
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Performance Analysis of Fermat Factorization
Algorithms

Hazem M. Bahig1*, Mohammed A. Mahdi2, Khaled A. Alutaibi3, Amer AlGhadhban4, Hatem M. Bahig5
Computer Science and Information Department, College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA1,2

Computer Science Division, Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt1,5
Computer Engineering Department, College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA3

Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il, KSA5

Abstract—The Rivest-Shamir-Adleman (RSA) cryptosystem
is one of the strong encryption approaches currently being used
for secure data transmission over an insecure channel. The
difficulty encountered in breaking RSA derives from the
difficulty in finding a polynomial time for integer factorization.
In integer factorization for RSA, given an odd composite number
n, the goal is to find two prime numbers p and q such that n = p q.
In this paper, we study several integer factorization algorithms
that are based on Fermat’s strategy, and do the following: First,
we classify these algorithms into three groups: Fermat, Fermat
with sieving, and Fermat without perfect square. Second, we
conduct extensive experimental studies on nine different integer
factorization algorithms and measure the performance of each
algorithm based on two parameters: the number of bits for the
odd composite number n, and the number of bits for the
difference between two prime factors, p and q. The results
obtained by the algorithms when applied to five different data
sets for each factor reveal that the algorithm that showed the best
performance is the algorithms based on (1) the sieving of odd and
even numbers strategy, and (2) Euler’s theorem with percentage
of improvement of 44% and 36%, respectively compared to the
original Fermat factorization algorithm. Finally, the future
directions of research and development are presented.

Keywords—Integer factorization; Fermat’s algorithm; RSA;
factorization with sieving; perfect square

I. INTRODUCTION
The Rivest-Shamir-Adleman (RSA) cryptosystem is one of

the most famous and secure cryptosystems currently available.
It was designed to encrypt plain text into cipher text in as
strong a manner as possible. The RSA system is a type of
public-key cryptosystem that is based on two different keys: a
public key that is used for encryption and a private key that is
used for decryption.

The main steps in the RSA cryptosystem are as follows
[1,2]:

1) Generate two random distinct prime numbers of large
and equal size, p and q, and then construct an odd composite
number n = p q.

2) Calculate the Euler function Φ(𝑛) = (𝑝 − 1)(𝑞 − 1).
3) For the encryption procedure, choose the exponent

number e that is greater than 1 and less than Φ(𝑛) such that
gcd�𝑒,Φ(𝑛)� = 1. Then apply the modular exponentiation

formula on the message m to generate a secret message c as
follows:

𝑐 = 𝑚𝑒 mod 𝑛

4) For the decryption procedure, find the integer d that is
greater than 1 and less than Φ(𝑛) such that 𝑒 𝑑 mod Φ(𝑛) =
1. Then apply the modular exponentiation formula on the
secret message c to generate a message m as follows:

𝑚 = 𝑐𝑑 mod 𝑛

The RSA cryptosystem includes two mathematical
operations that are opposite to each other. The first operation is
multiplication, which is easy to compute. The running time to
compute the product of two numbers is 𝑂(𝑏2) in the worst
case, where b is the size of each number. This type of operation
is important for computing the modular exponentiation [3, 4]
to reduce the computation time of the exponentiation. The
second operation is a process that involves finding two prime
factors p and q from an odd composite number n. This process
is called integer factorization [5]. If we can factor n to p and q,
then we can compute Φ(𝑛) and then d. Consequently, the
encrypted message c can be decrypted. Hence, the integer
factorization problem is important in cryptography. Therefore,
solving this problem in an efficient timeframe leads to breaking
the RSA. In other side, the difficulty in finding a polynomial
time for the factorization leads to difficulty in breaking the
RSA cryptosystem [6, 7, 8, 9].

Moreover, the integer factorization problem is important
from the point of view of complexity theory. Until now, the
integer factorization problem has not been considered to
belong to the class of P problems. Also, there is no proof that
the integer factorization problem belongs or does not belong to
the class of NP-complete problems. From a review of the
literature, it seems that the best time complexity for factoring
an odd composite number is

𝑒𝑥𝑝 ��64 9⁄3 + 𝑜(1)(ln𝑛)1/3 (ln ln𝑛)2/3�

using the general number field sieve (GNFS) algorithm [1,
10].

A large number of algorithms have been proposed in order
to attempt to factor an odd composite number. These
algorithms can be categorized as either general or special-
purpose algorithms. The general-purpose group contains *Corresponding Author

340 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

integer factorization algorithms that have a running time that
depends on the size of an odd composite number only. This
group includes integer factorization algorithms that are based
on various strategies, such as continued fraction factorization,
Shanks’s square forms factorization, Dixon’s algorithm, the
quadratic sieve algorithm and the GNFS algorithm [1, 2, 10].

On the other hand, the special-purpose group contains
integer factorization algorithms that have a running time that
depends on the size of an odd composite number and its
properties. For example, the trial division method is an
efficient algorithm for factorization when an odd composite
contains a small prime factor. Besides trial division, the
special-purpose group contains various other techniques, such
as Fermat factorization, wheel factorization, Pollard’s p-1,
Euler factorization, and the Lenstra elliptic curve [1, 2, 10, 11].

In this paper, we are interested in the special-purpose group
because the aim is to study the performance of algorithms that
are based on Fermat’s factorization concept. Fermat proposed a
factorization algorithm that is based on representing the odd
composite number as the difference between two squares. The
main advantage of Fermat’s factorization technique is that it is
able to factor an odd composite number, n, in a very fast time,
i.e., almost instantaneously, when the difference between two
factors is ∆= √𝑛4 [6, 12]. This means that if the size of n is b
bits and the difference between two factors is ∆= √𝑛4 , then the
following are true: (1) The two prime factors have the same
size, i.e., each prime factor has size 𝑏 2⁄ ; (2) The number of
common bits between the two prime factors is 𝑏 4⁄ , and these
bits should be the most significant bits. These two conditions
are known as the domain of the efficiency of Fermat’s
algorithm, (DEF).

Many algorithms have been proposed that are based on
Fermat’s factorization concept [13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The goal of these
algorithms is to improve the running time of the original
Fermat algorithm in finding prime factors. Two categories of
factor have an effect on the efficiency of these algorithms. The
first category is related to the properties of the input, which
includes the size of the odd composite number, b, and the
difference between two factors, ∆ . The second category is
related to the natural of the algorithm itself such as the search
strategy it uses to find the solution and the number of high-cost
operations included in the algorithm.

In general, the improved Fermat algorithms can be
classified into two classes. The first class contains algorithms
based on the concept of an estimated prime factor and uses
different techniques such as continued fraction method [28] or
considering n as a special form 6𝑘 ± 1, where k is any integer
[23]. However, the techniques in this class cannot factor some
odd composite numbers, so they cannot be considered as
general methods for Fermat factorization. The second class
contains algorithms [11, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25,
26, 27, 29] that can be applied to any odd composite number
and are based on (1) replacing the high-cost operation, i.e., the
perfect square in Fermat’s method, with a low-cost operation
or on (2) reducing the space searched to find the solution. It
should also be noted that there is another strategy [13, 30] that
falls outside the scope of our research, which involves

speeding up the running time of Fermat’s algorithm that is
based on a different platform such as high-performance
computing [13, 33].

In this paper, we are interested in the integer factorization
algorithms that are belong to the second class. From our
analysis of these techniques, we made the following
observations:

1) The experimental studies for most of these algorithms
were implemented when the size of an odd composite was less
than 64 bits [15, 20, 21, 26, 32], for example, n = 84449 ×
21121 =1783647329. This number of bits is small compared
to that required in cryptography. Also, the time consumed for
an operation increases with increase the size of data,
especially for high-cost operations.

2) Many of the experimental studies for some of these
algorithms were implemented when the difference between
the two factors did not belong to the DEF. This means that any
comparison between Fermat’s algorithm and these algorithms
is not realistic because it has been proved that the Fermat
factorization method is not efficient outside the DEF. For
example,n=19710741 × 531349691=1047329636821139813
[20].

