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Abstract—The Rivest-Shamir-Adleman (RSA) cryptosystem 
is one of the strong encryption approaches currently being used 
for secure data transmission over an insecure channel. The 
difficulty encountered in breaking RSA derives from the 
difficulty in finding a polynomial time for integer factorization. 
In integer factorization for RSA, given an odd composite number 
n, the goal is to find two prime numbers p and q such that n = p q. 
In this paper, we study several integer factorization algorithms 
that are based on Fermat’s strategy, and do the following: First, 
we classify these algorithms into three groups: Fermat, Fermat 
with sieving, and Fermat without perfect square. Second, we 
conduct extensive experimental studies on nine different integer 
factorization algorithms and measure the performance of each 
algorithm based on two parameters: the number of bits for the 
odd composite number n, and the number of bits for the 
difference between two prime factors, p and q. The results 
obtained by the algorithms when applied to five different data 
sets for each factor reveal that the algorithm that showed the best 
performance is the algorithms based on (1) the sieving of odd and 
even numbers strategy, and (2) Euler’s theorem with percentage 
of improvement of 44% and 36%, respectively compared to the 
original Fermat factorization algorithm. Finally, the future 
directions of research and development are presented. 

Keywords—Integer factorization; Fermat’s algorithm; RSA; 
factorization with sieving; perfect square 

I. INTRODUCTION 
The Rivest-Shamir-Adleman (RSA) cryptosystem is one of 

the most famous and secure cryptosystems currently available. 
It was designed to encrypt plain text into cipher text in as 
strong a manner as possible. The RSA system is a type of 
public-key cryptosystem that is based on two different keys: a 
public key that is used for encryption and a private key that is 
used for decryption. 

The main steps in the RSA cryptosystem are as follows 
[1,2]: 

1) Generate two random distinct prime numbers of large 
and equal size, p and q, and then construct an odd composite  
number n = p q.  

2) Calculate the Euler function Φ(𝑛) = (𝑝 − 1)(𝑞 − 1). 
3) For the encryption procedure, choose the exponent 

number e that is greater than 1 and less than Φ(𝑛) such that 
gcd�𝑒,Φ(𝑛)� = 1. Then apply the modular exponentiation 

formula on the message m to generate a secret message c as 
follows: 

𝑐 = 𝑚𝑒 mod 𝑛 

4) For the decryption procedure, find the integer d that is 
greater than 1 and less than Φ(𝑛) such that 𝑒 𝑑 mod Φ(𝑛) =
1.  Then apply the modular exponentiation formula on the 
secret message c to generate a message m as follows: 

𝑚 = 𝑐𝑑  mod 𝑛 

The RSA cryptosystem includes two mathematical 
operations that are opposite to each other. The first operation is 
multiplication, which is easy to compute. The running time to 
compute the product of two numbers is 𝑂(𝑏2)  in the worst 
case, where b is the size of each number. This type of operation 
is important for computing the modular exponentiation [3, 4]  
to reduce the computation time of the exponentiation. The 
second operation is a process that involves finding two prime 
factors p and q from an odd composite number n. This process 
is called integer factorization [5]. If we can factor n to p and q, 
then we can compute Φ(𝑛)  and then d. Consequently, the 
encrypted message c can be decrypted. Hence, the integer 
factorization problem is important in cryptography. Therefore, 
solving this problem in an efficient timeframe leads to breaking 
the RSA. In other side, the difficulty in finding a polynomial 
time for the factorization leads to difficulty in breaking the 
RSA cryptosystem [6, 7, 8, 9]. 

Moreover, the integer factorization problem is important 
from the point of view of complexity theory. Until now, the 
integer factorization problem has not been considered to 
belong to the class of P problems. Also, there is no proof that 
the integer factorization problem belongs or does not belong to 
the class of NP-complete problems. From a review of the 
literature, it seems that the best time complexity for factoring 
an odd composite number is 

𝑒𝑥𝑝 ��64 9⁄3 + 𝑜(1)(ln𝑛)1/3 (ln ln𝑛)2/3� 

using the general number field sieve (GNFS) algorithm [1, 
10]. 

A large number of algorithms have been proposed in order 
to attempt to factor an odd composite number. These 
algorithms can be categorized as either general or special-
purpose algorithms. The general-purpose group contains *Corresponding Author  
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integer factorization algorithms that have a running time that 
depends on the size of an odd composite number only. This 
group includes integer factorization algorithms that are based 
on various strategies, such as continued fraction factorization, 
Shanks’s square forms factorization, Dixon’s algorithm, the 
quadratic sieve algorithm and the GNFS algorithm [1, 2, 10]. 

On the other hand, the special-purpose group contains 
integer factorization algorithms that have a running time that 
depends on the size of an odd composite number and its 
properties. For example, the trial division method is an 
efficient algorithm for factorization when an odd composite 
contains a small prime factor. Besides trial division, the 
special-purpose group contains various other techniques, such 
as Fermat factorization, wheel factorization, Pollard’s p-1, 
Euler factorization, and the Lenstra elliptic curve [1, 2, 10, 11]. 

In this paper, we are interested in the special-purpose group 
because the aim is to study the performance of algorithms that 
are based on Fermat’s factorization concept. Fermat proposed a 
factorization algorithm that is based on representing the odd 
composite number as the difference between two squares. The 
main advantage of Fermat’s factorization technique is that it is 
able to factor an odd composite number, n, in a very fast time, 
i.e., almost instantaneously, when the difference between two 
factors is ∆= √𝑛4   [6, 12]. This means that if the size of n is b 
bits and the difference between two factors is ∆= √𝑛4 , then the 
following are true: (1) The two prime factors have the same 
size, i.e., each prime factor has size 𝑏 2⁄ ; (2) The number of 
common bits between the two prime factors is 𝑏 4⁄ , and these 
bits should be the most significant bits. These two conditions 
are known as the domain of the efficiency of Fermat’s 
algorithm, (DEF). 

Many algorithms have been proposed that are based on 
Fermat’s factorization concept [13, 14, 15, 16, 17, 18, 19, 20, 
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The goal of these 
algorithms is to improve the running time of the original 
Fermat algorithm in finding prime factors. Two categories of 
factor have an effect on the efficiency of these algorithms. The 
first category is related to the properties of the input, which 
includes the size of the odd composite number, b, and the 
difference between two factors, ∆ . The second category is 
related to the natural of the algorithm itself such as the search 
strategy it uses to find the solution and the number of high-cost 
operations included in the algorithm. 

In general, the improved Fermat algorithms can be 
classified into two classes. The first class contains algorithms 
based on the concept of an estimated prime factor and uses 
different techniques such as continued fraction method [28] or 
considering n as a special form 6𝑘 ± 1, where k is any integer 
[23]. However, the techniques in this class cannot factor some 
odd composite numbers, so they cannot be considered as 
general methods for Fermat factorization. The second class 
contains algorithms [11, 14, 15, 17, 18, 19, 20,  21, 22, 24, 25, 
26, 27, 29] that can be applied to any odd composite number 
and are based on (1) replacing the high-cost operation, i.e., the 
perfect square in Fermat’s method, with a low-cost operation 
or on (2) reducing the space searched to find the solution. It 
should also be noted that there is another strategy [13, 30] that 
falls outside the scope of our research, which involves 

speeding up the running time of Fermat’s algorithm that is 
based on a different platform such as high-performance 
computing [13, 33]. 

