
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

476 | P a g e

www.ijacsa.thesai.org

An Evolutionary Algorithm for Short Addition Chains

Hazem M. Bahig
1
*, Khaled A. Alutaibi

2
, Mohammed A. Mahdi

3
, Amer AlGhadhban

4
, Hatem M. Bahig

5

Computer Science and Information Department, College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA
1,3

Computer Engineering Department, College of Computer Science and Engineering, University of Ha’il, Ha’il, KSA
2

Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il, KSA
4

Computer Science Division, Mathematics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
1, 5

Abstract—The encryption efficiency of the Rivest-Shamir-

Adleman cryptosystem is based on decreasing the number of

multiplications in the modular exponentiation (ME) operation.

An addition chain (AC) is one of the strategies used to reduce the

time consumed by ME through generating a shortest/short chain.

Due to the non-polynomial time required for generating a

shortest AC, several algorithms have been proposed to find a

short AC in a faster time. In this paper, we use the evolutionary

algorithm (EA) to find a short AC for a natural number. We

discuss and present the role of every component of the EA,

including the population, mutation operator, and survivor

selection. Then we study, practically, the effectiveness of the

proposed method in terms of the length of chain it generates by

comparing it with three kinds of algorithms: (1) exact, (2) non-

exact deterministic, and (3) non-exact non-deterministic. The

experiment is conducted on all natural numbers that have 10, 11,

12, 13, and 14 bits. The results demonstrate that the proposed

algorithm has good performance compared to the other three

types of algorithms.

Keywords—Addition chain; short chain; evolutionary

algorithm; modular exponentiation; RSA

I. INTRODUCTION

The purpose of cryptography is to secure communications
over an open channel. To achieve this, two procedures are
used, encryption and decryption. In simple terms, encryption is
a process of transforming a given data, called plaintext, to
unmeaningful data, called ciphertext, which can be reinstated
to original form through the process of decryption.

One of the modern and strong encryption techniques used
to encrypt data is the Rivest-Shamir-Adleman (RSA)
cryptosystem. Encryption in RSA is based on generating a
secret message c from the original message m using the
modular exponentiation (ME) formula.

where the pair (e,N) is the public key and N is a composite
odd number and equal to the product of two prime numbers.
Similarly, for decryption, one needs to compute.

where d is the private key.

The main challenge associated with the encryption and
decryption techniques in RSA is that the time consumed, in
particular for decryption, is quite large because its performance
is based on the ME mathematical operation that requires high
computation resource. The time consumed in ME is due to the

computation of a sequence (thousands, 1024-4096) of
multiplications and squares for large-size numbers. Therefore,
several techniques have been proposed to speed up the
computation of multiplication and ME using sequential and
parallel computation, for examples [6, 8, 19, 20, 35].

One of the strategies that can be used to decrease the
number of multiplications in ME involves the use of an
addition chain (AC) [27, 30]. An AC [22] for a number e is a
finite increasing sequence of non-repeated natural numbers
such that the start element of the sequence is 1 and any next
element in the sequence is the sum of any two previous
elements that are not necessarily distinct. The final element in
the sequence is e. There are different types of chain besides the
ACs, such as addition-subtraction chains [21,28], addition-
multiplication chains [2, 9], Lucas chains and q-chains [22, 25]
and addition sequence [7,17].

For a natural number e, there are many ACs of different
lengths. A chain with minimal length is called a shortest AC,
otherwise it is called a short AC. Therefore, if we can construct
a shortest AC for as , then
can be computed in a minimal number of multiplications as ,
 , ,…, , .

For example, for the natural number , we can
construct different chains for e with different lengths as (1)
 () of length 10, (2)
() of length 8, and (3)
() of length 7. Therefore, the minimum
number of multiplications to compute is 7 and can be
computed as , , ,
 , , , ,
 , .

A large number of algorithms have been designed to find a
solution to the AC problem. The goal of these algorithms is
either to (1) find a shortest AC or (2) find a short AC. In
respect of the first goal, the branch and bound method is one of
the efficient strategies that has been used to find a shortest AC
(see for examples, [1,3,12,34]). Another improvement strategy
that has been suggested to find a shortest AC is to use high-
performance computing to speed up the computation required
to find the exact solution. The authors in [5] and [10] used a
graphics processing unit and multicore system, respectively, to
find a solution for the AC more quickly as compared to using
sequential algorithms. However, while these solutions produce
a chain that is shortest and therefore the solution is optimal, the
running time of these algorithms is in non-polynomial time.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

477 | P a g e

www.ijacsa.thesai.org

On the other hand, many non-exact algorithms [4,13-
16,18,23,24,26-33,36] have been proposed to find a short AC.
In these algorithms, the length of the generated AC is not
necessarily minimal and the algorithms run in polynomial time.
Many different strategies have been proposed to find a solution
to produce a short AC. We can classify these algorithms into
two classes based on their behavior into deterministic
algorithms and non-deterministic algorithms. The non-
deterministic algorithm may generate different lengths in
different runs for the same input e, while the deterministic
algorithm produces the same length of AC even with different
runs.