3) The efficiency of some of these algorithms was
measured based on a few data or on some examples, rather
than on different values for b and ∆, see for example, [22, 25].
This means that there is no exhaustive study that compares
two or more integer factorization algorithms that are based on
Fermat factorization concept by applying them to different
data distributions in the DEF.

4) A few steps in some of these algorithms required some
optimization due to the cost of the operation to manipulate a
large data size.

Consequently, we are interested in undertaking an
experimental study on most of the integer factorization
algorithms that are based on Fermat’s concept in order to
answer the following:

Q1) Which one of the Fermat factorization algorithms is
efficient for a large size of n and a small value of ∆?

Q2) What is the effect of increasing the value of ∆ with a fixed
size of n for each of the studied algorithms?

Q3) Many integer factorization algorithms have the same
number of iterations, theoretically, but which one is the
fastest over different data distributions?

To the best of our knowledge, there is no sufficient
comparative study for Fermat factorization algorithms,
especially with regard to the effect of the use of factors b and ∆
on performance. Also, our study compares the performance of
nine different integer factorization algorithms in order to
determine which has the fastest running time.

The remainder of the paper is structured as follows: In
Section II, we provide the methodology used to verify the
objectives of this study. In Section III, we provide an overview
of the different integer factorization algorithms that are based
on Fermat factorization, including the pseudocode of each

341 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

algorithm. Additionally, we classify these algorithms based on
the techniques used into three groups. In Section IV, we
describe the experimental study undertaken to compare and
measure the performance of different integer factorization
algorithms. Also, we present an analysis of the results
produced by the experimental study. Finally, in Section V, we
draw some conclusions from this work and highlight open
questions that remain to be answered in future studies.

II. METHODOLOGY
To measure the performance of the integer factorization

algorithms that are based on Fermat’s strategy, we followed a
methodology that consisted of five stages:

1) Determine the different strategies that need to be used
to factor an odd composite integer into two prime factors
according to Fermat’s concept;

2) Determine the language and packages to use to verify
the goal of the study;

3) Optimize the implementation of the selected integer
factorization algorithms based on the platform used in the
experimental studies;

4) Generate a dataset to use to measure the performance
of the selected algorithms, especially when applied to large
data sizes; and

5) Measure and analyze the performance of the selected
algorithms.

Here we discuss, briefly, each of the above stages. In the
first stage, we studied the different algorithms that use
Fermat’s strategy to find the two prime factors for an odd
composite number. We classified these algorithms into groups
based on the concept used in the algorithms. For each
algorithm, we identified the main idea, the pseudocode and the
expected number of iterations to find the solution. The details
of this stage are covered in Section III.

In the second stage, we selected the language and package
to use in our study, namely, C++ language and the GNU
Multiple Precision (GMP) arithmetic library [34]. We decided
to use C++ language because the performance of this language
is fast compared to other languages such as Java. In other side,
to execute any operation in the RSA system requires a number
of size 1024 bits. However, the size of the integer type in C++
language does not support this objective because it is limited to
64 bits. Therefore, we decided to use the GMP library because
it is designed to support applications such as cryptography and
computational algebra that involve large-sized numbers.
Furthermore, the library has the following advantages: (1) It
contains a large number of functions to manipulate integers and
other types; (2) the functions in the library are fast compared to
those of other tools; and (3) there is no limitation to the size of
number, so we can manipulate a number that is greater than
1024 bits in size.

It should be noted that, in our implementation, we used
only the data type mpz_t that is used to manipulate GMP
integers. The library contains a group of functions to
manipulate GMP integers, such as (1) initializing and assigning
GMP integers, (2) integer arithmetic and division, (3) integer
roots, and (4) integer comparisons.

In the third stage, we focused on optimizing each
algorithm, if required, in order to run the algorithm in a fast
way. The reasons for doing this were as follows: (1) The cost
of the operation for a large integer size is significantly different
than that for small integers of less than 64 bits for the same
operation [35, 36]; and (2) for some algorithms, we needed to
rewrite a few of the statements to increase the performance of
an algorithm. The details of this stage are provided in
Section III.

In the fourth stage, we employed a method to generate an
odd composite number consisting of a product of two prime
numbers. In this method, the generation of the two prime
factors is based on the two factors of the DEF [6, 12]. The first
factor is the size of the odd composite number n. Suppose that
the size of n is b, where b is the number of bits. Therefore,
when we generate an odd composite number n of size b bits,
we first generate two prime numbers p and q, each of size b/2,
and then we multiply both of them, i.e., n = p q. The second
factor is the difference between the prime factors p and q, ∆.
This factor is important because the running time of Fermat’s
strategy increases with an increase in the value of ∆.

The generation of one data (an odd composite number),
GD, consists of the following steps: The first step is to
determine the number of bits for n, b, and the number of bits
for the difference between two factors, ∆. The second step is to
generate a prime number of size b/2, say p. The third step is to
generate a random number of size ∆ and then add it to the first
prime number, say x. The fourth and final step involves
generating the second prime number, say q, greater than x such
that the size of the difference between p and q is ∆.

For more accuracy in measuring the performance of the
different algorithms, we repeated the previous steps for GD by
adopting the following procedure: First, we fixed the value of b
and ∆. Second, we applied the steps for generating two prime
factors as in GD, i.e., from the second step to the fourth step in
GD, t times, where t represents the number of different
instances that have the same value of b and ∆ . Third, we
repeated the execution of the first and second steps of the
procedure with increasing values of ∆ in increments of 5 bits
until ∆ + 20. The reason for setting a maximum value of ∆ is
that the running time of all the integer factorization algorithms
based on Fermat’s strategy increases rapidly with an increase
in ∆. Fourth, we increased the value of b and then repeated all
the previous steps.

The last important task in the data generation stage was to
verify that the generated data were correct as follows:

1) Each prime factor, p, should be verified such that
2(𝑏/2)−1 < 𝑝 < 2(𝑏/2).

2) The difference between the two factors should be
verified such that 2∆−1 ≤ |𝑝 − 𝑞| < 2∆.

3) The prime factors used for the fixed values of b and ∆
should be as different as possible.

The fifth and final step in the methodology involved
measuring the performance of the integer factorization
algorithms that are based on Fermat’s strategy. The
performance of these algorithms was mainly measured by

342 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

computing the execution time. Hence, for fixed values of b and
∆, the running time for the algorithm A, 𝑇𝐴(𝑏,∆), computed
using the following formula:

𝑇𝐴(𝑏,∆) =
1
𝑡
�𝑇𝐴(𝑏,∆)𝑖

𝑡

𝑖=1

where 𝑇𝐴(𝑏,∆)𝑖 is the running time of the algorithm A for
the instance number i using input data b and ∆. Note that two
instances, (𝑏,∆)𝑖 and (𝑏,∆)𝑗, are different if the odd composite
number, 𝑛𝑖, of size b for the instance i is different than the odd
composite number, 𝑛𝑗, of size b for the instance j. Additionally,
with respect to the issue of memory consumption, all the
algorithms required a constant number of auxiliary variables,
so there was no need to measure this factor experimentally.

III. CLASSIFICATION OF FERMAT ALGORITHMS
In this section, we provide an overview of the different

algorithms for integer factorization that are based on Fermat’s
concept. For each algorithm, we discuss the main idea and
steps of the algorithm, and then we give the pseudocode of the
algorithm.

Without loss of generality, for all algorithms, we assume
that the integer number n is odd and is a product of two prime
numbers p and q, where p > q. The main idea of Fermat’s
algorithm is that the integer number n can be expressed as a
difference between two square numbers, x and y. Formally, the
odd integer number n can be written as follows:

𝑛 = 𝑥2 − 𝑦2 (1)

Also, the relation between the two prime factors and the
two square numbers is as follows:

𝑝 = 𝑥 + 𝑦 and 𝑞 = 𝑥 − 𝑦 (2)

Different strategies have been proposed to factorize an odd
composite number into two prime numbers based on Fermat’s
concept. All the algorithms start the search with an initial value
of x and try to find the value of y such that 𝑦2 = 𝑥2 − 𝑛. So,
the main issues in Fermat’s strategy are (1) how to reduce the
search space of x and (2) how to reduce the cost of the perfect
squaring operation, where a simple test for a perfect square for
x includes two operations: calculating the square root for x, say
r, and testing whether the value of r is an integer or not.