In this paper, we are interested in the integer factorization 
algorithms that are belong to the second class. From our 
analysis of these techniques, we made the following 
observations: 

1) The experimental studies for most of these algorithms 
were implemented when the size of an odd composite was less 
than 64 bits [15, 20, 21, 26, 32], for example, n = 84449 × 
21121 =1783647329. This number of bits is small compared 
to that required in cryptography. Also, the time consumed for 
an operation increases with increase the size of data, 
especially for high-cost operations. 

2) Many of the experimental studies for some of these 
algorithms were implemented when the difference between 
the two factors did not belong to the DEF. This means that any 
comparison between Fermat’s algorithm and these algorithms 
is not realistic because it has been proved that the Fermat 
factorization method is not efficient outside the DEF. For 
example,n=19710741 ×  531349691=1047329636821139813 
[20]. 

3) The efficiency of some of these algorithms was 
measured based on a few data or on some examples, rather 
than on different values for b and ∆, see for example, [22, 25]. 
This means that there is no exhaustive study that compares 
two or more integer factorization algorithms that are based on 
Fermat factorization concept by applying them to different 
data distributions in the DEF. 

4) A few steps in some of these algorithms required some 
optimization due to the cost of the operation to manipulate a 
large data size. 

Consequently, we are interested in undertaking an 
experimental study on most of the integer factorization 
algorithms that are based on Fermat’s concept in order to 
answer the following: 

Q1) Which one of the Fermat factorization algorithms is 
efficient for a large size of n and a small value of ∆? 

Q2) What is the effect of increasing the value of ∆ with a fixed 
size of n for each of the studied algorithms? 

Q3) Many integer factorization algorithms have the same 
number of iterations, theoretically, but which one is the 
fastest over different data distributions? 

To the best of our knowledge, there is no sufficient 
comparative study for Fermat factorization algorithms, 
especially with regard to the effect of the use of factors b and ∆ 
on performance. Also, our study compares the performance of 
nine different integer factorization algorithms in order to 
determine which has the fastest running time. 

The remainder of the paper is structured as follows: In 
Section II, we provide the methodology used to verify the 
objectives of this study. In Section III, we provide an overview 
of the different integer factorization algorithms that are based 
on Fermat factorization, including the pseudocode of each 
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algorithm. Additionally, we classify these algorithms based on 
the techniques used into three groups. In Section IV, we 
describe the experimental study undertaken to compare and 
measure the performance of different integer factorization 
algorithms. Also, we present an analysis of the results 
produced by the experimental study. Finally, in Section V, we 
draw some conclusions from this work and highlight open 
questions that remain to be answered in future studies. 

II. METHODOLOGY 
To measure the performance of the integer factorization 

algorithms that are based on Fermat’s strategy, we followed a 
methodology that consisted of five stages: 

1) Determine the different strategies that need to be used 
to factor an odd composite integer into two prime factors 
according to Fermat’s concept; 

2) Determine the language and packages to use to verify 
the goal of the study; 

3) Optimize the implementation of the selected integer 
factorization algorithms based on the platform used in the 
experimental studies; 

4) Generate a dataset to use to measure the performance 
of the selected algorithms, especially when applied to large 
data sizes; and 

5) Measure and analyze the performance of the selected 
algorithms. 

Here we discuss, briefly, each of the above stages. In the 
first stage, we studied the different algorithms that use 
Fermat’s strategy to find the two prime factors for an odd 
composite number. We classified these algorithms into groups 
based on the concept used in the algorithms. For each 
algorithm, we identified the main idea, the pseudocode and the 
expected number of iterations to find the solution. The details 
of this stage are covered in Section III. 

In the second stage, we selected the language and package 
to use in our study, namely, C++ language and the GNU 
Multiple Precision (GMP) arithmetic library [34]. We decided 
to use C++ language because the performance of this language 
is fast compared to other languages such as Java. In other side, 
to execute any operation in the RSA system requires a number 
of  size 1024 bits. However, the size of the integer type in C++ 
language does not support this objective because it is limited to 
64 bits. Therefore, we decided to use the GMP library because 
it is designed to support applications such as cryptography and 
computational algebra that involve large-sized numbers. 
Furthermore, the library has the following advantages: (1) It 
contains a large number of functions to manipulate integers and 
other types; (2) the functions in the library are fast compared to 
those of other tools; and (3) there is no limitation to the size of 
number, so we can manipulate a number that is greater than 
1024 bits in size. 

It should be noted that, in our implementation, we used 
only the data type mpz_t that is used to manipulate GMP 
integers. The library contains a group of functions to 
manipulate GMP integers, such as (1) initializing and assigning 
GMP integers, (2) integer arithmetic and division, (3) integer 
roots, and (4) integer comparisons. 

In the third stage, we focused on optimizing each 
algorithm, if required, in order to run the algorithm in a fast 
way. The reasons for doing this were as follows: (1) The cost 
of the operation for a large integer size is significantly different 
than that for small integers of less than 64 bits for the same 
operation [35, 36]; and (2) for some algorithms, we needed to 
rewrite a few of the statements to increase the performance of 
an algorithm. The details of this stage are provided in 
Section III. 

In the fourth stage, we employed a method to generate an 
odd composite number consisting of a product of two prime 
numbers. In this method, the generation of the two prime 
factors is based on the two factors of the DEF [6, 12]. The first 
factor is the size of the odd composite number n. Suppose that 
the size of n is b, where b is the number of bits. Therefore, 
when we generate an odd composite number n of size b bits, 
we first generate two prime numbers p and q, each of size b/2, 
and then we multiply both of them, i.e., n = p q. The second 
factor is the difference between the prime factors p and q, ∆. 
This factor is important because the running time of Fermat’s 
strategy increases with an increase in the value of ∆. 

The generation of one data (an odd composite number), 
GD, consists of the following steps: The first step is to 
determine the number of bits for n, b, and the number of bits 
for the difference between two factors, ∆. The second step is to 
generate a prime number of size b/2, say p. The third step is to 
generate a random number of size ∆ and then add it to the first 
prime number, say x. The fourth and final step involves 
generating the second prime number, say q, greater than x such 
that the size of the difference between p and q is ∆. 