Examples of deterministic algorithms [4,11,18,20,22,30]
for a short AC include the binary method, window method,
factor method, and continued fraction method. The difference
between these methods lies in the strategy used to find the
solution, the length of the generated short AC, and the running
time. In general, the running time of these algorithms is very
fast when compared to that of exact algorithms. Also, the
window and continued fraction methods give a better output
than other methods.

Examples of non-deterministic algorithms [13-16,23,26-
29,31-33] for a short AC include the genetic algorithm (GA),
evolutionary algorithm (EA), ant colony algorithm, swarm
intelligence algorithms, and artificial immune algorithm. All
these algorithms are based on many factors such as the size of
the population, the maximum number of iterations, and the
strategies of different operators such as crossover and/or
mutation. In general, non-deterministic algorithms can produce
a short AC with a length that is better than that generated by
the deterministic algorithms, see [26, 32].

From a review of the previous works related to the
generation of a short AC, we can make several of observations.
First, experimental studies have been conducted on (1) certain
numbers only or (2) a small set of numbers within a data range
such as 30 random numbers in the range [1,2048]. Second, in
some research works, the value of some parameters, such as
the total number of generations, is large. This leads to an
increase in the running time of artificial intelligence (AI)
algorithms. Third, in some previous algorithms, the number of
independent runs for each natural number is 30 or 50, which is
a large number and leads to increase running time.

In this paper, we are interested in using the EA to find an
approximate solution for the AC problem. The proposed
algorithm is based on modifying one of the EAs [16] for a
short AC in relation to three aspects (1) the process of
generating the elements of chain, (2) mutation operator, and (3)
survivor selection. The developed algorithm exhibits good
performance in terms of the generated length of the AC as
compared to previous methods. To prove the effectiveness of
the developed algorithm, we conducted an experimental study
on all integers with 10, 11, 12, 13, and 14 bits. We used two
types of algorithms for the comparison: (1) an exact algorithm
that gives a minimal length AC; and (2) non-exact algorithms
(deterministic and non-deterministic) that give a short chain.

The rest of the paper consists of five sections. In Section II,
we describe the background to the AC problem and the EA.
Next, in Section III, we briefly review the related works on the

AC problem that use AI strategies to find a short chain. Then,
in Section IV, we present the proposed algorithm and the
details of the EA for a short AC. This is followed by Section V,
in which we provide the results of our measurements to
determine the effectiveness of the proposed algorithm on
different ranges of bits for the exponent e, as well as the results
of a comparison with the outputs of exact and approximate
solutions in the literature. Finally, in Section VI, we conclude
the work and highlight our future works.

II. BACKGROUND

In this section, first, we provide a brief background on the
definition of the AC problem, the types of chain and their
elements [22]. Then, we give an overview of the EA and its
components.

A. The Addition Chain Concept

An AC for a natural number e is a sequence of natural
numbers , , ,…, such that.

 ,

 + , 0 , and

 .

The length of the AC for e is the number of steps needed to
compute e, which is equal to the number of elements in the
chain minus one, m. The second rule for generating a chain for
e leads to the possibility of constructing a large number of
different chains for e. This means that the lengths of the
different chains for the same e may be different in general.
Therefore, there are two types of chain based on the length of
the chain as follows:

 If the length, m, of an AC for e is minimal, the length of
the chain is denoted as () and the chain is termed a
shortest AC.

 If the length, m, of the AC for e is greater than (), the
chain is termed a short AC.

For the natural number e, we define two functions as
follows:

 () is the length of the binary representation for e
minus one and equal to ⌊ ⌋.

 v(e) is the number of 1’s in the binary representation of
e.

There are different types of steps involved in the generation
of an AC. The important steps are defined as follows:

 The ith step in an AC is termed star, if + ,
0 .

 The ith step in an AC is termed doubling, if
 + .

 The ith step in an AC is termed plus-one, if
 + .

B. The Evolutionary Algorithm

An EA is a generic population-based metaheuristic
optimization algorithm. An EA uses mechanisms inspired by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

478 | P a g e

www.ijacsa.thesai.org

biological evolution, such as reproduction, mutation,
recombination, and selection.

Given a quality function to be maximized/minimized, a set
of candidate solutions or population, called parents (i.e.,
elements of the function’s domain), can be randomly
generated. Then, a quality function can be applied to these
candidates to evaluate their fitness values, where the higher the
fitness the better. Based on these fitness values, the best
candidates are chosen to seed the next generation. This is done
using two main strategies:

 A variation operator that generates the necessary variety
within the population to be used in the next generation.
Examples of variation operators are recombination and
mutation.