We can classify the algorithms of integer factorization that
are based of Fermat’s strategy into three main groups. The first
group employs a direct approach which starts from the
minimum value of x and uses a perfect square operation. We
named this group the Fermat factorization group because it is
based on directly applying the concept proposed by Fermat.
The second group is based on sieving or pruning some
elements in the search space, so the algorithm does not apply
the squaring operation or/and perfect squaring operation on
those elements. We named this group the Fermat with sieving
group. The third group is based on removing the main
operation of the Fermat factorization algorithm which is the
perfect squaring operation, so we named this group the Fermat
without perfect squaring group. The main ideas and steps of

these three groups of algorithms are outlined in the following
subsections.

A. The Fermat Factorization Group
The Fermat factorization group contains many algorithms

which are based mainly on the perfect squaring operation [14,
15, 17]. The first and main algorithm in this group is based on
rewriting Eq. (1) as 𝑦2 = 𝑥2 − 𝑛 and starts by assuming that
the value of x is �√𝑛� + 1. Then the algorithm tests whether the
value of 𝑥2 − 𝑛 is a perfect square. If the value of y is an
integer and equal to √𝑥2 − 𝑛, the search is terminated. When
𝑥2 − 𝑛 is not a perfect square, the algorithm increases the
value of x by 1 and follows the same procedure until it finds
the value of y.

All the steps of the algorithm are shown in Algorithm FF.
The algorithm is very straightforward and contains simple
operations, except for the perfect square operation. The running
time of the algorithm is based on two factors. The first factor is
the cost of the perfect square operation and the second is the
number of iterations for the While-loop which is equal to
𝑥 − ��√𝑛� + 1� in the worst case, where x satisfies that the
term 𝑥2 − 𝑛 is a perfect square and equals (𝑝 + 𝑞) 2⁄ .

Algorithm FF (Fermat’s Factorization)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime numbers such that 𝑛 = 𝑝 𝑞.
Begin
1. 𝑥 = �√𝑛� + 1
2. 𝑦 = 𝑥2 − 𝑛
3. While (𝑦 is not a perfect square) do
4. 𝑥 = 𝑥 + 1
5. 𝑦 = 𝑥2 − 𝑛
6. End while
7. 𝑝 = 𝑥 + �𝑦
8. 𝑞 = 𝑥 − �𝑦

End.

Remarks:

1) Many modified algorithms [14, 15, 17] have been
proposed to improve the FF algorithm while retaining the two
operations, squaring and perfect squaring. The modifications
are based on rewriting the Fermat factorization formula and
then searching for the solution. For example, in [17], the
formula is rewritten as 𝑧2 = �𝑥 + �√𝑛�𝑦�

2
− 𝑛𝑦2 , with a

small x and y, and the goal is to find the solution (𝑥,𝑦, 𝑧). In
[15], the algorithm is modified in order to achieve the goal of
finding a solution for 𝑧2 = ��√𝑛 𝑖��

2
− 𝑛 𝑖, where 𝑖 starts with

a value of 1. The modified algorithm, FF1, contains four
operations before testing the perfect square. These operations
are: multiplying n with i, squaring the root of (n i), say s,
squaring s, and calculating the modulus of n. This means that,
in general, the modified algorithm contains more operations
than the FF algorithm. Therefore, we neglected these
modifications in our general comparison of the different types
of integer factorization algorithms (see Section IV).

343 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

2) In order to optimize the code of the FF algorithm we
decided to do the following: (i) To compute 𝑥2, we multiplied
𝑥 with itself to get better performance instead of using the
predefined function power for the exponent 2; (ii) in the case
of the perfect square operation, we used the predefined
function in GMP because we considered that this would be
better than computing the square root of the number and then
testing whether the results are integers or not.

Algorithm FF1 (Modified Fermat’s Factorization)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime numbers such that 𝑛 = 𝑝 𝑞.
Begin

1. 𝑖 = 1
2. found =false
3. While (𝑓𝑜𝑢𝑛𝑑 ≠ true) do
4. 𝑠 = �√𝑛 𝑖�
5. 𝑚 = 𝑠2 mod 𝑛
6. If IsSquare(m) then
7. 𝑡 = √𝑚
8. found =true
9. return gcd(n,s-t)

10. End if
11. 𝑖 = 𝑖 + 1
12. End while
End.

B. The Fermat with Sieving Group
The sieving strategy is a method that is used to remove the

impossible solutions so that the algorithm does not consider
them during the search process. The algorithms that apply this
strategy for Fermat factorization can be classified into two
classes of techniques.

The first class of techniques ignores the perfect squaring
operation in some cases. This means that before testing
whether integer y is a perfect square or not, the technique tests
whether y satisfies a certain condition. If integer y meets this
condition, the technique does not test whether y is a perfect
square and goes instead to the next value of x. Otherwise, the
technique tests whether y is a perfect square or not.

The second class of techniques ignores the squaring
operation and consequently the perfect square operation. This
means that before calculating 𝑥2, the strategy tests whether x
satisfies a certain condition. If integer x meets this condition,
the technique ignores all the subsequent steps, i.e., squaring,
subtraction, and perfect squaring, and goes to the next value of
x. Otherwise, the technique tests whether y is a perfect square
or not.

1) Class 1: Ignoring the perfect square
a) Sieving with modulus: One of the techniques used in

sieving is the modulus operation, mod. The idea behind using
the modulus arithmetic operation is to exclude all integers, x,
that are definitely not perfect squares before applying the
perfect squaring operation [22, 24].

TABLE I. VALUES OF X AND X2

𝒙 𝒙𝟐 𝒙 𝒙𝟐
𝑥𝑙−1𝑥𝑙−1 … 𝑥10 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟎 𝑥𝑙−1𝑥𝑙−1 … 𝑥15 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟓
𝑥𝑙−1𝑥𝑙−1 … 𝑥11 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟏 𝑥𝑙−1𝑥𝑙−1 … 𝑥16 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟔
𝑥𝑙−1𝑥𝑙−1 … 𝑥12 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟒 𝑥𝑙−1𝑥𝑙−1 … 𝑥17 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟗
𝑥𝑙−1𝑥𝑙−1 … 𝑥13 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟗 𝑥𝑙−1𝑥𝑙−1 … 𝑥18 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟒

𝑥𝑙−1𝑥𝑙−1 … 𝑥14 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟔 𝑥𝑙−1𝑥𝑙−1 … 𝑥19 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟏

We can apply this technique as follows: For any integer x,
we can represent x in decimal form as 𝑥𝑙−1𝑥𝑙−1 … 𝑥1𝑥0, where l
represents the number of decimal digits in x. It is clear that the
last, right-most, digit of x is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.
The last digit for squaring x can be calculated by taking the
modulus of 10 and is equal to 0, 1, 4, 5, 6, or 9, see the bold
digit in Table I. On the other hand, no squaring number has a
last digit of 2, 3, 7 or 8. Therefore, we compute 𝑟 = 𝑦 mod 10
and if the value of 𝑟 is 2, 3, 7, or 8, then there is no need to test
whether 𝑦 is a perfect square or not, and so we can go to the
next value of x directly.

The complete steps of the algorithm is shown in Algorithm
FM10 [22, 24]. The algorithm is similar to the FF algorithm
but contains two extra statements. The first statement computes
the modulus of 10 for the term 𝑥2 − 𝑛, and the second tests the
result of using the modulus, see line 7. The running time of the
algorithm is similar to that of the FF algorithm, except (1) two
extra statements, see lines 6 and 7, and (2) the algorithm uses
fewer perfect square operations based on the truth value of the
condition.

