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Abstract—In this paper, we have proposed an algorithm 

based on min-to-min approach. In the proposed algorithm first 

the degree of each vertex of the graph is calculated. Next the 

vertex with minimum degree is selected, after which all the 

neighbors of the minimum degree are located. In the neighbors of 

the minimum degree vertex, again the vertex with the minimum 

degree is found and put into the set minimum vertex cover and 

deleted from the graph. Again, the degree of each vertex of the 

updated graph is calculated and again the same process is 

repeated until the graph becomes empty. In case of tie, all the 

neighbors of the minimum degree vertices are computed and 

then the minimum degree vertex in all of them is added to 

minimum vertex degree set. The same process is repeated until 

the graph becomes empty. The proposed algorithm is a very 

simple, efficient, and easy to understand and implement. The 

proposed min-to-min algorithm is evaluated on small as well as 

on large benchmark instances and the results indicate that the 

performance of the min-to-min algorithm is far better as 

compared to the other state-of-art algorithms in term of accuracy 

and computation complexity. We have also used the proposed 
method to solve the maximum independent set problem. 
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I. INTRODUCTION 

A graph in field of computer science is the set of vertices, 
and collection of edges each of which  connects a pair of 
vertices [1]. Edges are the links between the vertices. 
Mathematically, a graph is represented as G (V, E), where V 
denotes the set of vertices and E the collection of edges[2] .In 
graph theory a vertex cover is defined as the  subset Vc  ⸦  V, 
such that the vertices in the subset Vc  covers all the edges E 
in the graph G(V, E). Minimum vertex cover(MVC) is the 
minimum number of elements in the subset Vc which covers 
all the edges in the graph [3]. The minimum vertex cover 
problem is well known in graph theory because of its real-life 
applications in diverse fields. For example, MVC has 
application in civil and electrical engineering, map labeling, 
sensor networks as well as in very-large scale integration 
(VLSI) design, bioinformatics and biochemistry, protein 
sequencing and gene regulatory network [4-7]. A real-life 
example to better explain the application of MVC is the 
positions of guards in a museum. Where each edge of the 
graph represents the corridors of the museum and each vertex 
denotes the position of the guards. To station minimum guards 

while still covering all the corridors of the museum is 
minimum vertex cover problem [8]. 

Minimum vertex cover problem comes in two versions- 
optimization version and decision version. The decision 
version is a Boolean type problem. Where the question is to 
find, if there exists a solution of desired size k? k is the 
minimum number of vertices that should be used. And the 
result is either true or false (Yes or No). The optimization 
version is all about finding the optimal solution[5]. Our 
concern in this paper will be with second version i.e 
optimization version of MVC. 

In 1979 S.Cook put two conditions for NP problems to be 
called as NP-complete. 1) It should be NP-hard and 2) it 
should be reducible to any NP-complete problem in 
deterministic polynomial time [9]. Cook put the Boolean 
Satisfiability (SAT) problem as the basic problem in the set of 
NP-complete problems. As clique can be converted into SAT 
problem in polynomial time, so clique belongs to SAT 
problems. Moreover, maximum independent set (MIS) 
problem can be converted to clique problem as well, similarly 
minimum vertex cover can be converted into MIS problem in 
polynomial time, hence the above problems are 
interchangeable and are considered as NP-complete problems 
[10]. To conclude, minimum vertex cover (MVC) problem is 
NP-complete problem. MIS, MC and MVC are all 
complimentary concepts and NP-complete problems. 

Maximum independent set is also a great problem, where 
the optimizing task is to find a set containing maximum 
number of such vertices of the graph where no pair of the 
vertices share an edge or are adjacent to each other [11]. Its 
application can be found in map labelling problems where the 
names of adjacent cities should be placed nearest to the city 
without any overlap [7]. MIS is also used in high level 
synthesis and physical design automation, while computing 
the MIS in a graph can be used to determine the maximum 
number of processors required for parallel execution and also 
used in channel routing problems of physical design 
automation, for instance k-layer routing for Printed Circuit 
Boards and Multi-Chip Modules [12]. Moreover, MIS have 
application in information retrieval, classification theory, 
scheduling, economics, computer vision and experimental 
design [13]. 
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There are two types of algorithms to solve any NP-
complete problems. These are the approximation algorithms 
and exact algorithms [14,15]. The exact algorithms will 
always provide a solution that is optimal, but the computation 
time increases exponentially with the size of the problem. 
Therefore, the exact algorithms are best option for small size 
problems where an optimal solution is needed without any 
time constraints. Brute force algorithm, branch and bound 
algorithm and divide and conquer algorithms come under this 
type, where all the possible solutions are evaluated and the 
optimal one is selected [16, 17]. On the other hand, the 
approximation algorithms come as the best option after the 
exact algorithms for solving NP-complete problems. Greedy 
algorithms, simple heuristic algorithms and memetic 
algorithms are example of approximation algorithms. As 
stated earlier, the execution time increases exponentially with 
the size for NP-complete problems using exact algorithms, 
even for an ordinary size NP-complete problem it takes 
thousands or billions of execution time years to compute the 
solution using the currently available computational power. 
While the approximation algorithms provide an approximate 
result in polynomial runtime. Therefore, the approximation 
algorithms are preferably the  better option for researcher to 
come up with a solution to NP-complete problems [18,19]. 
The proposed algorithm -min-to-min is also an approximation 
algorithm to solve MVC problem. We used Approximation 
ratio - the tool to evaluate the performance of any 
approximation algorithms. 