 Selection that acts as a force that increases the mean
quality of the solutions in the population.

Recombination is an operator that is applied to two or more
selected candidates to produce one or more new candidates
(children). One the other hand, the mutation operator uses one
candidate, which results in one new candidate. Hence, these
operations on candidates to create a set of new candidates
(offspring). The candidates’ fitness levels are evaluated before
they compete – based on their fitness (and sometimes age) –
with the old leads for a place in the next generation. This
process is repeated until either a candidate with sufficient
quality is found or a previously set computational limit is
reached. Note that a combination of variation and selection
leads to improved fitness values of consecutive populations.

III. RELATED WORKS

In this section, we briefly review different AI techniques
that have been proposed to find a short AC.

A number of researchers have presented solutions to the
AC problem based on the GA. Nedjah and Mourelle [27,28]
used binary encoding to represent the solution, where 1
indicates that the number is present in the AC and 0 otherwise.
They used four standard crossover operations: single-point,
double-point, uniform, and arithmetic. Mutation is done by
randomly changing some genes from 0 to 1 and vice-versa. The
fitness function is based on the validity of the AC and its
length. Cruz-Cortés et al. [13] adopted an integer encoding
approach using variable-length chromosomes. They use a one-
point crossover operator and the fitness function is based on the
length of the AC.

The GA proposed by Osorio-Hernández et al. [31] works
only on valid ACs (invalid chains are discarded) and represents
each number from the AC corresponding to a gene in the
chromosome. They use a repair process to generate valid
solutions in the initial population and mutation operator. Also,
they use a two-point crossover operator which applies value
and rule copying operations. The fitness function is again
based on the length of the AC.

Domínguez-Isidro et al. [16] proposed using an EA, which
is based on a mutation operator that is able to produce as set of
valid solutions to the AC problem from a single solution. In
addition, the proposed algorithm includes a replacement

technique based on stochastic elements to introduce diversity
into the population. The numbers in the AC are represented
directly in the solution and their fitness is the length of the AC.

Picek et al. [32] presented a GA with a repair strategy to
enhance the performance of AC generation. The solution is
encoded as a set of tuples of the form (vk,i,j), where vk is the
value of the kth number in the AC while i and j are the
positions of the previous numbers vi and vj, respectively, in the
AC forming vk. The algorithm implements crossover and
mutation operators similar to the ones used in the previous
literature [27,28]. However, these operators are followed by a
repair operation to guarantee the validity of the solution.

Other researchers have used optimization techniques to find
short ACs. Nedjah and Mourelle [29] proposed an ant colony
optimization (ACO) approach based on a multi-agent schema
with two types of memory: shared and local. The same authors
implemented the ACO algorithm on a system-on-chip (SoC) to
improve the computations [30].

On the other hand, Léon-Javier et al. [23] proposed
algorithm based on particle swarm optimization (PSO). Mullai
and Mani [26] used PSO and simplified swarm optimization to
generate ACs for RSA for the purpose of using ACs to
optimize computations in encryption/decryption processes to
reduce processing time and power consumption in mobile
devices. Cruz-Cortes et al. [14] introduced an artificial immune
system for finding short ACs for moderate-sized exponents
(i.e., less than 20 bits) and large exponents (i.e., up to 2048
bits).

IV. PROPOSED ALGORITHM

In this section, we describe the main steps of the proposed
algorithm that is aimed at solving the AC problem by using an
EA. The input of the algorithm is a natural number e ≥2 and
the output is a short AC , , ,…, .

In order to describe the proposed algorithm using EA, first,
we describe the main components of EA involved in solving
the AC problem, namely, representation, initial population,
fitness function, variant operators, and survivor selection.
Then, we present the steps of the proposed algorithm.

A. Representation

Since an AC for a natural number e is a sequence of natural
numbers, , , ,…, , the individual AC in the proposed
EA is an array of dynamic length. The length of each
individual is not fixed during the computation for two reasons.
The first reason is the length of each individual in the search
space may be different from the others. The second reason is
the length of an individual AC may change during the different
mutation operations.

In order to represent the population of the problem, we
assume that the number of elements in the population for the
AC problem is n. The population represents as a 2-dimensional
array, E. The first dimension represents the number of
individuals in the search space, n, while the second dimension
is the length of each individual which is variable.

For example, let us assume that e = 37 and that we have
four ACs for e, (1,2,4,8,16,32,36,37),

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

479 | P a g e

www.ijacsa.thesai.org

(1,2,3,6,9,15,17,20,29,35,37), (1,2,4,8,16,18, 36,37), and
(1,2,3,5,10,20,30,35,37). Then the four chains can be
represented as four arrays of different lengths, i.e., 8, 11, 7, and
8, respectively, as in Fig. 1.