For more accuracy in measuring the performance of the 
different algorithms, we repeated the previous steps for GD by 
adopting the following procedure: First, we fixed the value of b 
and ∆. Second, we applied the steps for generating two prime 
factors as in GD, i.e., from the second step to the fourth step in 
GD, t times, where t represents the number of different 
instances that have the same value of b and ∆ . Third, we 
repeated the execution of the first and second steps of the 
procedure with increasing values of ∆ in increments of 5 bits 
until ∆ + 20. The reason for setting a maximum value of ∆ is 
that the running time of all the integer factorization algorithms 
based on Fermat’s strategy increases rapidly with an increase 
in ∆. Fourth, we increased the value of b and then repeated all 
the previous steps. 

The last important task in the data generation stage was to 
verify that the generated data were correct as follows: 

1) Each prime factor, p, should be verified such that 
2(𝑏/2)−1 < 𝑝 < 2(𝑏/2). 

2) The difference between the two factors should be 
verified such that 2∆−1 ≤ |𝑝 − 𝑞| < 2∆. 

3) The prime factors used for the fixed values of b and ∆ 
should be as different as possible. 

The fifth and final step in the methodology involved 
measuring the performance of the integer factorization 
algorithms that are based on Fermat’s strategy. The 
performance of these algorithms was mainly measured by 
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computing the execution time. Hence, for fixed values of b and 
∆, the running time for the algorithm A, 𝑇𝐴(𝑏,∆),  computed 
using the following formula: 

𝑇𝐴(𝑏,∆) =
1
𝑡
�𝑇𝐴(𝑏,∆)𝑖

𝑡

𝑖=1

 

where 𝑇𝐴(𝑏,∆)𝑖 is the running time of the algorithm A for 
the instance number i using input data b and ∆. Note that two 
instances, (𝑏,∆)𝑖 and (𝑏,∆)𝑗, are different if the odd composite 
number, 𝑛𝑖, of size b for the instance i is different than the odd 
composite number, 𝑛𝑗, of size b for the instance j. Additionally, 
with respect to the issue of memory consumption, all the 
algorithms required a constant number of auxiliary variables, 
so there was no need to measure this factor experimentally. 

III. CLASSIFICATION OF FERMAT ALGORITHMS 
In this section, we provide an overview of the different 

algorithms for integer factorization that are based on Fermat’s 
concept. For each algorithm, we discuss the main idea and 
steps of the algorithm, and then we give the pseudocode of the 
algorithm. 

Without loss of generality, for all algorithms, we assume 
that the integer number n is odd and is a product of two prime 
numbers p and q, where p > q. The main idea of Fermat’s 
algorithm is that the integer number n can be expressed as a 
difference between two square numbers, x and y. Formally, the 
odd integer number n can be written as follows: 

𝑛 = 𝑥2 − 𝑦2       (1) 

Also, the relation between the two prime factors and the 
two square numbers is as follows: 

𝑝 = 𝑥 + 𝑦 and   𝑞 = 𝑥 − 𝑦      (2) 

Different strategies have been proposed to factorize an odd 
composite number into two prime numbers based on Fermat’s 
concept. All the algorithms start the search with an initial value 
of x and try to find the value of y such that 𝑦2 = 𝑥2 − 𝑛. So, 
the main issues in Fermat’s strategy are (1) how to reduce the 
search space of x and (2) how to reduce the cost of the perfect 
squaring operation, where a simple test for a perfect square for 
x includes two operations: calculating the square root for x, say 
r, and testing whether the value of r is an integer or not. 

We can classify the algorithms of integer factorization that 
are based of Fermat’s strategy into three main groups. The first 
group employs a direct approach which starts from the 
minimum value of x and uses a perfect square operation. We 
named this group the Fermat factorization group because it is 
based on directly applying the concept proposed by Fermat. 
The second group is based on sieving or pruning some 
elements in the search space, so the algorithm does not apply 
the squaring operation or/and perfect squaring operation on 
those elements. We named this group the Fermat with sieving 
group. The third group is based on removing the main 
operation of the Fermat factorization algorithm which is the 
perfect squaring operation, so we named this group the Fermat 
without perfect squaring group. The main ideas and steps of 

these three groups of algorithms are outlined in the following 
subsections. 

A. The Fermat Factorization Group 
The Fermat factorization group contains many algorithms 

which are based mainly on the perfect squaring operation [14,   
15, 17]. The first and main algorithm in this group is based on 
rewriting Eq. (1) as 𝑦2 = 𝑥2 − 𝑛 and starts by assuming that 
the value of x is �√𝑛� + 1. Then the algorithm tests whether the 
value of 𝑥2 − 𝑛  is a perfect square. If the value of y is an 
integer and equal to √𝑥2 − 𝑛, the search is terminated. When 
𝑥2 − 𝑛  is not a perfect square, the algorithm increases the 
value of x by 1 and follows the same procedure until it finds 
the value of y. 

All the steps of the algorithm are shown in Algorithm FF. 
The algorithm is very straightforward and contains simple 
operations, except for the perfect square operation. The running 
time of the algorithm is based on two factors. The first factor is 
the cost of the perfect square operation and the second is the 
number of iterations for the While-loop which is equal to 
𝑥 − ��√𝑛� + 1� in the worst case, where x satisfies that the 
term 𝑥2 − 𝑛 is a perfect square and equals (𝑝 + 𝑞) 2⁄ . 

Algorithm FF (Fermat’s Factorization) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime numbers such that  𝑛 = 𝑝 𝑞. 
Begin 
1. 𝑥 = �√𝑛� + 1 
2. 𝑦 = 𝑥2 − 𝑛 
3. While (𝑦 is not a perfect square) do 
4.  𝑥 =  𝑥 + 1 
5.  𝑦 = 𝑥2 − 𝑛 
6. End while 
7. 𝑝 =  𝑥 + �𝑦 
8. 𝑞 =  𝑥 − �𝑦 

End. 

Remarks: 

1) Many modified algorithms [14, 15, 17] have been 
proposed to improve the FF algorithm while retaining the two 
operations, squaring and perfect squaring. The modifications 
are based on rewriting the Fermat factorization formula and 
then searching for the solution. For example, in [17], the 
formula is rewritten as 𝑧2 = �𝑥 + �√𝑛�𝑦�

2
− 𝑛𝑦2 , with a 

small x and y, and the goal is to find the solution (𝑥,𝑦, 𝑧). In 
[15], the algorithm is modified in order to achieve the goal of 
finding a solution for 𝑧2 = ��√𝑛 𝑖��

2
− 𝑛 𝑖, where 𝑖 starts with 

a value of 1. The modified algorithm, FF1, contains four 
operations before testing the perfect square. These operations 
are: multiplying n with i, squaring the root of (n i), say s, 
squaring s, and calculating the modulus of n. This means that, 
in general, the modified algorithm contains more operations 
than the FF algorithm. Therefore, we neglected these 
modifications in our general comparison of the different types 
of integer factorization algorithms (see Section IV). 
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2) In order to optimize the code of the FF algorithm we 
decided to do the following: (i) To compute 𝑥2, we multiplied 
𝑥  with itself to get better performance instead of using the 
predefined function power for the exponent 2; (ii) in the case 
of the perfect square operation, we used the predefined 
function in GMP because we considered that this would be 
better than computing the square root of the number and then 
testing whether the results are integers or not. 

