset(1’°b0),
.wr(wr_genclk &% dm_store_o),
.inter (irq_i),
.data(dm_data_s_o),
.addr (dm_addr_o[1:0]),
.selchn(slct),
.selchnout(select),
.clkout(clk_i)

)

/5 sk sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok sk kR ok ok ok ok x x /

The Listing 1 also shows the Verilog interface with the
clock generation block. This block shows three signals (wr,

www.ijacsa.thesai.org

18| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

data, and addr) used to write the four scaling registers. It
also presents an interruption signal (inter) that announces this
block that an interruption occurred. The signals (selchn and
selchnout) are used in the selection of the registers set assigned
to each thread. The clkout signal is the clock signal that drives
the threads.

The way to access CLKSCALE registers in C is done using
pointers:

volatile int *CLKSCALEO =
*CLKSCALEO = 0x03ff;

The default value of the CLKSCALE registers is 0. That is,
the thread assigned to that register runs at full frequency. The
clock scaling factor is the value of CLKSCALE + 1. In Listing
2 is presented the C code written for the first thread. The pro-
gram sends a message through USART and sets the frequency
with which this thread will run as CLK_MAX/0x0400. The
other source programs for threads 1, 2, and 3 are similar. It
differs only the message sent by USART and the value written
in CLKSCALE. The program runs in an infinite routine and
copies the message from the *hello address to the *TX_REG
address from where it is sent to USART.

(int+) 0x0EQ0O;

Each thread is called periodically. It will send your own
message to USART and run it with its own frequency (Fig. 4).

Listing 2: C code for thread O.

/>I< sk >k sk ok ok sk sk sk sk sk ok */
const char xhello="Hello._sCPUO”;

volatile
volatile

int «*TX_REG = (intx)0x0F00;
int *xCLKSCALEO = (intx*)0x0EO00;

void main ()

{
char xs = (charx)hello;
«*CLKSCALEO = 0x03ff;

while (1){
s = (charx)hello;
TX_REG = (int*)0x0F00;
while (xs) {
*TX_REG++ = *s++;
}

}
}
/3 koK ko Rk ok Rk ok Kk oK Kk oK K R oK KK oK K K KR K KR KR Rk ok %/
The result of the four thread execution is shown in Fig. 6
(the most important signals). You can see the thread selection
signals, the values written in the CLKSCALE registry, the
clock signals and the data sent by USART (Fig. 6a). The
writing of the CLKSCALE registers is made when the SE-
LECT_TH signal takes the corresponding value. That means
that the code is running for each thread in part: e.g. when the
thread 1 is active it writes CLKSCALEI with the value 0x10,
etc.

Fig. 6b shows how to switch the thread O with thread 1. You
can also see the change of the clock. When the thread changes,
it is expected to finish the last clock period in thread 0 and
start the first clock period in thread 1. The clock’s frequency

Vol. 11, No. 12, 2020

for thread 1 is 17 times less than the frequency of thread O
(0x10 + 1).

As in Fig. 6¢, switching clocks happens after changing the
threads at the end of the last clock period.

Listing 3: ASM code for thread 0. (fragment)

[3k sk sk ok sk sk sk ok sk k sk K o kK ok ok ok ok ok ok Kk ok K ok Kok ok ok Kok ok sk ok ok ok /

38: fec42783 Iw a5,—20(s0)
3c: 00178713 addi a4,a5,1

44: 0007c¢603 Ibu a2,0(a5)

48: 08802783 Iw a5,136(zero)
4c: 00478693 addi a3,a5.4

50: 08d02423 SW a3,136(zero)
54: 00060713 mv a4, a2

58: 00e7a023 SW a4 ,0(as)

5c¢: fe842783 Iw a5,—24(s0)
60: 00178793 addi a5,a5,1

64: fef42423 SW a5,—24(s0)
68: fec42783 Iw a5,—-20(s0)
6¢c: 0007c783 Ibu a5,0(a5)

70: fc0794e3

bnez a5,38 <main+0x38>
74: fadffOoo6f] 20 <main+0x20>

[% % % ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok Kok koK sk ok ok ok /|

In Listing 3 a fragment of the ASM code generated in the
compilation is presented. Fig. 6d shows the last instruction in
the thread O performed when switching to thread 1. When the
thread returns to execution 0, it resumes its execution from the
point where it was suspended. (red circles)

In Fig. 7, the result of running the four threads on the
multi-pipeline RISC V system is presented. Each thread runs
at different frequency but sends its message to TX USART.