1 1 2 4 8 16 32 36 37

2 1 2 3 6 9 15 17 20 29 35 37

3 1 2 4 8 16 18 36 37

4 1 2 3 5 10 20 30 35 37

Fig. 1. Four Chains for e=37.

B. Evaluation Function

Each individual AC needs to be evaluated using a fitness
function to decide the best set of solutions. Since the goal of
solving the AC problem is to find a sequence of natural
numbers with minimal length, the value of the fitness function
for each individual is the length of chain. Formally, if we have

a chain () , then () , because

the first element, , in the chain is not counted. Note that, in
some times, we write () for simplicity.

C. Initial Population

The first step in any EA is to generate a random initial
population that consists of n individuals, i.e., ACs. Each
individual should satisfy the following general conditions to be
a valid AC:

 The first two elements in any chain are 1 and 2.

 Any element, , in the chain can be constructed from
the addition of any two previous elements, and ,

where .

 No elements in the chain are repeated.

 The last element in the chain is e.

 The elements of the chain are in increasing order of
size.

All elements in the AC, except the first two elements, are
generated randomly. In order to generate the elements, we use
the following variables:

 , which is a real random number between 0 and 1. The
variable is generated using a user-defined function
RandomReal().

 , which is an integer random number between 0 and

an integer -1. The variable is generated using a user-

defined function RandomInt(,).

 diff, which is the difference between e and the current
element, , in the chain.

The previous proposed strategy [16] used to generate an
element in a chain is based on applying one of the following
rules based on a random number:

R1. Double the last element: .

R2. Add the last two elements:

R3. Add the last element with a random element from 0 to
i-1: , .

In our proposed algorithm, we modify this strategy by
measuring, first, the difference, diff, between the target
number, e, and the last element generated in the chain, .
Therefore, we have three cases for the value of diff as follows:

Case 1: When diff is greater than or equal to , the
algorithm executes one of the rules, R1, R2 or R3, based on the
value of a random number.

Case 2: When diff is greater than or equal to , the
algorithm executes one of the rules, R2 or R3, based on the
value of a random number.

Case 3: When diff is less than , the algorithm executes
R3 based on the value of a random number.

One of the advantages of using diff, in the first two cases,
compared to other previous strategies is that it prevents the
occurrence of the following cases: (1) generation of repeated
elements, (2) generation of an element greater than the target
element, and (3) generation of a non-increasing sequence
without making a repair to the chain. For the third case, we
need to repair the generated elements such that the new
element is less than or equal to e. Note that we can add more
cases for the variable diff, but this leads to an increase in the
running time in general.

The two subroutines InitialPopulation and
GenerateSubChain are used to create the initial population.

Subroutine InitialPopulation()

Begin

1. For to do

2.

3. RandomReal()

4. If ()

5.

6. Else

7.

8.

9. GenerateSubChain(,)

10. Return

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

480 | P a g e

www.ijacsa.thesai.org

Subroutine GenerateSubChain()

Begin

1. Repeat

2.

3. If (diff) then

4. RandomReal()

5. If ()

6.

7. Else

8. RandomReal()

9. If ()

10.

11. Else

12. RandomInt(,)

13.

14. Else

15. If (diff) then

16. RandomReal()

17. If ()

18.

19. Else

20. RandomInt(,)

21.

22. Else

23. RandomInt(,)

24.

25. j=i-2

26. While (do

27.

28. =j-1

29.

30. Until

End

D. Mutation

In the EA, random strategy is used to mutate an individual
element, AC, which means that for a given chain, , we
mutate from a random position in the chain. This strategy to
mutate an AC of length m is based on the following idea [16]:
First, the algorithm picks, randomly, a position, j, in the AC
between 3 and . Second, the algorithm eliminates the
elements of the AC from j to and generates new random
elements in the AC using the same strategy, i.e., the
GenerateSubChain subroutine. Third, the algorithm repeats the
second step t times and then the algorithm selects the best AC
that has the smallest length.

In our algorithm, we modify the above method to mutate
the AC so that the selected random position that is used to
mutate the chain is different, if possible, in each iteration,
where we have t iterations. In the above-described mutated

strategy, the position of mutation is fixed during all t iterations.
Also, when we generate a random position in the chain , in
our method, we select it from a range of 3 to the number of bits
in , say ().

In order to generate t mutated chains from the chain, , we
use two auxiliary arrays. The first auxiliary array, Aux1, is used
to save the best mutated chain from e, while the second
auxiliary array, Aux2, is used to generate the mutated chain
from the chain, . At the end of t iterations, the best mutated
AC for e is selected as offspring.

Subroutine Mutation()

Begin

1. For to do

2. RandomInt(, ())

3.

4. () ()

5. GenerateSubChain(,)

6. For to do

7. RandomInt(, ())

8.

9. () ()

10. GenerateSubChain(,)

11. If (| | | |) then

12.

13.