Algorithm FF1 (Modified Fermat’s Factorization) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime numbers such that  𝑛 = 𝑝 𝑞. 
Begin 

1. 𝑖 = 1 
2. found =false 
3. While (𝑓𝑜𝑢𝑛𝑑 ≠ true) do 
4.  𝑠 = �√𝑛 𝑖� 
5.  𝑚 = 𝑠2  mod 𝑛 
6.  If IsSquare(m) then 
7.         𝑡 = √𝑚 
8.        found =true 
9.         return gcd(n,s-t) 

10.  End if 
11.  𝑖 = 𝑖 + 1 
12. End while 
End. 

B. The Fermat with Sieving Group 
The sieving strategy is a method that is used to remove the 

impossible solutions so that the algorithm does not consider 
them during the search process. The algorithms that apply this 
strategy for Fermat factorization can be classified into two 
classes of techniques. 

The first class of techniques ignores the perfect squaring 
operation in some cases. This means that before testing 
whether integer y is a perfect square or not, the technique tests 
whether y satisfies a certain condition. If integer y meets this 
condition, the technique does not test whether y is a perfect 
square and goes instead to the next value of x. Otherwise, the 
technique tests whether y is a perfect square or not. 

The second class of techniques ignores the squaring 
operation and consequently the perfect square operation. This 
means that before calculating 𝑥2, the strategy tests whether x 
satisfies a certain condition. If integer x meets this condition, 
the technique ignores all the subsequent steps, i.e., squaring, 
subtraction, and perfect squaring, and goes to the next value of 
x. Otherwise, the technique tests whether y is a perfect square 
or not. 

1) Class 1: Ignoring the perfect square 
a) Sieving with modulus: One of the techniques used in 

sieving is the modulus operation, mod. The idea behind using 
the modulus arithmetic operation is to exclude all integers, x, 
that are definitely not perfect squares before applying the 
perfect squaring operation [22, 24]. 

TABLE I.  VALUES OF X AND X2 

𝒙 𝒙𝟐 𝒙 𝒙𝟐 
𝑥𝑙−1𝑥𝑙−1 … 𝑥10 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟎 𝑥𝑙−1𝑥𝑙−1 … 𝑥15 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟓 
𝑥𝑙−1𝑥𝑙−1 … 𝑥11 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟏 𝑥𝑙−1𝑥𝑙−1 … 𝑥16 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟔 
𝑥𝑙−1𝑥𝑙−1 … 𝑥12 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟒 𝑥𝑙−1𝑥𝑙−1 … 𝑥17 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟗 
𝑥𝑙−1𝑥𝑙−1 … 𝑥13 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟗 𝑥𝑙−1𝑥𝑙−1 … 𝑥18 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟒 

𝑥𝑙−1𝑥𝑙−1 … 𝑥14 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟔 𝑥𝑙−1𝑥𝑙−1 … 𝑥19 𝑥′2𝑙−1𝑥′𝑙−1 … 𝑥′1𝟏 

We can apply this technique as follows: For any integer x, 
we can represent x in decimal form as 𝑥𝑙−1𝑥𝑙−1 … 𝑥1𝑥0, where l 
represents the number of decimal digits in x. It is clear that the 
last, right-most, digit of x is either 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. 
The last digit for squaring x can be calculated by taking the 
modulus of 10 and is equal to 0, 1, 4, 5, 6, or 9, see the bold 
digit in Table I. On the other hand, no squaring number has a 
last digit of 2, 3, 7 or 8. Therefore, we compute 𝑟 = 𝑦 mod 10 
and if the value of 𝑟 is 2, 3, 7, or 8, then there is no need to test 
whether 𝑦 is a perfect square or not, and so we can go to the 
next value of x directly. 

The complete steps of the algorithm is shown in Algorithm 
FM10 [22, 24]. The algorithm is similar to the FF algorithm 
but contains two extra statements. The first statement computes 
the modulus of 10 for the term 𝑥2 − 𝑛, and the second tests the 
result of using the modulus, see line 7. The running time of the 
algorithm is similar to that of the FF algorithm, except (1) two 
extra statements, see lines 6 and 7, and (2) the algorithm uses 
fewer perfect square operations based on the truth value of the 
condition. 

Algorithm FM10 (Fermat Sieving by Modulus 10) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime such that  𝑛 = 𝑝 𝑞. 
Begin 
1. 𝑥 = �√𝑛� 
2. found=false 
3. While (Not found) do 
4.  𝑥 =  𝑥 + 1 
5.  𝑦 = 𝑥2 − 𝑛 
6.  𝑟 = 𝑦 mod 10 
7.  If Not (𝑟 = 2 or  𝑟 = 3 or 𝑟 = 7 or 𝑟 = 8) then  
8.  If (𝑦 is a perfect square) then 
9.  found=True 

10.  End if 
11.  End if 
12. End while 
13. 𝑝 =  𝑥 + �𝑦 
14. 𝑞 =  𝑥 − �𝑦 
End. 
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Remarks: 

1) The statement in line 7 can be rewritten as follows: 

If (𝑟 = 0  or 𝑟 = 1  or 𝑟 = 4  or 𝑟 = 5  or 𝑟 = 6  or 𝑟 = 9) 
then 

However, this statement contains six comparisons at most, 
whereas the statement in line 7 contains four comparisons at 
most, but the running time for two versions is almost similar. 

2) We can use a modulus of 15, 20 or 30 instead of 10. To 
study the effect of changing the value of the modulus on the 
performance of the algorithm, we changed the modulus of 10 
to a modulus of 20 and named this method FM20. Using this 
approach, the accepted cases to ignore the test for the perfect 
square occur when the remainder of (r=y mod 20) are 0, 1, 4, 
5, 9, or 16. The steps of the FM20 algorithm are similar to 
those of FM10, except that line 7 is replaced with: 

If Not (𝑟 = 0 or 𝑟 = 1 or 𝑟 = 4 or 𝑟 = 5 or  𝑟 = 9 or 𝑟 = 16) 
then 

We studied the effect of this change experimentally, see 
Section IV. 

b) Sieving with odd & even: In the FF algorithm, the 
values of x are �√𝑛� + 1, �√𝑛� + 2, �√𝑛� + 3, �√𝑛� + 4,…. 
This means that the values of x are odd and even numbers. 
Another sieving technique that can be applied in integer 
factorization algorithms is based on ignoring all the even (or 
all the odd) numbers of x if the integer n satisfies a certain 
condition. The idea behind using the even and odd property is 
based on the following rules [19, 29]: 

1) Any odd integer n can be expressed as 𝑛 = 4 𝑘 ±
1,𝑛 ≥ 3. 

2) For 𝑛 = 4 𝑘 ± 1 , we have two cases: (i) when 𝑛 =
4 𝑘 + 1, then x is odd and y is even, and (ii) when 𝑛 = 4 𝑘 −
1, then x is even and y is odd. 