This paper is extended version of our paper published [1]. 
In this paper we have proposed a new algorithm using the 
min-to-min (MtM) approach. The purpose of the proposed 
algorithm is to enhance the optimality and decrease the 
computational time. The developed approach is very simple 
and is based on simple heuristic method. Due to simplicity and 
intelligent selection of vertices in vertex cover set it save the 
time and improve the performance in term of optimality of the 
proposed algorithm. 

This paper is structured as such: first the related work is 
discussed in detail in Section II and then the proposed 
algorithm is elaborated in Section III. While Section IV 
presents the implementation, alone with our experimental 
results, and discussion. Finally, Section V presents the 
conclusion of the paper in detail. The abbreviations with their 
corresponding descriptions are presented in detail in Table I. 

TABLE I. ABBREVIATIONS WITH DESCRIPTIONS 

Notations Descriptions 

MVC Minimum Vertex Cover 

MIS Maximum Independent Set 

MDG Maximum Degree Greedy 

VSA Vertex Support Algorithm 

MVSA Modified Vertex Support Algorithm 

MtM Min-to-Min 

AE Absolute Error 

V Vertices 

E Edges 

II. RELATED WORK 

Several approximation algorithms were proposed by 
various authors to deal with the problem of minimum vertex 
cover. Based on their performance in terms of their run time 
complexity, optimality, and performance on small 
benchmarks, a brief literature review of these popular 
algorithms proposed for MVC are discussed here. 

The first algorithm is maximum degree greedy algorithm 
(MDG). The approach adopted in this algorithm is greedy. It 
introduces few changes in the  previously existing greedy 
heuristic algorithm for set-cover problem by Chavatal in 1979 
[20]. It uses the idea of subtracting the weight of covered 
vertex from all its neighbor vertices into the greedy algorithm 
for finding the vertex cover. Therefore, it adds all the vertices 
having the maximum degree to MVC. Its run time complexity 
for the worst case is 𝑂(𝐸2). This algorithm fails even on small 
benchmarks as shown in Fig. 1(b). 

On the other hand, different approaches were also used to 
create more efficient algorithm. Vertex Support Algorithm 
(VSA) is one of them. 

VSA is also an approximation algorithm. The basic 
version of this algorithm is that it uses an adjacency matrix 
with binary variables 1,0; to indicate the existence of edge 
between two vertices with 1, and absence with 0. Its output 
shows if any vertex is included in vertex cover or not 
included. A new data structure – support of a vertex- is 
implemented in the algorithm. It is defined as the sum of the 
degree of the adjacent vertices to a given vertex of the graph. 
It calculates the degree and support of all the vertices, then 
select those vertices which have maximum support and put 
into vertex cover. If there are vertices with same support, then 
it selects the maximum degree vertex, and includes that vertex 
to vertex cover set [5]. The VSA has the run time complexity 
of 𝑂(𝐸𝑉2) in the worst-case scenario. 

 
(a) 

 
(b) 

Fig. 1. (a) Optimal MVC, and (b) MVC through MDG, MVSA and VSA. 
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Furthermore, there is an improved and modified version of 
VSA named as modified vertex support algorithm (MVSA). It 
was proposed by Imran et al. in 2013[21].  The modification 
introduced by Imran et al. is in the criteria of selecting the 
vertex for considering it as candidate for minimum vertex 
cover, which, as seen above in MDG is selecting the 
maximum degree vertex, while in VSA the vertex which has 
maximum support value was selected. MVSA works in three 
stages. First is the analysis step, where the values of degrees 
and support of the vertices is calculated. Then comes the 
filtering process where the values are categorized as 
‘min_support’- vertices which have the minimum value for 
support and ‘adj_nodes’- all the adjacent vertices to the 
vertices having minimum support values. And then in the last 
step selection is done by choosing the vertex with minimum 
support value, as candidate vertex for MVC. Again, the run 
time complexity for this algorithm is 𝑂(𝐸𝑉2 log 𝑉). 