Considering that interruptions must be taken into consid-
eration immediately after their appearance, the problem that
arises when an interruption occurs and the current thread in
execution operates at a small frequency, it must accelerate the
execution of the last instruction and activate immediately the
thread dedicated to that interrupt.

In Fig. 8, the response time of the system to the occurrence
of an interruption is presented. It is noted that the interruption
signal irg_i is activated. Immediately the execution of the last
instruction is accelerated in thread 1 (0x6c6...) and proceed to
the execution of the interruption handler (in our case the thread
0). The worst case (Fig. 8a), is when the first instruction in
the interruption handler is executed after three cycles of the
system clock (clkin). The most favorable case is shown in Fig.
8b and it appears when the first instruction in the interrupt
routine is executed after two cycles.

The Fig. 9 shows the flow chart of the clock generation
block, implemented in the verilog and used as IP block. The
program checks if the interrupt is set. If so, make the output
clkout=0 and clkout=1 with contor=CLKSCALEO (the default
frequency for interrupt routine). Otherwise, depending on the
values from CLKSCALE registers, is generate clkout signal.

The code handles the situation when an interruption occurs
or when it is inactive. When an interruption occurs, it should
be addressed immediately. If, at the time of interruption, the
clock signal is on high level then it must be switched to low

www.ijacsa.thesai.org

19| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

Decode D| =k

Hazzard
detect

Immed

Fetch F| =
F/D

Execute 1
Memor

clk

e)
3 and 2
i A address B
2. Mux o
Q = Q
L =
2| | |RegfileRF| |12
o. o.
Except.
&IRQ

Memory
request

32x32 RAM

y
]
Barrel shifter

Memory
request

X1/M “'Ik
Ex/Whb

Execute 2 X2/W
Writeback

CLK GENERATOR

Pipeline register
Pipeline register
SELECT THREAD

X1 stage bypass

regfile RAW bypass

branch PC

Y

:
1 Peripheral
y | ¥ Interface

| port Program/data memory

D port

Dport| | 1/0 bridge [=——p>

Fig. 5. Multi-Pipeline Architecture with CLKSCALE Registers for each Pipeline Registers Set

level, after which the first cycle of fetching instructions from
the interruption handler and the change of frequency are started
(Fig. 8a). If, when the interruption occurs, the clock signal is
on low level, then at the next cycle the first instruction from the
interruption handler is fetched and the frequency is changed
(this is the most favorable situation Fig. 8b).

In the situation when no interruption occurs, then when
the context changes it waits until the last instruction from
the previous thread is executed, and the following execution
instructions in the active thread are started when the frequency
changes. The frequency is changed based on the counters read
from the CLKSCALE registry.

B. Measuring the Energy Consumed

The energy used by the system was measured with the
XADC IP block (Fig. 3). Depending on the current consumed
by the entire system implemented on the FPGA, the voltage
on the XDAC Channel 10 (Vaux10) changes. At each 500 mV
measured on Vaux10, the FPGA consumes 1A.

According to equations 1-5 the use of lower frequencies
should result in the decrease of the current consumption.

Several measurements have been made with various
CLKSCALE values. Initially, measurements of the current con-
sumed with identical values of the four CLKSCALE registers
were made, with values ranging from OxOfff to 0x0000. The
first lines in Table I show the current consumed at these
CLKSCALE values. The last lines in this table show the
current consumed with random values of the CLKSCALE

registry.
You can see a decrease in the current consumed when the

semi-processors operated at lower frequencies. If this does not
affect the functioning of the whole system as a whole then

we can say that we have achieved a reduction of the energy
consumed without low performance. From the Table I you
can see that between the maximum current and the minimum
current consumed it is a ratio of about 30%. If it is also taken
into account the current consumed by the XADC circuit that
has been implemented only to perform measurements, then we
can talk about a yield greater than 30% of saved energy.