The algorithm consists of four main steps. The first step 
determines the form of n as either 4 𝑘 + 1  or 4 𝑘 − 1 . The 
second step determines the type (even or odd) of x and y. The 
third step determines the start value of x in the case of whether 
x is odd or even. The fourth step applies the steps of FF 
algorithm with updating the value of x with 2. 

The complete steps of the algorithm are shown in 
Algorithm FOE. To determine the formula of n, the algorithm 
computes the remainder of dividing n with 4 and then tests if 
the remainder is equal to 1 or not, see lines 2–3. If the 
remainder is equal to 1, this means that 𝑛 = 4 𝑘 + 1 , 
otherwise, 𝑛 = 4 𝑘 − 1. Lines 4–5 and 8–9 determine the type, 
odd or even, and the start value of the integer x. The remainder 
of the algorithm is similar to the FF algorithm except when the 
value of 𝑥2 − 𝑛 is not a perfect square, the algorithm updates 
the value of x by 2 instead of 1 because when x is even (or 
odd), the next even (or odd) number of x can be found by 
adding 2 to x. Hence, the number of iterations of the FOE 
algorithm is half that of the FF algorithm because the FOE 
algorithm updates the value of x by 2, whereas the FF 
algorithm updates the value of x by 1. 

Algorithm FOE (Fermat Sieving using Odd & Even) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime numbers such that  𝑛 = 𝑝 𝑞. 
Begin 
  1. 𝑥 = �√𝑛� + 1 
  2. 𝑟 = 𝑛 mod 4 
  3. If  (𝑟 = 1) then 
  4. If (𝑥 is even) then 
  5. 𝑥 = 𝑥 + 1 
  6. End if 
  7. Else 
  8. If (𝑥 is odd) then  
  9. 𝑥 = 𝑥 + 1 
10. End if 
11. End if  
12. 𝑦 = 𝑥2 − 𝑛 
13. While (𝑦 is not a perfect square) do 
14.  𝑥 = 𝑥 + 2 
15.  𝑦 = 𝑥2 − 𝑛 
16. End while 
17. 𝑝 =  𝑥 + �𝑦 
18. 𝑞 =  𝑥 − �𝑦 
End. 

3) Class 2: Ignoring the Squaring: Another important 
improvement that has been made to Fermat’s algorithm is the 
ignoring of some elements in the search space before squaring 
the value of x. Two algorithms have been proposed to achieve 
this goal. The two algorithms are based on analyzing the 
relation between the value of (𝑥 mod 10) and the value of (𝑛 
mod m), where m may be 10, 15, 20, or 30. 

For any integer x, the value of (𝑥 mod m) is either 0, 1, 2, 
…, m-2, or m-1. When n is odd and not divisible by 5 and m = 
10, the value of (𝑛 mod 10) is 1, 3, 7, or 9, and when m = 20, 
the value of (𝑛 mod 20) is 1, 3, 7, 9, 11, 13, 15, 17, or 19. We 
ignored the value 5, because if (𝑛 mod 20)=5, then 5 is a factor 
of n. 

TABLE II.  DIFFERENT CASES FOR (X MOD 10) AND (N MOD 10) 

𝒙 mod 10 
Results of (𝒙𝟐 − 𝒏) mod 10  when 𝒏 mod 10 equal 

1 3 7 9 

0 9 7 3 1 

1 0 8 4 2 

2 3 1 7 5 

3 8 6 2 0 

4 5 3 9 7 

5 4 2 8 6 

6 5 3 9 7 

7 8 6 2 0 

8 3 1 7 5 

9 0 8 4 2 
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Based on the two values, (x mod 10) and (n mod m), we 
can determine when there is no need to compute 𝑥2. Table II 
displays the different cases for the relation between (𝑥 mod 10) 
and (𝑛  mod 10), see the gray-colored cells. Therefore, the 
accepted cases to apply the idea of ignoring the squaring 
operation are as follows [25]: (1) 𝑛  mod 10=1 and 𝑥  mod 
10=2, 3,7 or 8. (2) 𝑛 mod 10=3 and 𝑥 mod 10=0, 1, 4, 5, 6 or 9. 
(3) 𝑛 mod 10=7 and 𝑥 mod 10=0, 2, 3, 5, 7 or 8. (4) 𝑛 mod 
10=9 and 𝑥 mod 10=1, 4, 6 or 9. 

The complete steps of this technique are shown in 
Algorithm FM1010 [24]. Initially, we determine the initial 
value of x and (𝑛 mod 10). Then the algorithm choose one of 
the four cases, as described previously. The number of 
iterations of the FM1010 algorithm is similar to that of the FF 
algorithm, but some of these iterations ignore the squaring and 
perfect squaring operations. 

Algorithm FM1010 (Fermat Sieving by two Modulus 10) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two primes such that  𝑛 = 𝑝 𝑞. 
Begin 
1. 𝑥 = �√𝑛� 
2. found=false 
3.  𝑥 = 𝑥 + 1 
4. 𝑟1 =  𝑛 mod 10 
5. While (Not found) do 
6.  𝑟2 = 𝑥 mod 10 
7.  If  (𝑟1 = 1) then  
8.  If Not (𝑟2 = 2 or  3 or 7 or 8) then  
9.  𝑦 = 𝑥2 − 𝑛 

10.  If (𝑦 is a perfect square) then 
11.  found=True 
12.  Else  
13.   𝑥 = 𝑥 + 1 
14.  End if 
15.  Else  
16.   𝑥 = 𝑥 + 1 
17.  End if 
18.  Else  
19.  If  (𝑟1 = 3) then  
20.  If Not (𝑟2 = 0 or  1 or  4 or 5 or 6 or 9) then  
21.  Similar to lines 9-17 
22.  Else  
23.  If  (𝑟1 = 7) then  
24.  If Not (𝑟2 = 0 or  2 or  3 or 5 or 7 or 8) then  
25.  Similar to lines 9-17 
26.  Else  
27.  If  (𝑟1 = 9) then  
28.  If Not (𝑟2 = 1 or  4 or  6 or 9) then  
29.  Similar to lines 9-17 

30. End if   
31. End while 
32. 𝑝 =  𝑥 + �𝑦 
33. 𝑞 =  𝑥 − �𝑦 
End. 

Similarly, we construct the accepted cases for applying the 
idea of sieving for the relation between (𝑥 mod 10) and (𝑛 mod 
20) as follows [25]: (1) 𝑛 mod 20=1 and 𝑥 mod 10=1, 5 or 9. 
(2) 𝑛 mod 20=3 and 𝑥 mod 10=2 or 8. (3) 𝑛 mod 20=7 and 𝑥 
mod 10=4 or 6. (4) 𝑛 mod 20=9 and 𝑥 mod 10=3, 5 or 7. (5) 𝑛 
mod 20=11 and 𝑥 mod 10=0, 4 or 6. (6) 𝑛 mod 20=13 and 𝑥 
mod 10=3 or 7. (7) 𝑛 mod 20=17 and 𝑥 mod 10=1 or 9. (8) 𝑛 
mod 20=19 and 𝑥 mod 10=0, 2 or 8. 