14. Return

End

Fig. 2 shows an example of applying the mutation to the
chain = (1,2,3,6,9,15,17,20,29,35,37), where the four
random numbers used in the t = 4 iterations are 4, 5, 3, and 3,
respectively. The results of the mutation are four chains with
lengths 8, 7, 10, and 9, respectively. The subroutine Mutation
returns the offspring (1, 2, 3, 6, 9, 18, 36, 37) of length 7
instead of 10.

 e 1 2 3 6 9 15 17 20 29 35 37

 1 2 3 6 12 24 30 36 37

 1 2 3 6 9 18 36 37

 1 2 3 5 10 13 18 20 33 36 37

 1 2 3 4 7 14 28 32 35 37

Fig. 2. Four Mutated Chains for e=(1,2,3,6,9,15,17,20,29,35,37).

E. Survivor Selection

Survivor selection is the process of generating the next
population from two population sets, where the first set is the
current population and the second is the set of offspring that is
generated from the mutation of the current population.

The method of selecting the survivors is done by
combining the two sets, current and offspring, into a set of
chains and then sorting the combined set based on the length of
the chain in increasing order of length. After the sorting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

481 | P a g e

www.ijacsa.thesai.org

process has been completed, the first n smallest chains are
selected based on length, such that the selected chains contain
different elements. The two chains, and , are different if

(1) the length of the two chains is different or (2) there exists at
least one position, pos, such that the element at pos in the chain
 is not equal to the element at pos in the chain .

Our algorithm for survivor selection is different than that
proposed in the previous work [16] in that our algorithm
eliminates the step of calculating the fitness of a chain from q
randomly selected chains. Also, our modified survivor
selection algorithm involves deleting duplicated chains, i.e.,
two chains of the same length and containing the same
elements are deleted. To do this, we use a different method to
identify duplicated chains. The complete steps of the process of
selecting the next generation are given in Subroutine
SurvivorSel.

Subroutine SurvivorSel()

Begin

1.

2. Sort(Temp)

3. Aux1= Temp1

4.

5. Repeat

6. , flag=false,

7. While () and (flag=false) do

8. If (| | | |) then

9. flag=true,

10.

11. Else If (Equal(,))

12. flag=true

13.

14. If (flag=false) then

15.

16.

17. Until () or (| |)

18. Return

End

F. Complete Proposed Algorithm

The proposed algorithm starts by generating an initial
population, E, consisting of n ACs. Each AC is a valid chain,
meaning that it satisfies the conditions for an AC. Then the
algorithm repeats a sequence of steps consisting of MaxNoIter
iterations, where MaxNoIter is one of the parameters used in
the EA and represents the maximum number of iterations. The
first step in the repetition loop is the application of the
mutation operator on the population set, E. The output of this
step is a set of mutated ACs of size n. The second step in the
repetition loop is the application of the survivor selection
subroutine on the combination of the current population and
mutated sets. The output of this step is the next generation of
the population of ACs of size n. The complete pseudocode of

the proposed algorithm is shown in Algorithm Evolutionary
Addition Chain, EAC.

Algorithm EAC (Evolutionary Addition Chain)

Input: a natural number .

Output: a short chain ().

Begin

1. InitialParameters(MaxNoIter, ,)

2. InitialPopulation()

3. For to MaxNoIter do

4. Mutation()

5. = SurvivorSel ()

6. Return E1

End

V. PERFORMANCE EVALUATION OF THE EAC

In this section, we study the performance of the proposed
algorithm (EAC) in terms of the length of the generated AC. In
order to verify performance, we compare the output of the
EAC, i.e., the length of AC, with that of the following types of
algorithm:

 An exact algorithm, denoted as ExA.

 Two non-exact deterministic algorithms, namely, the
binary algorithm (BA) and the continued fraction
algorithm (CFA).

 Two non-exact non-deterministic algorithms, one based
on the GA and one based on the EA.

The following subsections describe the experimental setup,
including the machine and software used in the coding of the
algorithms, as well as the initialization parameters and the data
required to execute the EA. Then, in the second, third, and
fourth subsections we introduce and explain the results of the
experimental study for the first, second, and third type of
comparison, respectively.

A. Experimental Setup

Several parameters can be used in an experimental study to
assess their effects on the performance of AC algorithms that
are based on AI techniques:

 The first parameter, () , is the size of the natural
number , which is equal to the number of bits, b. In
our experiment we used , 11, 12, 13, and 14 for
all studied algorithms.

 The second parameter, (), is the set of all numbers of

size (number of bits), b, which is equal to . This

means that () * + .
This parameter was used for all studied algorithms in
our experiment.

 The third parameter, n, is the size of the population. In
our study, n = 100, in line with previous works. This
parameter was used for all studied EA.

 The fourth parameter, MaxNoIter, is the maximum
number of generations used in the computation. In our

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

482 | P a g e

www.ijacsa.thesai.org

experiment, we set MaxNoIter as 300 for all studied
EA.