Another modified version of vertex support algorithm 
proposed by Ahmad et al. [22] is known as advanced vertex 
support algorithm (AVSA). Ahmad et al introduced a tiny 
change in MVSA. Keeping the same data structure of support 
of vertex, while instead of selecting the maximum or 
minimum support of vertex as seen above in VSA and MVSA 
respectively, an alternate way was adopted by just finding all 
the adjacent vertex to those vertices which have minimum 
support. Then from all the found adjacent vertices, again 
selecting the one with minimum support. The computational 
complexity for AVSA is same as MVSA i.e. 𝑂(𝐸𝑉2 log 𝑉). 

Other than the above algorithms, Gujrat et al [23] have 
also contributed to the problem of minimum vertex cover by 
proposing the near optimal vertex cover algorithm (NOVCA). 
It works by successively appending the adjacent vertices to the 
minimum degree vertex in each step. It deals with a tie 
situation by choosing the neighbors of a vertex having the 
maximum degree instead of using neighbor of minimum 
degree vertex. This algorithm also has the polynomial run time 
complexity of 𝑂(𝐸𝑉2 log 𝑉).  Using NOVCA on small 
benchmark instances yielded failure. 

In 2012, Gujral et al [24] further improved their algorithm 
and came up with a modified version of NOVCA i.e NOVCA-
II. NOVCA-II is simply the incorporation of idea that a vertex 
cover should be built by adding the vertex in decreasing order 
of their degree and in the situation of tie, it uses the converse 
of NOVCA i.e. it chooses the vertices which have the 
minimum sum of degrees of their neighbor vertex, instead of 
selecting the neighbors of vertex having maximum degree as 
in NOVCA. By using few graph instances, it became evident 
that both algorithms of Gujral et al also fail on small 
benchmarks. 

More investigation has been done and Li et al in 2011[25] 
came up with a new idea of max-share of degree heuristic 
algorithm (Max-I). This algorithm works based on the concept 
that, only those vertices should be added to minimum vertex 
cover, which helps to reduce the degree of its neighboring 
vertices as much as possible, or ultimately if zero. It follows 
random selection in cases of tie. Max-I has the worst run time 
complexity of 𝑂(𝑛3). 

However, in 2014, Imran et al [26] again came up with his 
second method for MVC called Degree Contribution 
Algorithm (DCA). A new data structure -Degree contribution- 
was introduce. Degree contribution is used for graph 
processing parameters. It helps in taking the complete graph to 
determine the values for each vertex. Degree contribution of a 
vertex is the total number of degrees of the vertex and sum of 
all the vertices with same degree in the whole graph. The 
degree contribution for each vertex determines either it is 
efficient to choose that vertex for MVC or not. So, DCA 
works by calculating the degree of every vertex along with its 
degree contribution value. Then only those vertices are added 
to minimum vertex cover whose degree contribution value is 
higher than others. After adding a vertex with higher degree 
contribution value, all its neighbor edges are removed and the 
same steps are repeated for the remaining vertices, until no 
edge was left in the graph. The execution time of DCA is 
𝑂(𝑉𝐸). A memetic algorithm was also proposed by Jovanovic 
et al in 2011 [27]. 

Based on heuristic nature of real ants searching for food, 
ant colony algorithm was proposed for minimum weight 
vertex cover problem (MWVC). As memetic framework of 
ant colony, bee colony and bat colony were mostly used for 
optimization problems. However, the ant colony algorithm 
was initially applied to the traveling salesman problems 
(TSP), where a fully connected graph with weighted edges 
were considered. While in case of MVC it is not necessary for 
the graph to be fully connected and un-weighted. So, 
Jovanovic et al.  used arbitrary edges to make the given graph 
a connected graph and gave weight to each vertex to make it 
complacent for the algorithm. Hence, converting the graph 
from MVC to TSP and applying the ant colony algorithm was 
the main aim. For un-weighted graphs, this algorithm is much 
harder to apply. Lastly an unusual attempt in proposing a 
unique algorithm for MVC was undertaken by Halldórsson et 
al in [28]. Based on the greedy strategy the greed is good 
(GGA) algorithm was proposed. This algorithm tackled the 
maximum independent set (MIS) problem. The “Network 
Bench Model” was used in this algorithm. The degree for 
every vertex is found then only the minimum degree vertex is 
included in MIS. Once, MIS is found then MVC can be easily 
fond by taking complement of MIS from the set of all vertices. 

Li et al. [29] proposed a new local search technique to 
solve the minimum vertex cover problem called NuMVC. 
NuMVC comprised of three main stages. In the first stage the 
introduction of four rules is carried out. In the second stage a 
technique is introduced called configuration checking in order 
to reduce cycling in local search. In the third phase a method 
is introduced to reduce the searching time in order to improve 
the optimality and reduce the computation time. In [30] two 
new extensions of the conventional vertex cover problem are 
introduced. The detail presentation of the two new methods is 
carried out in detail. 