Using these cases, we constructed another sieving method 
named FM1020 algorithm. The pseudocode of the FM1020 
algorithm is similar to that of FM1010, except that the While-
loop contains eight If-statement, where each If-statement 
represents a case from the eight cases of the relation between 
(𝑥 mod 10) and (𝑛 mod 20) [25]. 

Remark: Another modified algorithm was proposed by 
Somsuk, and Tientanopajai [27] and based on analyzing the 
last m digits of the modulus, where 𝑚 ≥ 2 .  The main 
drawback of the modified algorithm is the number of different 
subroutines used is very large when m is large. 

C. The Fermat without Perfect Squaring Group 
The algorithms in this group do not use the perfect squaring 

operation during the search for the two prime factors. Two 
main techniques have been proposed for use in integer 
factorization algorithms that do not employ perfect squaring. 

The first algorithm is based on finding two integers x and y 
such that the difference between two square numbers is 4𝑛, 
i.e., 4𝑛 = 𝑥2 − 𝑦2. This formula can be rewritten as follows 
[27, 28]: 

𝑟 = 𝑥2 − (𝑦2 + 4𝑛) 

The algorithm starts the search with 𝑥 = 2�√𝑛� and 𝑦 = 0, 
and then computes the value of r. Based on the value of r, the 
algorithm executes one of the following cases [27, 28]: 

1) Case 1: 𝑟 = 0 . This means that 4n is equal to the 
difference between two squares and the search process is 
terminated. Therefore, the two prime factors are 𝑝 =
(𝑥 + 𝑦)/2 and 𝑞 =  (𝑥 − 𝑦)/2. 

2) Case 2: 𝑟 < 0. This means that the value of the term 𝑥2 
is less than the term (𝑦2 + 4𝑛) . Therefore, the algorithm 
increases the value of x by 2 because the value of the term 
(𝑝 + 𝑞) is an even number. Also, the algorithm increases the 
value of r by (4𝑥 + 4)  because this value represents the 
difference between the squares of the next and the current 
value of x. 

3) Case 3: 𝑟 > 0. This means that the value of the term 𝑥2 
is greater than the term (𝑦2 + 4) . Therefore, the algorithm 
increases the value of y by 2 because the value of the term 
(𝑝 − 𝑞) is an even number. Also, the algorithm decreases the 
value of r by (4𝑦 + 4)  because this value represents the 
difference between the squares of the next and current value of 
y. 

The complete steps of the algorithm are shown in 
Algorithm FnPS. All the operations of the algorithm are simple 
and the running time of the algorithm is based only on the 
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number of iterations of While-loop that is dependent on two 
conditions: 𝑟 < 0 and 𝑟 > 0. The number of iterations for the 
first inner while-loop that is based on the condition (𝑟 < 0) is 
𝑝+𝑞
2
− ��√𝑛� + 1� , while the number of iterations for the 

second inner while-loop that is based on the condition (𝑟 > 0) 
is 𝑝−𝑞

2
 , because the start value of y is 0. Therefore, the total 

number of iterations of the FnPS algorithm is 𝑝 − ��√𝑛� + 1�. 

Algorithm FnPS (Fermat with no Perfect Squares) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime numbers such that  𝑛 = 𝑝 𝑞. 
Begin 

1. 𝑥 = 2�√𝑛� 
2. 𝑦 = 0 
3. While (𝑟 ≠ 0) do 
4.  While (𝑟 < 0) do 
5.  𝑟 = 𝑟 + (4𝑥 + 4) 
6.  𝑥 = 𝑥 + 2 
7.  End while 
8.  While (𝑟 > 0) do 
9.  𝑟 = 𝑟 − (4𝑦 + 4) 

10.  𝑦 = 𝑦 + 2 
11.  End while 
12. End while 
13. 𝑝 = (𝑥 + 𝑦)/2 
14. 𝑞 =  (𝑥 − 𝑦)/2 
End. 

The second algorithm in this group is based on removing 
the perfect squaring operation by using modular multiplication. 
The method of modification is based on Euler’s theorem which 
is given by the following formula [20]: 

𝑎Φ(𝑛) ≡ 1 mod 𝑛 

where n is a positive integer number, a is an integer such 
that a is relatively prime with n, and Φ(𝑛) is the Euler’s totient 
function that is equal to (𝑝 − 1) × (𝑞 − 1) = 𝑛 − (𝑝 + 𝑞) +
1. 

The complete steps of the algorithm are shown in 
Algorithm FE [20]. The algorithm starts the computation by 
initializing 𝑥 = 2�√𝑛� and selecting a positive integer c which 
is relatively prime with n. Based on the value of c, the 
algorithm computes the inverse, a, and the square, s, of c in 
modulo n. Then the algorithm applies Euler’s theorem, where 
the value of Φ(𝑛) = 𝑛 − 𝑥 + 1. If the result, t, equals 1 then 
the values of x and y are determined and the solution is found. 
Otherwise, the algorithm sets a flag with false. In which case 
the algorithm repeats the following steps until Euler’s theorem 
is verified, i.e., when t = 1. The first step in the repetition is to 
compute a new value t by multiplying it with s and taking a 
module if it is required. The second step is to update the value 
of x by increasing it by a value of 2. Finally, the value of the 
two prime factors are 𝑥 + 𝑦 and 𝑥 − 𝑦. The total number of 
iterations of this algorithm is similar to that of the FF 
algorithm, but the perfect squaring operation and only one 
square root operation is required. 

Algorithm FE (Fermat-Euler) 
Input: n is a positive odd number.  
Output: 𝑝 and  𝑞 are two prime such that  𝑛 = 𝑝 𝑞. 
Begin 

1. 𝑥 = 2�√𝑛� 
2. Choose a positive integer 𝑐 s.t. gcd(𝑐,𝑛) = 1, say c=2 
3. 𝑎 = 𝑐−1 mod 𝑛 
4. 𝑠 = 𝑐2 mod 𝑛 
5. 𝑡 = 𝑎𝑛−𝑥+1 mod 𝑛 
6. If   (𝑡 ==1) then 
7.  𝑥 = 𝑥/2 
8.  𝑦 = �𝑥2 − 𝑛 
9.  found=True 

10. Else 
11.  found=False 
12. End if 
13. While (found == False) do 
14.  𝑡 = 𝑡 𝑠 
15.  If (𝑡 > 𝑛) then 
16.  𝑡 = 𝑡 mod 𝑛 
17.  End if 
18.  𝑥 = 𝑥 + 2 
19.  If (𝑡 == 1) then 
20.  𝑥 = 𝑥/2 
21.  𝑦 = �𝑥2 − 𝑛 
22.  found=True 
23.  End if 
24. End while 
25. 𝑝 = 𝑥 + 𝑦 
26. 𝑞 =  𝑥 − 𝑦 
End. 