Algorithm FM10 (Fermat Sieving by Modulus 10)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime such that 𝑛 = 𝑝 𝑞.
Begin
1. 𝑥 = �√𝑛�
2. found=false
3. While (Not found) do
4. 𝑥 = 𝑥 + 1
5. 𝑦 = 𝑥2 − 𝑛
6. 𝑟 = 𝑦 mod 10
7. If Not (𝑟 = 2 or 𝑟 = 3 or 𝑟 = 7 or 𝑟 = 8) then
8. If (𝑦 is a perfect square) then
9. found=True

10. End if
11. End if
12. End while
13. 𝑝 = 𝑥 + �𝑦
14. 𝑞 = 𝑥 − �𝑦
End.

344 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Remarks:

1) The statement in line 7 can be rewritten as follows:

If (𝑟 = 0 or 𝑟 = 1 or 𝑟 = 4 or 𝑟 = 5 or 𝑟 = 6 or 𝑟 = 9)
then

However, this statement contains six comparisons at most,
whereas the statement in line 7 contains four comparisons at
most, but the running time for two versions is almost similar.

2) We can use a modulus of 15, 20 or 30 instead of 10. To
study the effect of changing the value of the modulus on the
performance of the algorithm, we changed the modulus of 10
to a modulus of 20 and named this method FM20. Using this
approach, the accepted cases to ignore the test for the perfect
square occur when the remainder of (r=y mod 20) are 0, 1, 4,
5, 9, or 16. The steps of the FM20 algorithm are similar to
those of FM10, except that line 7 is replaced with:

If Not (𝑟 = 0 or 𝑟 = 1 or 𝑟 = 4 or 𝑟 = 5 or 𝑟 = 9 or 𝑟 = 16)
then

We studied the effect of this change experimentally, see
Section IV.

b) Sieving with odd & even: In the FF algorithm, the
values of x are �√𝑛� + 1, �√𝑛� + 2, �√𝑛� + 3, �√𝑛� + 4,….
This means that the values of x are odd and even numbers.
Another sieving technique that can be applied in integer
factorization algorithms is based on ignoring all the even (or
all the odd) numbers of x if the integer n satisfies a certain
condition. The idea behind using the even and odd property is
based on the following rules [19, 29]:

1) Any odd integer n can be expressed as 𝑛 = 4 𝑘 ±
1,𝑛 ≥ 3.

2) For 𝑛 = 4 𝑘 ± 1 , we have two cases: (i) when 𝑛 =
4 𝑘 + 1, then x is odd and y is even, and (ii) when 𝑛 = 4 𝑘 −
1, then x is even and y is odd.

The algorithm consists of four main steps. The first step
determines the form of n as either 4 𝑘 + 1 or 4 𝑘 − 1 . The
second step determines the type (even or odd) of x and y. The
third step determines the start value of x in the case of whether
x is odd or even. The fourth step applies the steps of FF
algorithm with updating the value of x with 2.

The complete steps of the algorithm are shown in
Algorithm FOE. To determine the formula of n, the algorithm
computes the remainder of dividing n with 4 and then tests if
the remainder is equal to 1 or not, see lines 2–3. If the
remainder is equal to 1, this means that 𝑛 = 4 𝑘 + 1 ,
otherwise, 𝑛 = 4 𝑘 − 1. Lines 4–5 and 8–9 determine the type,
odd or even, and the start value of the integer x. The remainder
of the algorithm is similar to the FF algorithm except when the
value of 𝑥2 − 𝑛 is not a perfect square, the algorithm updates
the value of x by 2 instead of 1 because when x is even (or
odd), the next even (or odd) number of x can be found by
adding 2 to x. Hence, the number of iterations of the FOE
algorithm is half that of the FF algorithm because the FOE
algorithm updates the value of x by 2, whereas the FF
algorithm updates the value of x by 1.

Algorithm FOE (Fermat Sieving using Odd & Even)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime numbers such that 𝑛 = 𝑝 𝑞.
Begin
 1. 𝑥 = �√𝑛� + 1
 2. 𝑟 = 𝑛 mod 4
 3. If (𝑟 = 1) then
 4. If (𝑥 is even) then
 5. 𝑥 = 𝑥 + 1
 6. End if
 7. Else
 8. If (𝑥 is odd) then
 9. 𝑥 = 𝑥 + 1
10. End if
11. End if
12. 𝑦 = 𝑥2 − 𝑛
13. While (𝑦 is not a perfect square) do
14. 𝑥 = 𝑥 + 2
15. 𝑦 = 𝑥2 − 𝑛
16. End while
17. 𝑝 = 𝑥 + �𝑦
18. 𝑞 = 𝑥 − �𝑦
End.

3) Class 2: Ignoring the Squaring: Another important
improvement that has been made to Fermat’s algorithm is the
ignoring of some elements in the search space before squaring
the value of x. Two algorithms have been proposed to achieve
this goal. The two algorithms are based on analyzing the
relation between the value of (𝑥 mod 10) and the value of (𝑛
mod m), where m may be 10, 15, 20, or 30.

For any integer x, the value of (𝑥 mod m) is either 0, 1, 2,
…, m-2, or m-1. When n is odd and not divisible by 5 and m =
10, the value of (𝑛 mod 10) is 1, 3, 7, or 9, and when m = 20,
the value of (𝑛 mod 20) is 1, 3, 7, 9, 11, 13, 15, 17, or 19. We
ignored the value 5, because if (𝑛 mod 20)=5, then 5 is a factor
of n.

TABLE II. DIFFERENT CASES FOR (X MOD 10) AND (N MOD 10)

𝒙 mod 10
Results of (𝒙𝟐 − 𝒏) mod 10 when 𝒏 mod 10 equal

1 3 7 9

0 9 7 3 1

1 0 8 4 2

2 3 1 7 5

3 8 6 2 0

4 5 3 9 7

5 4 2 8 6

6 5 3 9 7

7 8 6 2 0

8 3 1 7 5

9 0 8 4 2

345 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Based on the two values, (x mod 10) and (n mod m), we
can determine when there is no need to compute 𝑥2. Table II
displays the different cases for the relation between (𝑥 mod 10)
and (𝑛 mod 10), see the gray-colored cells. Therefore, the
accepted cases to apply the idea of ignoring the squaring
operation are as follows [25]: (1) 𝑛 mod 10=1 and 𝑥 mod
10=2, 3,7 or 8. (2) 𝑛 mod 10=3 and 𝑥 mod 10=0, 1, 4, 5, 6 or 9.
(3) 𝑛 mod 10=7 and 𝑥 mod 10=0, 2, 3, 5, 7 or 8. (4) 𝑛 mod
10=9 and 𝑥 mod 10=1, 4, 6 or 9.

The complete steps of this technique are shown in
Algorithm FM1010 [24]. Initially, we determine the initial
value of x and (𝑛 mod 10). Then the algorithm choose one of
the four cases, as described previously. The number of
iterations of the FM1010 algorithm is similar to that of the FF
algorithm, but some of these iterations ignore the squaring and
perfect squaring operations.