In the literature review section different algorithms are 
discussed in detail from different aspects with the aim to find 
the weakness and strengths of the existing algorithms for 
minimum vertex cover problem. These algorithms have 
weakness in one way or another way, some are fast but fail to 
provide optimal results on many cases, some algorithms 
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provide good optimality results but are very slow. The 
proposed method is introduced to tackle all these issues. 

III. PROPOSED ALGORITHM 

The algorithm put forth here, has a different and unique 
approach than any algorithms found in the literature review. 
The min-to-min (MtM) consists of three basic steps of 
working through an undirected and unweighted graph with 
any number of vertices. The initial step in the algorithm is to 
find the degree of every vertices in the provided graph, then 
comes the next step of finding the minimum degree vertex and 
getting its adjacent vertices. If there are more vertices with 
same minimum degree than we will choose the first vertex 
with minimum degree. After getting the minimum degree 
vertex and all of its adjacent vertices. The last step is to again 
find the minimum degree vertex from the adjacent vertices of 
already found minimum degree vertex, and this vertex is 
considered as a candidate for MVC. Once the candidate vertex 
is selected from the adjacent vertices, all its edges are deleted, 
and the vertex is appended to MVC. This process is repeated 
till no edge is left in the provided graph. 

A. Data Structure 

In our work, we implemented the edge list data structure 
for representing graphs in computer memory leveraging the 
properties of saving computation time for sparse graphs using 
list indexing to access any edge and also fully exploiting the 
advantages of saving space as well instead of using adjacency 
list for the graph representation. In case of the space usage the 
performance of edge list is O(𝑥 + 𝑦 ) for the representation of 
the graph having x edges and y vertices. And in case of the run 
time, edge list performs well in  counting the number of 
vertices or edges and looping an iteration over the edges or 
vertices [31]. The iterations over the edge list in our case using 
the method find () has a runs time of O(1). While the method 
min(array) iterates through the required array in run time of 
O(𝑦), y being the total vertices. Furthermore, removing any 
edges associated with a vertex has the complexity of run time 
O(𝑥), which reduces exponentially as by each iteration our 
graph gets smaller with few vertices and associated edges. On 
the other hand, adjacency matrix- which is mostly used as data 
structure for graph representation- has both performance 
drawbacks of run time as well as space storage problems for 
our purpose. For instance, the O(𝑥2) space usage is the worse 
than the O(𝑥 + 𝑦) space usage by edge list, moreover most 
real-world graphs are sparse which makes it more 
disadvantageous to implement adjacency matrix as depicted in 
Fig. 2(a) and (b) the adjacency matrix and edge list 
representation respectively of the graph from Fig. 1(a). 

 
    (a)  (b) 

Fig. 2. Ardency Matrix and Edge List. 

B. Terminologies 

Following are some terminologies that we have used in the 
proposed pseudo code as illustrated in Fig. 3 deg (): used for 
degree calculation, | |: used for absolute values, min(): for 
minimum degree calculation in the graph, adj (): to calculate 
the neighbors/adjacent vertices of a node/vertex and C is used 
for cover. 

Pseudo code for Clever Steady Strategy Algorithm 

Start: 
Input: = G (V, E) 

Output: = C  
              FOR i← 1 to n { 

                                  𝑑𝑖 ← deg(𝑉𝑖)  

                          }             
                  While G ≠ θ { 
                             𝑀𝑖 ← min(𝑑𝑖)   

                              IF |𝑀𝑖| = 1 { 

                                    𝑁𝑖 ← adj (𝑀𝑖) 

                           } 
                            IF |𝑀𝑖| = 1 { 

                                       𝑁𝑖 ← adj (𝑀𝑖) 

                M𝑁𝑖 ← adj (𝑀𝑖) 

                                    C← adj (𝑀𝑖) 

                                          } 

                      } 
Display C 

Stop 

Fig. 3. Pseudo Code of the Min-to-Min Algorithm. 

C. Flow Chart of the Algorithm 

The flow chart of the proposed algorithm is provided in 
Fig. 4. In the flow diagram we have used the same 
terminologies as given in the pseudo code of the proposed 
MtM algorithm. 

Input: Graph G = ( V, E )

Start

di   deg (Vi)

IF  |Mi|= 1

Mi  Min( di )

Ni   Adj( Mi )

MVC   G - Ni

Ni    Adj( Mi )

MNi    Min( Ni )

> 

MVC    G - MNiIf G = Ф 

End

Yes

Yes

No

 

Fig. 4. Flow Chart of the Proposed Algorithm. 
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IV. IMPLEMENTATION, EMPIRICAL RESULTS AND 

DISCUSSION 

A. Implementation Setup 

Here, the section deals with the empirical results gained 
through implementation of MtM on various benchmark 
instances of up-to-date popular libraries. By cross evaluating 
the results of MtM to different well-known proposed 
algorithms, as discussed in literature review also, the tables 
were created. And by the run time complexity and optimality 
the result of MtM were compare with VSA, MDG and MVSA 
in the tabular form. The coding of the MtM algorithm has 
been done in MATLAB R2014a version 7.10.0.499 on an Intel 
core i5 system having windows 7 operating system. 