Remarks: 

1) The original statements of Algorithm FnPS in lines 4 
and 8 are if (𝑟 < 0) and if (𝑟 > 0), respectively, see [27]. To 
optimize the original algorithm, we replaced the two If-
statements with two While-loops as in Algorithm FnPS. The 
performance of Algorithm FnPS with two inner While-loops is 
better than that with two If-statements, see Section IV. 

2) Algorithm EF is slightly different than the algorithm in 
[20]. In [20], the Boolean condition found was not used. 
Instead, the statement at line 11 is y = 0.1, i.e., any initial 
value of y is considered to be a float number, and the 
statement at line 13 is “y is not an integer”. The performance 
achieved by this modification is slightly better than that of the 
FE algorithm, but not significantly so. 

IV. EXPERIMENTAL EVALUATIONS 
In this section, we discuss our experimental study of the 

nine different integer factorization algorithms that utilize 
Fermat’s strategy. The study was conducted according to the 
methodology described in Section II and involved the 
evaluation of the performance of these algorithms over 
different numbers of bits and different differences between the 
two factors. The first subsection presents the specification of 
the hardware and software used in the implementation, and the 
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different values of the factors b and ∆ that have an effect on the 
input data. The second subsection presents the results of 
applying the ideas mentioned in the remarks in Section III. The 
third subsection presents the measurement and analysis of the 
running times of the different integer factorization algorithms. 

A. Experimental Specification 
The experimental study of different factorization 

algorithms required the use of a high configuration of 
hardware. For this purpose, we used a Microsoft Azure cloud 
system. The system is able to run 32 threads in parallel with a 
processing speed of 2.6 GHz. The reasons for selecting this 
hardware platform are as follows: (1) The execution times of 
the factorization algorithms increase rapidly with increases in b 
and ∆; (2) a large number of instances are used to measure the 
running time for each algorithm for fixed values of b and ∆; 
and (3) experimentally, each algorithm is run sequentially, but 
we use different threads to execute different instances. 
However, in order to unload the system we used only a 
maximum of 16 threads. 

As regards the implementation, we ran all the algorithms 
under Windows 2019 and used Microsoft Visual Studio 2019 
to implement the algorithms using C++ language. 

The specification of the data used in the evaluation of the 
different factorizing algorithms was as follows: 

1) The values of b were 100, 200, 300, 400, and 500. 
2) The value of ∆ started with (b/4) and then we increased 

it incrementally by 5 bits until (b/4)+20. The reason that 
∆= (𝑏/4) + 20 was set as the last value is that the running 
time for all the algorithms is very high and the time increases 
with an increase in b. 

3) The value of t, i.e., the number of instances for the 
fixed values of b and ∆,  was set as 100, except when ∆=
(𝑏/4) + 20 where we considered t = 25, because the running 
time for each instance is greater than 1.5 hours for the best 
algorithm. 

B. Experimental Comments 
In this subsection, we illustrate the results that were 

achieved by applying the ideas mentioned in some of the 
remarks in Section III to optimize some of the statements in the 
previous algorithms. 

However, first, the results in respect of the two versions of 
the FnPS algorithm, the If-statement and the While-loop, are 
presented and discussed. Table III shows the results of running 
two versions of the FnPS algorithm, on b = 100 and ∆ =25, 30, 
35, and 40. It is clear that the results indicate that the 
performance of the FnPS algorithm when using the While-loop 

is better than that when using the If-statement for all values of 
∆ . On average, the percentage of improvement in the 
performance of the FnPS algorithm with While-loop was 
16.5% compared to its performance with the If-statement. 

However, in general, the performance of the FnPS 
algorithm, even with While-loop, is very weak compared to 
that of the FF algorithm for two reasons. The first reason, from 
the theoretical point of view, is that the search space of the 
FnPS algorithm is very large compared to the search space of 
the FF algorithm. The second reason, from the practical 
perspective, is that the running time of the FF algorithm on 
∆= 25  and 30 is zero (see subsection IV.C), whereas the 
running time of the FnPS with the best case is 0.5 seconds. 
Additionally, the running time of the FF algorithm on ∆= ∆0 +
15 = 40 is less than 1 minute, whereas the running time of the 
FnPS algorithm is greater than 5 hours. Finally, the results for 
the FnPS algorithm showed that increases in the value of b led 
to an increase in the search space, so we excluded this 
algorithm from the full comparison of all the integer 
factorization algorithms. 

TABLE III.  PERFORMANCE OF TWO VERSIONS OF FNPS WITH N = 100 

Methods 
∆ 

25 30 35 40 

FnPS with If-statement 0.6342 s 20.99 s 11.56 m 6.21 h 

FnPS with While-loop 0.5146 s 17.57 s 9.73 m 5.25 h 

Improvement % 18.86% 16.29% 15.83% 15.46% 

Second, the results in respect of the FF1 algorithm are as 
follows. First, the results of running FF1 algorithm, on b = 100 
and ∆ =25 and 30, 35 are 0.001 and 0.002 seconds, 
respectively. Second, the results of running FF1 algorithm, on 
b = 100 and ∆ =35 is greater than one hour in many cases 
without find the solution. As we see in the Subsection C, the 
running time for FF algorithm is faster than FF1 algorithm 
when 𝑏 ≥ 100, so we excluded this algorithm from the full 
comparison of all the integer factorization algorithms. 

C. Results of the Comparison 
Based on the results reported in Subsection IV.B, we 

compared seven of the nine algorithms, i.e., FF, FM10, FM20, 
FM1010, FM1020, FOE, and FE. The other two algorithms, 
FF1 and FnPS, were excluded from the final comparison 
because their performance was very poor. 

The results of implementing the seven integer factorization 
algorithms using the data sets and platform described above are 
shown in Fig. 1, 2, 3, 4, and 5 for n = 100, 200, 300, 400, and 
500, respectively. From the results shown in the figures, we 
can make several observations. 
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Fig. 1. Running Time for Fermat Algorithms when n=100. 

  
Fig. 2. Running Time for Fermat Algorithms when n=200. 

  
Fig. 3. Running Time for Fermat Algorithms when n=300. 

  
Fig. 4. Running Time for Fermat Algorithms when n=400. 
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Fig. 5. Running Time for Fermat Algorithms when n=500. 

First, the running time of all the algorithms is 0 seconds for 
all values of b and when ∆ = 𝑏/4, and (𝑏/4) + 5, except for 
the FE algorithm which has a very short runtime of 0.001 
seconds when b = 400 and 500. For this reason, there are no 
data in the figures for ∆ = 𝑏/4, and (𝑏/4) + 5. This means 
that the running time for all seven of the Fermat-based 
algorithms is instantaneous in the case of ∆= 𝑏/4 , and 
(𝑏/4) + 5. 