Algorithm FM1010 (Fermat Sieving by two Modulus 10)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two primes such that 𝑛 = 𝑝 𝑞.
Begin
1. 𝑥 = �√𝑛�
2. found=false
3. 𝑥 = 𝑥 + 1
4. 𝑟1 = 𝑛 mod 10
5. While (Not found) do
6. 𝑟2 = 𝑥 mod 10
7. If (𝑟1 = 1) then
8. If Not (𝑟2 = 2 or 3 or 7 or 8) then
9. 𝑦 = 𝑥2 − 𝑛

10. If (𝑦 is a perfect square) then
11. found=True
12. Else
13. 𝑥 = 𝑥 + 1
14. End if
15. Else
16. 𝑥 = 𝑥 + 1
17. End if
18. Else
19. If (𝑟1 = 3) then
20. If Not (𝑟2 = 0 or 1 or 4 or 5 or 6 or 9) then
21. Similar to lines 9-17
22. Else
23. If (𝑟1 = 7) then
24. If Not (𝑟2 = 0 or 2 or 3 or 5 or 7 or 8) then
25. Similar to lines 9-17
26. Else
27. If (𝑟1 = 9) then
28. If Not (𝑟2 = 1 or 4 or 6 or 9) then
29. Similar to lines 9-17

30. End if
31. End while
32. 𝑝 = 𝑥 + �𝑦
33. 𝑞 = 𝑥 − �𝑦
End.

Similarly, we construct the accepted cases for applying the
idea of sieving for the relation between (𝑥 mod 10) and (𝑛 mod
20) as follows [25]: (1) 𝑛 mod 20=1 and 𝑥 mod 10=1, 5 or 9.
(2) 𝑛 mod 20=3 and 𝑥 mod 10=2 or 8. (3) 𝑛 mod 20=7 and 𝑥
mod 10=4 or 6. (4) 𝑛 mod 20=9 and 𝑥 mod 10=3, 5 or 7. (5) 𝑛
mod 20=11 and 𝑥 mod 10=0, 4 or 6. (6) 𝑛 mod 20=13 and 𝑥
mod 10=3 or 7. (7) 𝑛 mod 20=17 and 𝑥 mod 10=1 or 9. (8) 𝑛
mod 20=19 and 𝑥 mod 10=0, 2 or 8.

Using these cases, we constructed another sieving method
named FM1020 algorithm. The pseudocode of the FM1020
algorithm is similar to that of FM1010, except that the While-
loop contains eight If-statement, where each If-statement
represents a case from the eight cases of the relation between
(𝑥 mod 10) and (𝑛 mod 20) [25].

Remark: Another modified algorithm was proposed by
Somsuk, and Tientanopajai [27] and based on analyzing the
last m digits of the modulus, where 𝑚 ≥ 2 . The main
drawback of the modified algorithm is the number of different
subroutines used is very large when m is large.

C. The Fermat without Perfect Squaring Group
The algorithms in this group do not use the perfect squaring

operation during the search for the two prime factors. Two
main techniques have been proposed for use in integer
factorization algorithms that do not employ perfect squaring.

The first algorithm is based on finding two integers x and y
such that the difference between two square numbers is 4𝑛,
i.e., 4𝑛 = 𝑥2 − 𝑦2. This formula can be rewritten as follows
[27, 28]:

𝑟 = 𝑥2 − (𝑦2 + 4𝑛)

The algorithm starts the search with 𝑥 = 2�√𝑛� and 𝑦 = 0,
and then computes the value of r. Based on the value of r, the
algorithm executes one of the following cases [27, 28]:

1) Case 1: 𝑟 = 0 . This means that 4n is equal to the
difference between two squares and the search process is
terminated. Therefore, the two prime factors are 𝑝 =
(𝑥 + 𝑦)/2 and 𝑞 = (𝑥 − 𝑦)/2.

2) Case 2: 𝑟 < 0. This means that the value of the term 𝑥2
is less than the term (𝑦2 + 4𝑛) . Therefore, the algorithm
increases the value of x by 2 because the value of the term
(𝑝 + 𝑞) is an even number. Also, the algorithm increases the
value of r by (4𝑥 + 4) because this value represents the
difference between the squares of the next and the current
value of x.

3) Case 3: 𝑟 > 0. This means that the value of the term 𝑥2
is greater than the term (𝑦2 + 4) . Therefore, the algorithm
increases the value of y by 2 because the value of the term
(𝑝 − 𝑞) is an even number. Also, the algorithm decreases the
value of r by (4𝑦 + 4) because this value represents the
difference between the squares of the next and current value of
y.

The complete steps of the algorithm are shown in
Algorithm FnPS. All the operations of the algorithm are simple
and the running time of the algorithm is based only on the

346 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

number of iterations of While-loop that is dependent on two
conditions: 𝑟 < 0 and 𝑟 > 0. The number of iterations for the
first inner while-loop that is based on the condition (𝑟 < 0) is
𝑝+𝑞
2
− ��√𝑛� + 1� , while the number of iterations for the

second inner while-loop that is based on the condition (𝑟 > 0)
is 𝑝−𝑞

2
 , because the start value of y is 0. Therefore, the total

number of iterations of the FnPS algorithm is 𝑝 − ��√𝑛� + 1�.

Algorithm FnPS (Fermat with no Perfect Squares)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime numbers such that 𝑛 = 𝑝 𝑞.
Begin

1. 𝑥 = 2�√𝑛�
2. 𝑦 = 0
3. While (𝑟 ≠ 0) do
4. While (𝑟 < 0) do
5. 𝑟 = 𝑟 + (4𝑥 + 4)
6. 𝑥 = 𝑥 + 2
7. End while
8. While (𝑟 > 0) do
9. 𝑟 = 𝑟 − (4𝑦 + 4)

10. 𝑦 = 𝑦 + 2
11. End while
12. End while
13. 𝑝 = (𝑥 + 𝑦)/2
14. 𝑞 = (𝑥 − 𝑦)/2
End.

The second algorithm in this group is based on removing
the perfect squaring operation by using modular multiplication.
The method of modification is based on Euler’s theorem which
is given by the following formula [20]:

𝑎Φ(𝑛) ≡ 1 mod 𝑛

where n is a positive integer number, a is an integer such
that a is relatively prime with n, and Φ(𝑛) is the Euler’s totient
function that is equal to (𝑝 − 1) × (𝑞 − 1) = 𝑛 − (𝑝 + 𝑞) +
1.

The complete steps of the algorithm are shown in
Algorithm FE [20]. The algorithm starts the computation by
initializing 𝑥 = 2�√𝑛� and selecting a positive integer c which
is relatively prime with n. Based on the value of c, the
algorithm computes the inverse, a, and the square, s, of c in
modulo n. Then the algorithm applies Euler’s theorem, where
the value of Φ(𝑛) = 𝑛 − 𝑥 + 1. If the result, t, equals 1 then
the values of x and y are determined and the solution is found.
Otherwise, the algorithm sets a flag with false. In which case
the algorithm repeats the following steps until Euler’s theorem
is verified, i.e., when t = 1. The first step in the repetition is to
compute a new value t by multiplying it with s and taking a
module if it is required. The second step is to update the value
of x by increasing it by a value of 2. Finally, the value of the
two prime factors are 𝑥 + 𝑦 and 𝑥 − 𝑦. The total number of
iterations of this algorithm is similar to that of the FF
algorithm, but the perfect squaring operation and only one
square root operation is required.

Algorithm FE (Fermat-Euler)
Input: n is a positive odd number.
Output: 𝑝 and 𝑞 are two prime such that 𝑛 = 𝑝 𝑞.
Begin

1. 𝑥 = 2�√𝑛�
2. Choose a positive integer 𝑐 s.t. gcd(𝑐,𝑛) = 1, say c=2
3. 𝑎 = 𝑐−1 mod 𝑛
4. 𝑠 = 𝑐2 mod 𝑛
5. 𝑡 = 𝑎𝑛−𝑥+1 mod 𝑛
6. If (𝑡 ==1) then
7. 𝑥 = 𝑥/2
8. 𝑦 = �𝑥2 − 𝑛
9. found=True

10. Else
11. found=False
12. End if
13. While (found == False) do
14. 𝑡 = 𝑡 𝑠
15. If (𝑡 > 𝑛) then
16. 𝑡 = 𝑡 mod 𝑛
17. End if
18. 𝑥 = 𝑥 + 2
19. If (𝑡 == 1) then
20. 𝑥 = 𝑥/2
21. 𝑦 = �𝑥2 − 𝑛
22. found=True
23. End if
24. End while
25. 𝑝 = 𝑥 + 𝑦
26. 𝑞 = 𝑥 − 𝑦
End.