B. Results on Small Instances 

Implementing the proposed algorithm on small benchmark 
revealed an interesting result and optimal performance of 
MtM as compare to performance of other algorithms discussed 
in the literature review. As shown in Fig. 5(a) the MVC by 
MtM for the given graph is 4 vertices which is optimal and the 
approximation ratio 𝜌i = 1. Which is also optimal. While in 
Fig. 5(b) the same graph is covered by 5 vertices according to 
MDG and  𝜌i = 1.250. while the given graph in Fig. 5(c) is 
covered using just 2 vertices by MtM, which is optimal 
solution and 𝜌i = 1, while it can be seen in Fig. 5(d) the same 
graph is covered by VSA using 3 vertices with  𝜌 i of 1.5. 
Moreover, most astonishing performance of MtM appears in 
Fig. 5(e) which is covered by just 1 vertex- which is the 
optimal solution. But the same graph shown in Fig. 5(f) is 
covered using 4 vertices by MVSA with 𝜌 i = 4. As the 
solution by MtM for the small benchmark instances is optimal 
and it outperformed all other existing algorithms, hence the 
MtM is much efficient as well as fast in relation to the already 
proposed algorithms in literature. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 5. (a) MtM 𝜌i = 1, (b) MDG 𝜌i = 1.25, (c) MtM 𝜌i = 1, (d) VSA 𝜌i = 

1.5, (e) MtM 𝜌i = 1, (f) MVSA 𝜌i = 4. 

C. Perfomance of MtM on Large Benchmark Instances 

Similarly, the performance by MtM was evaluated on large 
benchmarks instance along with the comparison of its 
performance with other well-known existing algorithms. The 
used libraries for the large benchmark instances were 
DIMACS and BHOSHLIB. In Table II the performance of 
MtM is evaluated against VSA, MDG and MVSA based on 
the total vertices covered by the proposed algorithm along 
with the counterpart algorithms. The approximation ratio of 
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each algorithm for each benchmark instance as well as the 
absolute error was evaluated in Table III. In Table VI the 
worst-case approximation ratios and average cases 
approximation ratios have been calculated for MtM, VSA, 
MDG and MVSA for MVC. The approximation ratios of MtM 
for both cases are much smaller in comparison with the other 
state of art algorithms which indicates that the working of 

MtM algorithm is much efficient than the counterpart 
algorithms in literature. Similarly, the approximation ratios for 
the worst and average case have been calculated for MtM, 
MDG, VSA, and MVSA for maximum independent set 
problem (MIS) in Table VII. The approximation ratios also 
indicate that the results from the proposed method are efficient 
as compared to the other algorithms for MIS problem. 

TABLE II. PERFORMANCE OF MTM, MDG, VSA AND MVSA BENCHMARK INSTANCES FOR MINIMUM VERTEX COVER (MVC) 