 The fifth parameter, t, is the number of mutated
sequences. In our study, t = 4, similar to previous works
[16]. This parameter was used for all studied EA.

All algorithms were implemented using C++ language on a
computer running a Windows operating system, which had a
2.4-GHz processor and a 32-GB memory.

For a comparison between two algorithms, A and B, we
first determined the number of bits b and generated all natural
numbers of b bits, () . Second, we applied the two

algorithms on the number and measured the length of
the output of both algorithms. Third, we increased the value of
 by one. Then we repeated the second and third steps until the

last element, was reached.

In our comparisons of two algorithms, we measured the
following criteria that are related to the length of the chain:

 () , which is the number of cases where the
length of the AC generated by both algorithms is equal.

 () , which is the number of cases where the
length of the AC generated by algorithm A is less than
that generated by algorithm B.

 () , which is the number of cases where the
length of the AC generated by algorithm A is greater
than that generated by algorithm B.

 MaxDiff(), which is the maximum difference in the
length between the lengths of the ACs generated by
algorithm A compared to those generated by algorithm
B for a fixed number of bits, b. Note that MaxDiff()
is not necessarily equal to MaxDiff().

B. EAC and ExA

In this subsection, we compare the proposed algorithm,
EAC, with the exact solution, ExA. The minimal length of ACs
for e can be obtained from [37].

Table I displays the results of implementing ExA and EAC
on different values of b as described in the experimental setup
subsection. The results in the table lead to the following
observations:

 For a fixed value of b, the output, i.e., the length of the
AC, of both algorithms is the same in most of the cases,
in that the percentage of () is greater than
75%.

 The percentage of () increases with an
increase in the value of b. This means that with an
increase in the value of b, the parameter MaxNoIter
should be increased to obtain AC with short length near
to the shortest length.

 When there is a difference in the lengths, the length of
the AC generated by the EAC is near to the minimal
length for the studied cases, because the maximum
difference between the short and the shortest chains
is 2.

 Even where the difference in the length of the AC
generated by both algorithms is greater than 1, the
percentage of such cases is small, in that it is less than
2%. For example, for b = 13 and 14, the percentage of
cases that have a length greater than the minimal length
of 2 is 0.5% and 1.9%, respectively.

C. EAC, BA and CFA

In this subsection, we compare the proposed algorithm,
EAC, with two deterministic non-exact algorithms, BA and
CFA that are based on the Fermat strategy [11].

Table II displays the results of comparing the performance
of EAC and BA. These results lead to the following
observations.

 The EAC performs better than the BA for all values of
b, because the length of the AC generated by the EAC
is less than or equal to that obtained by BA.

 The length of the AC generated by EAC is less than that
obtained by BA in most of the studied cases with a
percentage more than 85%.

 The maximum difference between the output of both
algorithms increases with an increase in the number of
bits, b. On the other hand, the percentage of the number
of equal cases decreases with an increase in b. For
example, the maximum difference between the two
algorithms is 7, 8, and 9 for b = 12, 13, and 14,
respectively.

 Most of the differences in the length of the AC
generated by EAC and BA occur when MaxDiff = 1, 2,
3, and 4, as illustrated in Fig. 3.

TABLE I. COMPARISON OF EAC AND EXA

Criteria

10 11 12 13 14

 ()
1017

(99.3%)

1961

(95.7%)

3706
(90.5%

)

6897
(84.2%

)

14042
(76.5%

)

 ()
7

(0.7%)

87

(4.3%)

390

(9.5%)

1295

(15.8%
)

2342

(23.5%
)

MaxDiff

()
1 1 1

2

(0.5%)

2

(1.9%)

TABLE II. COMPARISON OF EAC AND BA

Criteria
b

10 11 12 13 14

 ()
145
(14.2%)

207
(10.1%)

296
(7.2%)

455
 (5.6%)

677
(4.1%)

 ()
879

(85.8%)

1841

(89.9%)

3800

(92.8%)

7737

(94.4%)

15707

(95.9%)

 () 0 0 0 0 0

MaxDiff() 5 7 7 8 9

MaxDiff() 0 0 0 0 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

483 | P a g e

www.ijacsa.thesai.org

Fig. 3. Distribution of difference in Lengths for EAC< BA.

Table III displays the results of comparing EAC and CFA.
These results lead to the following observations:

 The EAC shows better performance than the CFA for
all values of b with percentage more than 25%. Also,
the length of the AC generated by both algorithms is
equal in more than 65% of all cases.

 In a few cases (less than 5%), the length of the AC
generated by the CFA is less than that obtained by the
EAC.

 The maximum difference between the two algorithms is
limited to 2.

 When (), most cases occur when MaxDiff
= 1, as illustrated in Fig. 4.

D. EAC and GA

In this subsection, we compare the proposed algorithm,
EAC, with the GA. The details of the GA and its pseudocode
can be found in [38].