Remarks:

1) The original statements of Algorithm FnPS in lines 4
and 8 are if (𝑟 < 0) and if (𝑟 > 0), respectively, see [27]. To
optimize the original algorithm, we replaced the two If-
statements with two While-loops as in Algorithm FnPS. The
performance of Algorithm FnPS with two inner While-loops is
better than that with two If-statements, see Section IV.

2) Algorithm EF is slightly different than the algorithm in
[20]. In [20], the Boolean condition found was not used.
Instead, the statement at line 11 is y = 0.1, i.e., any initial
value of y is considered to be a float number, and the
statement at line 13 is “y is not an integer”. The performance
achieved by this modification is slightly better than that of the
FE algorithm, but not significantly so.

IV. EXPERIMENTAL EVALUATIONS
In this section, we discuss our experimental study of the

nine different integer factorization algorithms that utilize
Fermat’s strategy. The study was conducted according to the
methodology described in Section II and involved the
evaluation of the performance of these algorithms over
different numbers of bits and different differences between the
two factors. The first subsection presents the specification of
the hardware and software used in the implementation, and the

347 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

different values of the factors b and ∆ that have an effect on the
input data. The second subsection presents the results of
applying the ideas mentioned in the remarks in Section III. The
third subsection presents the measurement and analysis of the
running times of the different integer factorization algorithms.

A. Experimental Specification
The experimental study of different factorization

algorithms required the use of a high configuration of
hardware. For this purpose, we used a Microsoft Azure cloud
system. The system is able to run 32 threads in parallel with a
processing speed of 2.6 GHz. The reasons for selecting this
hardware platform are as follows: (1) The execution times of
the factorization algorithms increase rapidly with increases in b
and ∆; (2) a large number of instances are used to measure the
running time for each algorithm for fixed values of b and ∆;
and (3) experimentally, each algorithm is run sequentially, but
we use different threads to execute different instances.
However, in order to unload the system we used only a
maximum of 16 threads.

As regards the implementation, we ran all the algorithms
under Windows 2019 and used Microsoft Visual Studio 2019
to implement the algorithms using C++ language.

The specification of the data used in the evaluation of the
different factorizing algorithms was as follows:

1) The values of b were 100, 200, 300, 400, and 500.
2) The value of ∆ started with (b/4) and then we increased

it incrementally by 5 bits until (b/4)+20. The reason that
∆= (𝑏/4) + 20 was set as the last value is that the running
time for all the algorithms is very high and the time increases
with an increase in b.

3) The value of t, i.e., the number of instances for the
fixed values of b and ∆, was set as 100, except when ∆=
(𝑏/4) + 20 where we considered t = 25, because the running
time for each instance is greater than 1.5 hours for the best
algorithm.

B. Experimental Comments
In this subsection, we illustrate the results that were

achieved by applying the ideas mentioned in some of the
remarks in Section III to optimize some of the statements in the
previous algorithms.

However, first, the results in respect of the two versions of
the FnPS algorithm, the If-statement and the While-loop, are
presented and discussed. Table III shows the results of running
two versions of the FnPS algorithm, on b = 100 and ∆ =25, 30,
35, and 40. It is clear that the results indicate that the
performance of the FnPS algorithm when using the While-loop

is better than that when using the If-statement for all values of
∆ . On average, the percentage of improvement in the
performance of the FnPS algorithm with While-loop was
16.5% compared to its performance with the If-statement.

However, in general, the performance of the FnPS
algorithm, even with While-loop, is very weak compared to
that of the FF algorithm for two reasons. The first reason, from
the theoretical point of view, is that the search space of the
FnPS algorithm is very large compared to the search space of
the FF algorithm. The second reason, from the practical
perspective, is that the running time of the FF algorithm on
∆= 25 and 30 is zero (see subsection IV.C), whereas the
running time of the FnPS with the best case is 0.5 seconds.
Additionally, the running time of the FF algorithm on ∆= ∆0 +
15 = 40 is less than 1 minute, whereas the running time of the
FnPS algorithm is greater than 5 hours. Finally, the results for
the FnPS algorithm showed that increases in the value of b led
to an increase in the search space, so we excluded this
algorithm from the full comparison of all the integer
factorization algorithms.

TABLE III. PERFORMANCE OF TWO VERSIONS OF FNPS WITH N = 100

Methods
∆

25 30 35 40

FnPS with If-statement 0.6342 s 20.99 s 11.56 m 6.21 h

FnPS with While-loop 0.5146 s 17.57 s 9.73 m 5.25 h

Improvement % 18.86% 16.29% 15.83% 15.46%

Second, the results in respect of the FF1 algorithm are as
follows. First, the results of running FF1 algorithm, on b = 100
and ∆ =25 and 30, 35 are 0.001 and 0.002 seconds,
respectively. Second, the results of running FF1 algorithm, on
b = 100 and ∆ =35 is greater than one hour in many cases
without find the solution. As we see in the Subsection C, the
running time for FF algorithm is faster than FF1 algorithm
when 𝑏 ≥ 100, so we excluded this algorithm from the full
comparison of all the integer factorization algorithms.

C. Results of the Comparison
Based on the results reported in Subsection IV.B, we

compared seven of the nine algorithms, i.e., FF, FM10, FM20,
FM1010, FM1020, FOE, and FE. The other two algorithms,
FF1 and FnPS, were excluded from the final comparison
because their performance was very poor.

The results of implementing the seven integer factorization
algorithms using the data sets and platform described above are
shown in Fig. 1, 2, 3, 4, and 5 for n = 100, 200, 300, 400, and
500, respectively. From the results shown in the figures, we
can make several observations.

348 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 1. Running Time for Fermat Algorithms when n=100.

Fig. 2. Running Time for Fermat Algorithms when n=200.

Fig. 3. Running Time for Fermat Algorithms when n=300.

Fig. 4. Running Time for Fermat Algorithms when n=400.

0

0.005

0.01

0.015

0.02

0.025

Ti
m

e
in

 se
co

nd
s

(a) ∆=35

0
2
4
6
8

10
12
14
16
18

Ti
m

e
in

 se
co

nd
s

(b) ∆=40

0

1

2

3

4

5

6

Ti
m

e
in

 h
ou

rs

(c) ∆=45

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
in

 se
co

nd
s

(a) ∆=60

0

5

10

15

20

25

Ti
m

e
in

 se
co

nd
s

(b) ∆=65

0
1
2
3
4
5
6
7
8

Ti
m

e
in

 h
ou

rs

(c) ∆=70

0

0.005

0.01

0.015

0.02

0.025

0.03

Ti
m

e
in

 se
co

nd
s

(a) ∆=85

5

10

15

20

25

30

35

Ti
m

e
in

 se
co

nd
s

(b) ∆=90

0

2

4

6

8

10

Ti
m

e
in

 h
ou

rs

(c) ∆=95

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04

Ti
m

e
in

 se
co

nd
s

(a) ∆=110

10

15

20

25

30

35

40

Ti
m

e
in

 se
co

nd
s

(b) ∆=115

1

3

5

7

9

11

Ti
m

e
in

 h
ou

rs

(c) ∆=120

349 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 5. Running Time for Fermat Algorithms when n=500.

First, the running time of all the algorithms is 0 seconds for
all values of b and when ∆ = 𝑏/4, and (𝑏/4) + 5, except for
the FE algorithm which has a very short runtime of 0.001
seconds when b = 400 and 500. For this reason, there are no
data in the figures for ∆ = 𝑏/4, and (𝑏/4) + 5. This means
that the running time for all seven of the Fermat-based
algorithms is instantaneous in the case of ∆= 𝑏/4 , and
(𝑏/4) + 5.

Second, for a fixed value of b with increasing values of ∆,
the running time for all seven algorithms rapidly increases. We
can estimate this factor by calculating the percentage of the
increase in the running time between two consecutive ∆, ∆1
and ∆2, and a fixed value of b, where ∆2= ∆1 + 5. By way of
an example, Table IV shows this ratio for the FE algorithm
when b = 300. The running times for the FE algorithm when b
= 300 and ∆ =85, 90, and 95 are 0.0161 seconds, 16.18
seconds, and 4.62 hours, respectively. The percentage increase
in the running time when ∆2=90 is approximately equal to
1000 times the running time when ∆1 = 85, and the percentage
of increase in the running time when ∆2 = 95 is approximately
equal to 1000 times the running time when ∆1 = 90. This
phenomenon is true for all values of b and for all seven of the
integer factorization algorithms studied.