S. NO Benchmarks V C* 
   MtM MDG   VSA               MVSA 

 |MVC|  |MVC|          |MVC|  |MVC| 

1 graph50_6 50 38 38 38 44 38 

2 graph50_10 50 35 35 35 41 35 

3 graph100_1 100 60 60 60 95 60 

4 graph100_10 100 70 70 70 96 70 

5 graph200_5 200 150 150 150 184 150 

6 graph500_1 500 350 350 350 485 350 

7 graph500_2 500 400 400 400 484 400 

8 graph500_5 500 290 290 290 454 290 

9 phat300-1 300 292 293 293 292 294 

10 phat300-2 300 275 275 278 275 279 

11 phat300-3 300 264 266 269 264 272 

12 phat700-1 700 689 692 693 689 692 

13 phat700-2 700 656 658 660 656 660 

14 phat700-3 700 638 640 642 638 649 

15 johnson8-2-4 28 24 24 24 24 24 

16 johnson8-4-4 70 56 56 62 56 56 

17 johnson16-2-4 120 112 112 112 112 112 

18 johnson32-2-4 496 480 480 480 480 480 

19 sanr200_0.7 200 182 183 184 182 186 

20 sanr200_0.9 200 158 164 164 158 163 

21 sanr400_0.5 400 387 388 392 387 389 

22 sanr400_0.7 400 379 382 384 379 381 

23 fbr35-17-2 595 560 565 570 573 424 

24 fbr_30_15_5 450 420 426 429 429 565 

25 c125 125 91 94 93 91 95 

25 C250.9 250 206 211 211 206 211 

27 C500.9 500 443 448 453 443 449 

28 C2000.9 2000 1922 1927 1944 1923 1937 

29 brock200_1 200 188 190 190 188 191 

30 brock200_4 200 183 185 192 183 193 

31 gen200_p0.9_44 200 156 164 165 156 166 

32 hamming6-2 64 32 32 32 32 32 

33 hamming6-4 64 60 60 60 60 60 

34 hamming8-2 256 128 128 128 128 128 

35 hamming8-4 256 240 240 240 240 240 

36 hamming10-2 1024 512 512 512 512 512 

37 dsjc-500 500 487 489 491 487 489 

38 killer4 171 160 160 164 160 160 

39 killer5 776 749 754 764 749 754 

40 c-fat200-1 200 188 188 188 188 188 

41 c-fat200-2 200 176 176 176 176 176 

42 c-fat200-5 200 142 142 142 144 142 

43 c-fat500-1 500 486 486 486 486 486 

44 c-fat500-2 500 474 474 474 474 474 

45 c-fat500-5 500 436 436 436 436 436 

46 c-fat500-10 500 374 374 374 374 374 

47 MANN_a27.clq.b 378 252 253 261 253 253 
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TABLE III. PERFORMANCE  AND COMPARISON OF MTM, AND MDG, VSA, MVSA USING APPROXIMATION RATIO AND ABSOLUTE ERROR FOR MVC 

S. NO 
Approximation Ratio Absolute Error 

   MtM           MDG          VSA            MVSA MtM MDG VSA MVSA 

1 1.0000 1.0000 1.1579 0.8636 0 0 6 0 

2 1.0000 1.0000 1.1714 0.8537 0 0 6 0 

3 1.0000 1.0000 1.5833 0.6316 0 0 35 0 

4 1.0000 1.0000 1.3714 0.7292 0 0 26 0 

5 1.0000 1.0000 1.2267 0.8152 0 0 34 0 

6 1.0000 1.0000 1.3857 0.7216 0 0 135 0 

7 1.0000 1.0000 1.2100 0.8264 0 0 84 0 

8 1.0000 1.0000 1.5655 0.6388 0 0 164 0 

9 1.0034 1.0000 0.9966 1.0068 1 1 0 2 

10 1.0000 1.0109 0.9892 1.0145 0 3 0 4 

11 1.0076 1.0113 0.9814 1.0303 2 5 0 8 

12 1.0044 1.0014 0.9942 1.0044 3 4 0 3 

13 1.0030 1.0030 0.9939 1.0061 2 4 0 4 

14 1.0031 1.0031 0.9938 1.0172 2 4 0 11 

15 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

16 1.0000 1.1071 0.9032 1.0000 0 6 0 0 

17 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

18 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

19 1.0055 1.0055 0.9891 1.0220 1 2 0 4 

20 1.0380 1.0000 0.9634 1.0316 6 6 0 5 

21 1.0026 1.0103 0.9872 1.0052 1 5 0 2 

22 1.0079 1.0052 0.9870 1.0053 3 5 0 2 

23 1.0089 1.0088 1.0053 0.7400 5 10 13 136 

24 1.0143 1.0070 1.0000 1.3170 6 9 9 145 

25 1.0330 0.9894 0.9785 1.0440 3 2 0 4 

25 1.0243 1.0000 0.9763 1.0243 5 5 0 5 

27 1.0113 1.0112 0.9779 1.0135 5 10 0 6 

28 1.0026 1.0088 0.9892 1.0073 5 22 1 15 

29 1.0106 1.0000 0.9895 1.0160 2 2 0 3 

30 1.0109 1.0378 0.9531 1.0546 2 9 0 10 

31 1.0513 1.0061 0.9455 1.0641 8 9 0 10 

32 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

33 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

34 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

35 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

36 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

37 1.0041 1.0041 0.9919 1.0041 2 4 0 2 

38 1.0000 1.0250 0.9756 1.0000 0 4 0 0 

39 1.0067 1.0133 0.9804 1.0067 5 15 0 5 

40 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

41 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

42 1.0000 1.0000 1.0141 0.9861 0 0 2 0 

43 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

44 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

45 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

46 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

47 1.0040 1.0316 0.9693 1.0000 1 9 1 1 

The Absolute error is calculated for each algorithm on 
each benchmark instance, in Table III. Similarly, the MtM is 
also compared with other algorithms in terms of getting the 
Maximum independent set in Table IV. And the 
approximation ratio along with Absolute error for MIS of each 
algorithm is presented in Table V. 

Mathematically Absolute Error is defined as, the 
magnitude of the difference between the measured/ obtained 
or approximated value of a quantity 𝑥𝑎𝑝𝑝𝑟𝑜𝑥.  and the actual or 

optimal value 𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙
.

. 

∆𝑋 =  |𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙
.