TABLE I. CURRENT CONSUMED ACCORDING TO THE VALUES WRITTEN IN
CLKSCALE REGISTERS

Vaux10 A CLKSCO || CLKSCI || CLKSC2 || CLKSC3
0.012V || 24mA OXOfff OXOfff OXOfff OXOfff
0013V || 26mA Ox3ff Ox3ff Ox3ff Ox3ff
0.014V || 28mA OXOff 0XOff OxOff OXOff
0.014V || 28mA 0x00f 0x00f 0x00f 0x00f
0.015V || 30mA 0x003 0x003 0x003 0x003
0016V || 32mA 0x002 0x002 0x002 0x002
0017V || 34mA 0x001 0x001 0x001 0x001
0018V || 36mA 0x000 0x000 0x000 0x000
0.014V || 28mA 0x010 0x0f0 0x010 0x001
0.014V || 28mA 0x000 0x010 0x100 0x003
0.016V || 32mA 0x000 0x004 0x003 0x000
0.013V || 23mA 0x000 Off 0xOff Oxfif

VI. CONCLUSION

The conclusions drawn from this study are as follows: by
multiplying the pipeline registers and the registry file of a RISC
V architecture, four semi-processors using the same hardware
resources have been obtained. Each semi-processor runs a
thread at different frequencies. Switching between threads is
done in a clock cycle due to the multiplication of pipeline

www.ijacsa.thesai.org

20| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

00000000
00000010
00000008
00000004
» W data_to_uar[7:0]
wl uart_txd_o

13,111,500 n=

500

00000000
00000010
00000008
00000004

Clk_p

W irg_i

wl clk_o
i@ SELECT_THI1:0]
ALEO[31:0] § 00000000
ALE1[31:0] § 00000010
ALE2[31:0] § 00000008
00000004

il SELECT_TH[1:0]

clk_p
Wl clk_o
> M im_data_i[3
) B im_addr_ 00000070
seLeCT THi10] fo

(d) Last and Next Instruction in Thread 0.

Fig. 6. The Most Important Signals.

www.ijacsa.thesai.org 21 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

B8 RealTerm: Serial Capture Program 2.0.0.70 - O >
sGCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello sCPU3Hello =CPUBHello
2CPU3Hello zCPU3Hello =CPUAHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello zCPU3Hello =CPUBHello
sCPU3Hello gCPU3Hello =CPUBHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello sCPU3Hello =CPUBHello
2CPU3Hello zCPU3Hello =CPUAHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello zCPU3Hello =CPUBHello
sCPU3Hello gCPU3Hello =CPUBHello
sCPU3Hello sCPU3Hello sCPUBHello
sCPU3Hello

Display Fort | Captue | Fins | Send | EchaPort| 128 | 1202 | 12CMise | Mise | An| Clear| Freeze| |

Statusg

Eaud |1152DI:I ﬂE':"t |EI ﬂ Open 5F'.'£| Connected

F=D (2]
. . . Software Flow Control

Parity Data Bits ~Stop Bits Recsive A7 T=D (3]
@ None | @ gbis| | @ bt 2bis B EEeE: diem BT CTS (9]
. Ejedn £ 7 hits Hardware Flow Contral [Transmit xoff Char: |19 DCD 1)
" Mark {" Bbits | | & None £ ATS/LTS WwWinzock iz D3R (E]
" Space " Shits | | ¢ DTR/DSR T R5485-ts 1 Elmie Ring (9]
* Telnet BREAEK

Error

Char Count:454034% [CP%11955 |Port: 9115200 8M1 Mone
Fig. 7. RealTerm Terminal with Messages from all Threads
Name

w clkin

» B im_addr_o[31:0]
SELECT_THI1:0]

Name

wl clkin

wl clk_o

» B im_data_i[31:
» B im_addr_o[31:

» B SELECT_THI1:0]

31,911

(b) Best Case.

Fig. 8. Interrupt Response Time.

e00 ns

www.ijacsa.thesai.org

22|Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

tor = ()
| contortemp = 0 |

|ﬂag=l'.i|

¥
Jclkout = 0 Jf clkout =1 /

<

| contor=CLKSCALEQD |

|ﬂag=]_|

fclknut=ﬂfc]kﬂut=lf

switch(selchn)
casel):contortemp=
CLKSCALEQ
casel: contortemp=
CLKSCALE1
case: contortemp=
CLKSCALEZ2
cased: contortemp=

CLKSCALE3

| contor = contortemp

Fig. 9. Flow Chart of Clock Generator Code

www.ijacsa.thesai.org 23| Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

registers. Depending on the needs of real-time responses of
each thread, the Hard Real Time threads will work at high
frequencies and the Soft Real Time threads will work at
lower frequencies. In this way, a lower energy consumption
will be achieved due to the fact that the energy consumed is
proportional to the system’s working frequency.