Second, for a fixed value of b with increasing values of ∆, 
the running time for all seven algorithms rapidly increases. We 
can estimate this factor by calculating the percentage of the 
increase in the running time between two consecutive ∆, ∆1 
and ∆2, and a fixed value of b, where ∆2= ∆1 + 5. By way of 
an example, Table IV shows this ratio for the FE algorithm 
when b = 300. The running times for the FE algorithm when b 
= 300 and ∆  =85, 90, and 95 are 0.0161 seconds, 16.18 
seconds, and 4.62 hours, respectively. The percentage increase 
in the running time when ∆2=90 is approximately equal to 
1000 times the running time when ∆1 = 85, and the percentage 
of increase in the running time when ∆2 = 95 is approximately 
equal to 1000 times the running time when ∆1  = 90. This 
phenomenon is true for all values of b and for all seven of the 
integer factorization algorithms studied. 

Third, the difference between the FM10 and FM20 
algorithms is not significant and the two algorithms are near to 
equal for all values of b and ∆ . On the other hand, the 
difference between the FM1010 and FM1020 algorithms is 
significant in respect of the average case. The FM1020 
algorithm has better performance than the FM1010 algorithm 
by a percentage of 15.17%, 17.31%, 22.33%, 21.10%, and 
22.17% for n = 100, 200, 300, 400, and 500, respectively. This 
means that the average percentage of improvement achieved by 
FM1020 is 19.62% when compared to FM1010. 

Fourth, the performance of the FM10 and FM20 algorithms 
is weak compared to the other five algorithms for every b and 
∆. The original Fermat algorithm, FF, has better performance 
than the FM10 and FM20 algorithms by almost 36% in respect 
of the average case. 

Fifth, Table V shows the percentage of improvement 
achieved by each algorithm A compared to the FF algorithm 
for all values of b, where algorithm A is one of the following 
algorithms: FM10, FM20, FM1010, FM1020, FOE, and FE. 
Two types of value are presented in the table. The first value is 
a positive value, say ∝, which means that algorithm A has ∝ 

improvement compared to the FF algorithm, and the second 
value is a negative value, say -∝, which means that the FF 
algorithm has ∝ improvement compared to algorithm A. 

Sixth, from Table V, it is clear that the percentage of dis-
improvement of algorithm A decreases with an increase in the 
number of bits. For example, the FM1010 algorithm has a dis-
improvement of 32.06%, 20.61%, 15.21%, and 1.04% for n = 
100, 200, 300, and 400, respectively. Also, the percentage of 
improvement of algorithm A increases with an increase in the 
number of bits, except for the FOE algorithm. For example, the 
percentage of improvement achieved by the FE algorithm 
when compared to the FF algorithm is 4.89%, 11.83%, 
31.78%, and 35.97% for n = 200, 300, 400, and 500, 
respectively. 

Seventh, the FOE algorithm has two properties compared 
to the FF algorithm. The first is that the FOE algorithm has 
better performance compared to the FF algorithm for all values 
of b. The second is the percentage of improvement of the FOE 
algorithm compared to the FF algorithm is almost fixed and 
equal to 44% for all values of b. The reason for this property is 
that the number of iterations of the FOE algorithm is half that 
of the FF algorithm. 

TABLE IV.  RATIO OF RUNNING TIME BETWEEN TWO CONSECUTIVE ∆ 
WHEN B = 300 FOR EACH ALGORITHM 

∆𝟐/∆𝟏 
Fermat Algorithms 

FF FM10 FM20 FM1010 FM1020 FOE FE 

90/85 1027 1029 1034 964 979 1016 1002 

95/90 1009 1072 1068 1019 1001 1004 1031 

TABLE V.  PERCENTAGE OF IMPROVEMENT ACHIEVED BY EACH 
ALGORITHM COMPARED TO FF ALGORITHM 

b 
Fermat Factorization Algorithms 

FM10 FM20 FM1010 FM1020 FOE FE 

100 - 44.12 - 44.80 - 32.06 - 19.91 43.99 - 18.70 

200 - 39.12 - 39.42 - 20.61 - 3.99 44.38 4.89 

300 - 38.06 - 38.13 - 15.21 8.40 44.27 11.83 

400 - 30.42 - 30.92 - 1.04 20.27 44.24 31.78 

500 - 29.27 - 29.61 5.87 26.73 44.38 35.97 
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Eighth, Fig. 6 displays the behavior of all the algorithms for 
the average case for all different values of b. The same 
behavior occurs if we fix the value of ∆ and change the value 
of b. It is clear that the best integer factorization algorithm 
based on Fermat’s strategy for all data sets is the algorithm that 
is based on sieving odd and even numbers, i.e., the FOE 
algorithm. The second and third best algorithms are FE and 
FM1020, respectively. Note that the two curves for the FM10 
and FM20 algorithms coincide. 

Ninth, Fig. 7 displays the running times for t = 100 
instances for each algorithm A when b = 500 and ∆ = 140, 
where algorithm A is one of the following algorithms: 
FM1010, FM1020, FOE, and FE. From the figure, we can 
observe the following: (1) The running time of each algorithm 
A is varied and based on the value of n, except for the FE 
algorithm whose behavior is almost fixed; and (2) the running 
time of the FM1010 algorithm is slightly faster than that of the 
FF algorithm on average, as in Fig. 5(b), but in many instances 
the running time of the FM1010 algorithm is longer than the 
FF algorithm. 

 
Fig. 6. Average Running Time of Fermat algorithms over Different n. 

 
Fig. 7. Behavior of FF, FM1010, FM1020, FOE and FE algorithms when b 

= 500 and  ∆= 140. 

V. CONCLUSION AND OPEN PROBLEMS 
In this work, we addressed the integer factorization 

problem that involves finding the two prime factors for an odd 
composite number. The inherent challenge of this problem is 
that no polynomial time has yet been found. The problem is 
used in cryptography to break the RSA cryptosystem. We 
classified the different Fermat factorization algorithms into 
three groups according to the integer factorization methods that 
were used. The algorithms were studied experimentally to 
measure their performance according to two factors: (1) the 
size of the odd composite factor, b bits, and (2) the difference 
between two factors, ∆  bits. The experimental study was 
conducted on data sets consisting of b =100, 200, 300, 400, and 
500, and ∆ = 𝑏/4, (𝑏/4) + 5, (𝑏/4) + 10, (𝑏/4) + 15, and 
(𝑏/4) + 20. The results of the experimental study showed that 
the algorithm based on sieving using the odd and even property 
performed the fastest factorization when applied to data sets of 
different sizes of odd composite numbers and different 
differences between the two factors with a percentage 
improvement of 44% compared to the original Fermat 
factorization algorithm. Also, the algorithm based on Euler’s 
theorem exhibited a good level of performance compared with 
the Fermat factorization algorithm. 

There are open questions remain related to this study. 
(1) What is the behavior of FM1020, FOE and FE algorithms 
when 𝑏 > 500  bits? (2) How to use high-performance 
computing such as graphics processing unit (GPU) to speedup 
the running time for the best modified Fermat algorithm. 
(3) What is the effect of using n mod m on FM1020 algorithm, 
when m>20. 
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