−  𝑥𝑎𝑝𝑝𝑟𝑜𝑥|             (1) 

In our case, absolute error ∆𝑋 served as the best indicator 
of the performance of the algorithm. Like the value ∆𝑋  shows 
how close the result of the algorithm is to the actual solution. 
The smaller the value of absolute error ∆𝑋 , the better the 
solution can be considered. Large value of ∆𝑋 indicate worst 
performance and a poor solution. Table III shows the 
approximation ratio, along with Absolute error values, which 
are calculated for the measurement of performance with 
respect to the optimal output of each algorithm. 
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TABLE IV. PERFORMANCE OF MTM, MDG, VSA AND MVSA BENCHMARK INSTANCES FOR MAXIMUM INDEPENDENT SET (MIS) 

S. NO Benchmarks V C* 
MtM MDG VSA MVSA 

|MIS| |MIS| |MIS| |MIS| 

1 graph50_6 50 12 12 12 6 12 

2 graph50_10 50 15 15 15 9 15 

3 graph100_1 100 40 40 40 5 40 

4 graph100_10 100 30 30 30 4 30 

5 graph200_5 200 50 50 50 16 50 

6 graph500_1 500 150 150 150 15 150 

7 graph500_2 500 100 100 100 16 100 

8 graph500_5 500 210 210 210 46 210 

9 phat300-1 300 8 7 7 8 6 

10 phat300-2 300 25 25 22 25 21 

11 phat300-3 300 36 34 31 36 28 

12 phat700-1 700 11 8 7 11 8 

13 phat700-2 700 44 42 40 44 40 

14 phat700-3 700 62 60 58 62 51 

15 johnson8-2-4 28 4 4 4 4 4 

16 johnson8-4-4 70 14 14 8 14 14 

17 johnson16-2-4 120 8 8 8 8 8 

18 johnson32-2-4 496 16 16 16 16 16 

19 sanr200_0.7 200 18 17 16 18 14 

20 sanr200_0.9 200 42 36 36 42 37 

21 sanr400_0.5 400 13 12 8 13 11 

22 sanr400_0.7 400 21 18 16 21 19 

23 fbr35-17-2 595 35 30 25 22 171 

24 fbr_30_15_5 450 30 24 21 21 -115 

25 c125 125 34 31 32 34 30 

25 C250.9 250 44 39 39 44 39 

27 C500.9 500 57 52 47 57 51 

28 C2000.9 2000 78 73 56 77 63 

29 brock200_1 200 12 10 10 12 9 

30 brock200_4 200 17 15 8 17 7 

31 gen200_p0.9_44 200 44 36 35 44 34 

32 hamming6-2 64 32 32 32 32 32 

33 hamming6-4 64 4 4 4 4 4 

34 hamming8-2 256 128 128 128 128 128 

35 hamming8-4 256 16 16 16 16 16 

36 hamming10-2 1024 512 512 512 512 512 

37 dsjc-500 500 13 11 9 13 11 

38 killer4 171 11 11 7 11 11 

39 killer5 776 27 22 12 27 22 

40 c-fat200-1 200 12 12 12 12 12 

41 c-fat200-2 200 24 24 24 24 24 

42 c-fat200-5 200 58 58 58 56 58 

43 c-fat500-1 500 14 14 14 14 14 

44 c-fat500-2 500 26 26 26 26 26 

45 c-fat500-5 500 64 64 64 64 64 

46 c-fat500-10 500 126 126 126 126 126 

47 MANN_a27.clq.b 378 126 125 117 125 125 

Approximation ratio is the ratio of number of vertices in 
MCV found by an algorithm to the optimal solution of the 
MVC. Mathematically, approximation ratio is defined- as in 
Eq. (2). 

𝜌𝑖 =  
𝐴𝑖

𝑂𝑃𝑇𝑖
                 (2) 

In the above equation, A denotes the approximate result 
and i represents the number of instances, OPTi represents the 
optimal result. 

For MVC 𝜌 i = 1 is the optimal solution while for the 
existing algorithms 𝜌i ≥ 1 always. A ratio very close to 1 
means the result found is better and almost near to optimal 
solution while the more the ratio deviates from 1, the solution 
gets poor and worst. On the other hand, for MIS 𝜌i = 1 also 
means the result provided by the algorithm is optimal but all 
existing algorithms will always have 𝜌i ≤ 1, as for MVC for 
MIS if the deviation from 1 is very small then the solution is 
considered as the near to optimal, but a deviation of 0.1 means 
the solution is not better one while high values of the 
deviation indicates the solution is the worst. Thus, for MIS 
approximation ratio ≤1 and for MVC approximation ratio ≥ 1. 
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TABLE V. PERFORMANCE OF MTM, MDG, VSA AND MVSA BASED ON APPROXIMATION RATIO AND ABSOLUTE ERROR FOR MIS 

S. NO 

Approximation Ratio Absolute Error 

   MtM           MDG          VSA            MVSA 
 

MtM 

MD

G 

VS

A 

   