As future work the author wants to create an auto-tuning ar-
chitecture adapted to the priorities and response time required
for each task. If a task has a much shorter response time than
a response time that does not generate errors in the operation
of the system, it will decrease its execution frequency until it
reaches close to this time without exceeding it. It will execute
the task in real time with a minimum energy consumption.
Thus the author aims to implement a block that detects these
malfunctions due to an inadequate response time.

ACKNOWLEDGMENT

The infrastructure used for this work was partially sup-
ported by the project “Integrated Center for research, develop-
ment and innovation in Advanced Materials, Nanotechnolo-
gies, and Distributed Systems for fabrication and control”,
Contract No. 671/09.04.2015, Sectoral Operational Program
for Increase of the Economic Competitiveness co-funded from
the European Regional Development Fund.

REFERENCES

[1] Tan Finlayson, Gang-Ryung Uh, David Whalley and Gary Tyson, Im-
proving Low Power Processor Eficiency with Static Pipelining, 15th
Workshop on Interaction between Compilers and Computer Architec-
tures, 2011.

[2] S. Borkar, Design challenges of technology scaling,
Vol. 19, Issue 4, pp. 23-29, 1999.

[3] M. Broersma, Intel chip not ready for the cool crowd,
News, http://news.com.com/ 2100-1001_3-271443.html

In IEEE Micro,

CNET Tech

Vol. 11, No. 12, 2020

[4] D. Brooks et. al., Wattch: A Framework for Architectural-level Power
Analysis and Optimizations, In Proceedings of the 27th International
Symposium on Computer Architecture, pp. 83-94, 2000.

[5] M. Edahiro et.al., A single-chip multiprocessor for smart terminals, In
IEEE Micro, Volume 20, Issue 4, pp. 12-20, July 2000.

[6] M. Fleischmann, Longrun Power Management, Transmeta Corporation,
January 2001.

[7] R. Fromm et al., The Energy Efficiency Of Iram Architectures, In Pro-
ceedings of IEEE International Symposium on Computer Architecture,
pp. 327-337, 1997.

[8] L. Geppert, T. S. Perry, Transmeta’s magic show,
Vol. 37, Issue 5, pp. 26-33, 2000.

[91 R. Gonzalez, M. Horowitz, Energy dissipation in general purpose
processors, In IEEE Journal of Solid-State Circuits, Volume 31, Issue
9, pp. 1277-1284, September 1996.

[10] K. Flautner, N. S. Kim, S. Martin, D. Blaauwm, T. Mudge, Drowsy
Caches: Simple Techniques for Reducing Leakage Power, In Proceed-
ings of the International Symposium on Computer Architecture (ISCA-
29), Anchorage, Alaska, 2002.

[11] T. R. Halfhill, Transmeta breaks x86 low power barrier,
cessor Report, pp.9-18, February 2000.

[12] N. S. Kim et. al., Leakage Current: Moore’s Law Meets Static Power,
In IEEE Computer, Volume 36, Issue 12, pp. 68-75, 2003.

[13] A. Gomezl, C. Pinto, A. Bartolini et. al., Reducing Energy Consump-
tion in Microcontroller-based Platforms with Low Design Margin Co-
Processors, in Proc. DATE, 2015.

[14] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen, Processor power reduction via single-ISA heterogeneous multi-
core architectures, In IEEE Computer Architecture Letters, vol. 2, no.
1, 2003.

[15] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas, EnergySmart:
Toward Energy-efficient Manycores for Near-Threshold Computing, In
ACM HPCA, 2013.

[16] R. Marau, P. Leite, and M. Velasco, Performing flexible control on
lowcost microcontrollers using a minimal real-time kernel, In IEEE
Trans. Ind. Informat, vol. 4, no. 2, 2008.

[17] T.Wtostowski,J.Serrano, Developing Distributed Hard-Real Time Soft-
ware Systems Using FPGAs and Soft Cores, Proceedings of
ICALEPCS2015, Melbourne, Australia-Pre-Press Release23-Oct-2015.

In IEEE Spectrum,

Micropro-

www.ijacsa.thesai.org

24| Page