Table IV displays the results of running the EAC and GA
on different values of b. The results lead to the following
observations:

 The EAC outperforms GA for all values of b, because
the length of the AC generated by the EAC is less than
or equal to that obtained by GA in 99% of cases.

 The percentage of () increases with an
increase in the value of b. For example, the percentage
of cases that have () for b = 11 and 12 are
equal to 65.87% and 71.8%, respectively.

 When the GA performs better than the EAC, the
maximum difference in the length of ACs is 1. On the
other hand, when the EAC performs better than the GA,
the maximum difference in the length of the AC
increases with an increase in b.

 Most of the differences in the AC lengths generated by
the EAC and the GA occur when
MaxDiff() 1, 2 and 3, as illustrated in Fig. 5.

Remark: We compared EAC with the EA that is proposed
by [16], we found that there is no significant difference
between the output of both algorithms, i.e., minimal length of
ACs. The main difference between them is in the running time,
where our algorithm is faster than the EA in [16] with almost
25%. The reasons for reducing the running time come from (1)
using the variable diff during generation the elements of
chains, and (2) our proposed method for survivor selection.

TABLE III. COMPARISON OF EAC AND CFA

Criteria
b

10 11 12 13 14

 ()
772
(75.4%)

1433
(70.0%)

2805

(68.5%

)

5507

(67.2%

)

10856

(66.3%

)

 ()
252

(24.6%)

610

(29.8%)

1262
(30.8%

)

2536
(31.0%

)

4934
(30.1%

)

 () 0
5
(0.2%)

29
(0.7%)

149
(1.8%)

594
(3.6%)

MaxDiff

()
2 2 2 2 2

MaxDiff
()

0 1 1 1 2

Fig. 4. Distribution of difference in Lengths for EAC< CFA.

TABLE IV. COMPARISON OF EAC AND GA

Criteria
b

10 11 12 13 14

 ()
435

(42.5%)

697

(34.0%)

1148

(28.0%)

1920

(23.4%)

2281

(13.9%)

 ()
589

(57.5%)

1349

(65.9%)

2941

(71.8%)

6255

(76.4%)

14103

(86.1%)

 () 0
2
(0.1%)

7
(0.2%)

17
 (0.2%)

0

MaxDiff() 4 4 5 6 7

MaxDiff() 0 1 1 1 0

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

484 | P a g e

www.ijacsa.thesai.org

Fig. 5. Distribution of difference in Lengths for EAC< GA.

VI. CONCLUSION AND FUTURE WORKS

The AC can be used to decrease the number of
multiplications in the encryption procedure of the RSA
cryptosystem. In order to use the AC effectively, it is necessary
to develop a method to find the shortest AC or a short AC. In
this work, we discussed how we modified the EA to find a
short AC in an efficient and simple way by focusing on the
main components of EA such as representation, population,
mutation and survivor selection. The proposed algorithm,
EAC, was then implemented and compared with three types of
algorithm (exact, non-exact deterministic, and non-exact non-
deterministic) to assess its effectiveness. The experimental
results indicated that the EAC showed good performance in
comparison with the other types of algorithm when applied to
natural numbers of 10, 11, 12, 13, and 14 bits.

In future work, we will extend our proposed algorithm to
deal with large numbers of bits. We will also compare the
performance of our algorithm with a wider range of
deterministic and non-deterministic algorithms. Furthermore,
we will consider running time as another criterion in the
performance comparison.

ACKNOWLEDGMENT

This work has been funded by Scientific Research
Deanship at the University of Ha’il – Saudi Arabia through
project number RG-191309.

REFERENCES

[1] H. Bahig, “Improved generation of minimal addition chains,”
Computing, vol. 78, pp. 161–172, 2006.

[2] H. Bahig, “On a generalization of addition chains: Addition–
multiplication chains,” Discrete mathematics, vol. 308, no. 4, pp. 611-
616, 2008.

[3] H. Bahig, “Star reduction among minimal length addition chains,”
Computing, vol. 91, pp. 335–352, 2011.

[4] H. Bahig, “A fast optimal parallel algorithm for a short addition chain,”
J Supercomputing, vol. 74, no. 1, pp. 324-333, 2018.

[5] H. Bahig, and K. AbdElbari, “A fast GPU-based hybrid algorithm for
addition chains,” Cluster Computing, vol. 21, pp. 2001–2011, 2018.

[6] H. M. Bahig, A. Alghadhban, M. Mahdi, K. Alutaibi, and H. Bahig,
“Speeding up the multiplication algorithm for large integers”,
Engineering, Technology & Applied Science Research, vol 10, no. 6, pp
6533-6541, 2020.

[7] H. Bahig, and H. Bahig, “A new strategy for generating shortest addition
sequences,” Computing, vol. 91, no. 3, 285-306, 2011.