Third, the difference between the FM10 and FM20
algorithms is not significant and the two algorithms are near to
equal for all values of b and ∆ . On the other hand, the
difference between the FM1010 and FM1020 algorithms is
significant in respect of the average case. The FM1020
algorithm has better performance than the FM1010 algorithm
by a percentage of 15.17%, 17.31%, 22.33%, 21.10%, and
22.17% for n = 100, 200, 300, 400, and 500, respectively. This
means that the average percentage of improvement achieved by
FM1020 is 19.62% when compared to FM1010.

Fourth, the performance of the FM10 and FM20 algorithms
is weak compared to the other five algorithms for every b and
∆. The original Fermat algorithm, FF, has better performance
than the FM10 and FM20 algorithms by almost 36% in respect
of the average case.

Fifth, Table V shows the percentage of improvement
achieved by each algorithm A compared to the FF algorithm
for all values of b, where algorithm A is one of the following
algorithms: FM10, FM20, FM1010, FM1020, FOE, and FE.
Two types of value are presented in the table. The first value is
a positive value, say ∝, which means that algorithm A has ∝

improvement compared to the FF algorithm, and the second
value is a negative value, say -∝, which means that the FF
algorithm has ∝ improvement compared to algorithm A.

Sixth, from Table V, it is clear that the percentage of dis-
improvement of algorithm A decreases with an increase in the
number of bits. For example, the FM1010 algorithm has a dis-
improvement of 32.06%, 20.61%, 15.21%, and 1.04% for n =
100, 200, 300, and 400, respectively. Also, the percentage of
improvement of algorithm A increases with an increase in the
number of bits, except for the FOE algorithm. For example, the
percentage of improvement achieved by the FE algorithm
when compared to the FF algorithm is 4.89%, 11.83%,
31.78%, and 35.97% for n = 200, 300, 400, and 500,
respectively.

Seventh, the FOE algorithm has two properties compared
to the FF algorithm. The first is that the FOE algorithm has
better performance compared to the FF algorithm for all values
of b. The second is the percentage of improvement of the FOE
algorithm compared to the FF algorithm is almost fixed and
equal to 44% for all values of b. The reason for this property is
that the number of iterations of the FOE algorithm is half that
of the FF algorithm.

TABLE IV. RATIO OF RUNNING TIME BETWEEN TWO CONSECUTIVE ∆
WHEN B = 300 FOR EACH ALGORITHM

∆𝟐/∆𝟏
Fermat Algorithms

FF FM10 FM20 FM1010 FM1020 FOE FE

90/85 1027 1029 1034 964 979 1016 1002

95/90 1009 1072 1068 1019 1001 1004 1031

TABLE V. PERCENTAGE OF IMPROVEMENT ACHIEVED BY EACH
ALGORITHM COMPARED TO FF ALGORITHM

b
Fermat Factorization Algorithms

FM10 FM20 FM1010 FM1020 FOE FE

100 - 44.12 - 44.80 - 32.06 - 19.91 43.99 - 18.70

200 - 39.12 - 39.42 - 20.61 - 3.99 44.38 4.89

300 - 38.06 - 38.13 - 15.21 8.40 44.27 11.83

400 - 30.42 - 30.92 - 1.04 20.27 44.24 31.78

500 - 29.27 - 29.61 5.87 26.73 44.38 35.97

0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04
0.045

Ti
m

e
in

 se
co

nd
s

(a) ∆=135

10

15

20

25

30

35

40

45

Ti
m

e
in

 se
co

nd
s

(b) ∆=140

0

2

4

6

8

10

12

14

Ti
m

e
in

 h
ou

rs

(c) ∆=145

350 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Eighth, Fig. 6 displays the behavior of all the algorithms for
the average case for all different values of b. The same
behavior occurs if we fix the value of ∆ and change the value
of b. It is clear that the best integer factorization algorithm
based on Fermat’s strategy for all data sets is the algorithm that
is based on sieving odd and even numbers, i.e., the FOE
algorithm. The second and third best algorithms are FE and
FM1020, respectively. Note that the two curves for the FM10
and FM20 algorithms coincide.

Ninth, Fig. 7 displays the running times for t = 100
instances for each algorithm A when b = 500 and ∆ = 140,
where algorithm A is one of the following algorithms:
FM1010, FM1020, FOE, and FE. From the figure, we can
observe the following: (1) The running time of each algorithm
A is varied and based on the value of n, except for the FE
algorithm whose behavior is almost fixed; and (2) the running
time of the FM1010 algorithm is slightly faster than that of the
FF algorithm on average, as in Fig. 5(b), but in many instances
the running time of the FM1010 algorithm is longer than the
FF algorithm.

Fig. 6. Average Running Time of Fermat algorithms over Different n.

Fig. 7. Behavior of FF, FM1010, FM1020, FOE and FE algorithms when b

= 500 and ∆= 140.

V. CONCLUSION AND OPEN PROBLEMS
In this work, we addressed the integer factorization

problem that involves finding the two prime factors for an odd
composite number. The inherent challenge of this problem is
that no polynomial time has yet been found. The problem is
used in cryptography to break the RSA cryptosystem. We
classified the different Fermat factorization algorithms into
three groups according to the integer factorization methods that
were used. The algorithms were studied experimentally to
measure their performance according to two factors: (1) the
size of the odd composite factor, b bits, and (2) the difference
between two factors, ∆ bits. The experimental study was
conducted on data sets consisting of b =100, 200, 300, 400, and
500, and ∆ = 𝑏/4, (𝑏/4) + 5, (𝑏/4) + 10, (𝑏/4) + 15, and
(𝑏/4) + 20. The results of the experimental study showed that
the algorithm based on sieving using the odd and even property
performed the fastest factorization when applied to data sets of
different sizes of odd composite numbers and different
differences between the two factors with a percentage
improvement of 44% compared to the original Fermat
factorization algorithm. Also, the algorithm based on Euler’s
theorem exhibited a good level of performance compared with
the Fermat factorization algorithm.

There are open questions remain related to this study.
(1) What is the behavior of FM1020, FOE and FE algorithms
when 𝑏 > 500 bits? (2) How to use high-performance
computing such as graphics processing unit (GPU) to speedup
the running time for the best modified Fermat algorithm.
(3) What is the effect of using n mod m on FM1020 algorithm,
when m>20.

ACKNOWLEDGMENT
This work has been funded by Scientific Research

Deanship at the University of Ha’il – Saudi Arabia through
project number RG-191309.

REFERENCES
[1] K. Balasubramanian, and M. Rajakani, “Algorithmic strategies for

solving complex problems in cryptography,” IGI global, 2017.
[2] S. Yan, “Primality testing and integer factorization in public-key

cryptography,” Springer, 2009.
[3] M. Daniel, “A survey of fast exponentiation methods,” J. Algorithm vol.

27, no. 1, pp. 129–146, 1998.
[4] K. Fathy, H. Bahig, and A. Ragab, “A fast parallel modular

exponentiation algorithm,” Arabian Journal for Science and
Engineering, vol. 43, pp. 903–911, 2018.

[5] R. Crandall, and C. Pomerance, “Prime numbers: a computational
perspective,” 2nd Ed., Springer, 2005.

[6] O. Akchiche, and O Khadir, “Factoring RSA moduli with primes
sharing bits in the middle,” Applicable Algebra in Engineering,
Communication and Computing, vol. 29, pp. 245–259, 2018.

[7] H. Bahig, D. Nassr, and A. Bhery, “Factoring RSA modulus with primes
not necessarily sharing least significant bits,” Applied Mathematics and
Information Sciences, vol. 11, no. 1, pp. 243-249, 2017.