MVSA 

1 1.0000 1.0000 0.5000 1.0000 0 0 6 0 

2 1.0000 1.0000 0.6000 1.0000 0 0 6 0 

3 1.0000 1.0000 0.1250 1.0000 0 0 35 0 

4 1.0000 1.0000 0.1333 1.0000 0 0 26 0 

5 1.0000 1.0000 0.3200 1.0000 0 0 34 0 

6 1.0000 1.0000 0.1000 1.0000 0 0 135 0 

7 1.0000 1.0000 0.1600 1.0000 0 0 84 0 

8 1.0000 1.0000 0.2190 1.0000 0 0 164 0 

9 0.8750 0.8750 1.0000 0.7500 1 1 0 2 

10 1.0000 0.8800 1.0000 0.8400 0 3 0 4 

11 0.9444 0.8611 1.0000 0.7778 2 5 0 8 

12 0.7273 0.6364 1.0000 0.7273 3 4 0 3 

13 0.9545 0.9091 1.0000 0.9091 2 4 0 4 

14 0.9677 0.9355 1.0000 0.8226 2 4 0 11 

15 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

16 1.0000 0.5714 1.0000 1.0000 0 6 0 0 

17 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

18 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

19 0.9444 0.8889 1.0000 0.7778 1 2 0 4 

20 0.8571 0.8571 1.0000 0.8810 6 6 0 5 

21 0.9231 0.6154 1.0000 0.8462 1 5 0 2 

22 0.8571 0.7619 1.0000 0.9048 3 5 0 2 

23 0.8571 0.7143 0.6286 4.8857 5 10 13 136 

24 0.8000 0.7000 0.7000 -3.8333 6 9 9 145 

25 0.9118 0.9412 1.0000 0.8824 3 2 0 4 

25 0.8864 0.8864 1.0000 0.8864 5 5 0 5 

27 0.9123 0.8246 1.0000 0.8947 5 10 0 6 

28 0.9359 0.7179 0.9872 0.8077 5 22 1 15 

29 0.8333 0.8333 1.0000 0.7500 2 2 0 3 

30 0.8824 0.4706 1.0000 0.4118 2 9 0 10 

31 0.8182 0.7955 1.0000 0.7727 8 9 0 10 

32 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

33 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

34 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

35 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

36 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

37 0.8462 0.6923 1.0000 0.8462 2 4 0 2 

38 1.0000 0.6364 1.0000 1.0000 0 4 0 0 

39 0.8148 0.4444 1.0000 0.8148 5 15 0 5 

40 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

41 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

42 1.0000 1.0000 0.9655 1.0000 0 0 2 0 

43 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

44 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

45 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

46 1.0000 1.0000 1.0000 1.0000 0 0 0 0 

47 0.9921 0.9286 0.9921 0.9921 1 9 1 1 

TABLE VI. APPROXIMATION RATIOS FOR WORST AND AVERAGE CASE FOR 

MTM, MDG, MVSA, AND VSA FOR MVC 

Algorithms 

Worst case for  

MIS 

ρi 

Average for  

MIS 

ρi 

MtM 0.7272  0.9476 

MDG 0.4444 0.8804 

VSA 0.1000 0.8602 

MVSA -3.8333 0.9010 

TABLE VII. APPROXIMATION RATIOS FOR WORST AND AVERAGE CASE FOR  

MDG, MVSA AND VSA FOR MIS 

Algorithms 
Worst case for MVC 

ρi 

Average for MCV 

ρi 

MtM 1.0512 1.0054 

MDG 1.1071 1.0065 

VSA 1.5833 1.0467 

MVSA 1.3170 0.9681 
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V. CONCLUSION AND FUTURE WORK 

This paper proposes a new algorithm – Min to Min (MtM) 
to tackle the NP- hard optimization problems of MVC as well 
as MIS problems of graph theory. The algorithm was well 
tested first on small benchmark instances as well as then it 
was investigated on benchmarks instance of libraries like 
DIMACS and BHOSLIB. The obtained experimental results 
were cross compared with other extant algorithms of 
literature. After the obtained results it was proved that MtM 
outperformed algorithms like MDG, VSA and MVSA on the 
parameters of runtime performance as well as approximation 
ratio and absolute error. The results are well demonstrated 
using tables and visual graph diagrams. Hence, the proposed 
algorithm is an efficient way to solve real world problems of 
MVC and MIS in different areas of application. It is simple 
and fast to implement, and it gives near to optimal solutions 
on the grounds of run time, storage and parameter of 
approximation ratio, and the absolute error. While it 
outperforms other existing algorithms in worst and average 
cases. 

In the future we would like to add some more tweaks to 
the proposed algorithm to improve it in term of optimality and 
apply on other NP-complete problems as such as graph 
coloring, maximum clique etc. 
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