[8] H. Bahig, D. Nassr, A.Bhery and A. Nitaj, “A unified method for
private exponent attacks on RSA using lattices,” International Journal
of Foundations of Computer Science, vol. 31, no. 2, pp. 207-231, 2020.

[9] R. Steinfeld, and Y. Zheng, “On the security of RSA with primes
sharing least-significant bits,” Applicable Algebra in Engineering,
Communication and Computing, vol. 15, pp. 179–200, 2004.

[10] A. Lenstra, “Integer factoring,” Designs, Codes and Cryptography, vol.
19, pp. 101–128, 2000.

0

2000

4000

6000

8000

10000

12000

14000

16000

100 200 300 400 500

T
im

e
in

 se
co

nd
s

Number of bits, b

FF FM10
FM20 FM1010
FM1020 FOE
FE

12

16

20

24

28

32

36

T
im

e
in

 se
co

nd
s

Instances

FF FM1010 FM1020
FOE FE

351 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

[11] J Jormakka, “On finding Fermat’s pairs,” Journal of Discrete
Mathematical Sciences & Cryptography, vol. 10, no. 3, pp. 401-413,
2006.

[12] B. de Weger, “Cryptanalysis of RSA with small prime difference,”
Applicable Algebra in Engineering, Communication and Computing,
vol. 13, no. 1, pp. 17–28, 2002.

[13] H. Bahig, H. Bahig, and Y Kotb, “Fermat factorization using a multi-
core system,” International Journal of Advanced Computer Science and
Applications, vol. 11, no. 4, pp. 323-330, 2020.

[14] R. Erra, and C. Grenier, “The Fermat factorization method revisited,”
IACR Cryptology ePrint Archive, 318 2009.

[15] W. Hart, “A one line factorization algorithm,” Journal of the Australian
Mathematical Society, vol. 94, pp. 61-69, 2012.

[16] M. Hittmeir, “Deterministic factorization of sums and differences of
powers,” Mathematics of Computation, vol. 86, no. 308, pp. 2947–2954,
2017.

[17] J. Mckee, “Speeding Fermat’s factorization method,” Mathematics of
Computation, vol. 68, no. 228, pp. 1729–1737, 1999.

[18] B. Randall, “Fingers find Fermat’s factorization most probable,” The
Mathematical Gazette, vol. 99, no. 544, pp. 452-458, 2014.

[19] P. Shiu, “Fermat's method of factorization,” The Mathematical Gazette,
vol. 99, no. 544, pp. 97-103, 2015.

[20] K. Somsuk, “The new integer factorization algorithm based on Fermat’s
factorization algorithm and euler’s theorem,” International Journal of
Electrical and Computer Engineering, vol. 10, no. 2, pp. 1469-1476,
2020.

[21] K. Somsuk, and S. Kasemvilas, “MVFactor: A method to decrease
processing time for factorization algorithm,” Proceedings of 17th
International Computer Science and Engineering Conference, Thailand,
2013, pp. 339-342.

[22] K. Somsuk and S. Kasemvilas, “MFFV2 and MNQSV2: improved
factorization algorithms,” Proceeding of 4th International Conference on
Information Science and Applications, 2013, pp. 327 – 329.

[23] K. Somsuk and S. Kasemvilas, “Possible prime modified Fermat
factorization: new improved integer factorization to decrease
computation time for breaking RSA,” Proceedings of the 10th
International Conference on Computing and Information Technology.
Advances in Intelligent Systems and Computing, vol. 265, pp. 325-334,
2014.

[24] K. Somsuk and S. Kasemvilas, “MFFV3: An Improved Integer
Factorization Algorithm to Increase Computation Speed”, 5th
International Engineering Conference 2014, pp. 1432 – 1436, 2014.

[25] K.Somsuk, “A new modified integer factorization algorithm using
integer mod 20's technique,” Proceedings of the 18 International
Computer Science and Engineering Conference, Thailand, 2014, pp.
312-316.

[26] K. Somsuk and K. Tientanopajai, “Improving Fermat factorization
algorithm by dividing modulus into three forms,” KKU Engineering
Journal, vol. 43, no. S2, pp. 350-353, 2016.

[27] K. Somsuk, and K. Tientanopajai, “An improvement of Fermat's
factorization by considering the last m digits of modulus to decrease
computation time,” International Journal of Network Security, vol. 19,
pp. 99-111, 2017.

[28] M. Wu, R.Tso, and H. Sun, “On the improvement of Fermat
factorization using a continued fraction technique,” Future Generation
Computer Systems, vol. 30, no. 1, pp. 162-168, 2014.

[29] G.Xiang, “Fermat’s method of factorization,” Applied Probability Trust,
vol. 36, no. 2, pp. 34-35, 2004.

[30] R. Sakellariou, “Parallel algorithms for integer factorization,” Advances
on Computer Mathematics and Its Applications, pp. 288-295, 1993.

[31] G. Hiary, “A deterministic algorithm for integer factorization,”
Mathematics of Computation, vol. 85, pp. 2065-2069, 2016.

[32] E. Costa, and D. Harvey, “Faster deterministic integer factorization,”
Mathematics of Computation, vol. 83, pp. 339-345, 2014.

[33] R. Sakellariou, “Parallel algorithms for integer factorization,” Advances
on Computer Mathematics and Its Applications, pp. 288-295, 1993.

[34] GMP library, The GNU multiple precision arithmetic library. https://
gmplib.org/, 2020.

[35] H. M. Bahig, A. Alghadhban, M. A. Mahdi, K. A. Alutaibi, H. M.
Bahig, “Speeding up the multiplication algorithm for large integers”,
Engineering, Technology & Applied Science Research, vol 10, no. 6, pp
6533-6541, 2020.

[36] H. Bahig, H. Bahig, and K. Fathy, “Fast and scalable algorithm for
product large data on multicore system,” Concurrency and Computation:
Practice and Experience, https://doi.org/10.1002/cpe.5259, online
published 2019.

352 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	1) Generate two random distinct prime numbers of large and equal size, p and q, and then construct an odd composite number n = p q.
	2) Calculate the Euler function Φ,𝑛.=,𝑝−1.,𝑞−1..
	3) For the encryption procedure, choose the exponent number e that is greater than 1 and less than Φ,𝑛. such that ,gcd-,𝑒,Φ,𝑛...=1. Then apply the modular exponentiation formula on the message m to generate a secret message c as follows:
	4) For the decryption procedure, find the integer d that is greater than 1 and less than Φ,𝑛. such that 𝑒 𝑑 mod Φ,𝑛.=1. Then apply the modular exponentiation formula on the secret message c to generate a message m as follows:

	II. Methodology
	III. Classification of Fermat Algorithms
	A. The Fermat Factorization Group
	B. The Fermat with Sieving Group
	1) Class 1: Ignoring the perfect square
	a) Sieving with modulus: One of the techniques used in sieving is the modulus operation, mod. The idea behind using the modulus arithmetic operation is to exclude all integers, x, that are definitely not perfect squares before applying the perfect squaring�

	2) We can use a modulus of 15, 20 or 30 instead of 10. To study the effect of changing the value of the modulus on the performance of the algorithm, we changed the modulus of 10 to a modulus of 20 and named this method FM20. Using this approach, the accept�
	b) Sieving with odd & even: In the FF algorithm, the values of x are ,,𝑛..+1, ,,𝑛..+2, ,,𝑛..+3, ,,𝑛..+4,…. This means that the values of x are odd and even numbers. Another sieving technique that can be applied in integer factorization algorithms is ba�

	3) Class 2: Ignoring the Squaring: Another important improvement that has been made to Fermat’s algorithm is the ignoring of some elements in the search space before squaring the value of x. Two algorithms have been proposed to achieve this goal. The two a�

	C. The Fermat without Perfect Squaring Group

	IV. Experimental Evaluations
	A. Experimental Specification
	B. Experimental Comments
	C. Results of the Comparison

	V. Conclusion and Open Problems
	Acknowledgment