[8] H. Bahig, H. Bahig, and K. Fathy, “Fast and scalable algorithm for
product large data on multicore system,” Concurrency and Computation:

Practice and Experience, online published 2019, https://doi.org/10.
1002/cpe.5259.

[9] H Bahig, and A Mahran, “Efficient generation of shortest addition-
multiplication chains,” Journal of the Egyptian Mathematical Society,
vol. 26, no. 3, pp. 509-521, 2018.

[10] H. Bahig, and Y. Kotb, “An efficient multicore algorithm for minimal
length addition chains,” Computers, vol. 8, no. 1, pp. 1-23, 2019.

[11] F. Bergeron, J. Berstel, and S. Brlek, “Efficient computation of addition
chains,” J. de Theorie Nombres de Bordeaux, vol. 6, pp. 21-38, 1994.

[12] N. Clift, “Calculating optimal addition chains,” Computing, vol. 91, pp.
265–284, 2011.

[13] N. Cruz-Cortés, F. Rodríguez-Henríquez, R. Juárez-Morales, C. Coello,
“Finding optimal addition chains using a genetic algorithm approach,”
Lecture Notes in Computer Science, vol. 3801, pp. 208-215, 2005.

[14] N. Cruz-Cortes, F. Rodriguez-Henriquez and C. Coello, "An artificial
immune system heuristic for generating short addition chains," IEEE
Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 1-24,
2008.

[15] Cruz-Cort´es, Nareli,c Rodr´ıguez-Henr´ıquez, Francisco, Ju´arez-
Morales, Ra´ul and Carlos A. Coello Coello (2005). Finding optimal
addition chains using a genetic algorithm approach. Y. Hao et al. (Eds.):
CIS 2005, Part I, LNAI 3801, 208–215.

[16] S. Dominguez-Isidro, E. Mezura-Montes, and L. Osorio-Hernandez,
“Evolutionary programming for the length minimization of addition
chains,” Engineering Applications of Artificial Intelligence, vol. 37, pp.
125–134, 2015.

[17] P. Downey, B. Leong, and R. Sethi, “Computing sequences with
addition chains,” SIAM Journal on Computing, vol. 10, no. 3, pp. 638-
646, 1981.

[18] K. Fathy, H. Bahig, H., Bahig, and A. Ragb, “Binary addition chain on
EREW PRAM,” Lecture Notes of Computer Science, vol. 7017, pp.
321-330, 2011.

[19] K. Fathy, H. Bahig, and A. Ragab, “A fast parallel modular
exponentiation algorithm,” Arabian Journal for Science and
Engineering, vol. 43, pp. 903–911, 2018.

[20] D. Gordon, “A survey of fast exponentiation methods,” Journal of
Algorithms, vol. 27, no. 1, pp. 129-146, 1998.

[21] R. Goundar, K. Shiota, and M. Toyonaga, “New strategy for doubling-
free short addition-subtraction chain,” Applied Mathematics &
Information Sciences, vol. 2, no. 2, pp. 123–133, 2008.

[22] D. Knuth, “The Art of Computer Programming: Seminumerical
Algorithms,” vol. 2, 1973, Addison-Wesley.

[23] A. León-Javier, N. Cruz-Cortés, M. Moreno-Armendáriz, and S.
Orantes-Jiménez, “Finding minimal addition chains with a particle
swarm optimization algorithm,” Lecture Notes in Computer Science,
vol. 5845, pp. 680-691, 2009.

[24] A. Jayaram, and S. Deb, “A hybrid addition chaining based light weight
security mechanism for enhancing quality of service in IoT,” Wireless
Personal Communications, vol. 113, pp. 1073–1095, 2020.

[25] K. Jrvinen, V. Dimitrov, and R. Azarderakhsh, “Generalization of
addition chains and fast inversions in binary fields,” IEEE Trans
Computers, vol. 64, no. 9, pp. 2421–2432, 2015.

[26] A. Mullai, and K. Mani, “Enhancing the security in RSA and elliptic
curve cryptography based on addition chain using simplified swarm
optimization and particle swarm optimization for mobile devices,”
International Journal of Information Technology, online published 2020,
https://doi.org/10.1007/s41870-019-00413-8.

[27] N. Nedjah, and L. de Macedo Mourelle, “Minimal addition chain for
efficient modular exponentiation using genetic algorithms,” Lecture
Notes in Computer Science, vol. 2358, pp. 88-98, 2002.

[28] N. Nedjah, and L. de Macedo Mourelle, “Minimal addition-subtraction
chains using genetic algorithms,” Lecture Notes in Computer Science,
vol. 2457, pp. 303-313, 2002.

[29] N. Nedjah, and L. de Macedo Mourelle, “Finding minimal addition
chains using ant colony,” Lecture Notes in Computer Science, vol. 3177,
pp. 642-647 , 2004.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

485 | P a g e

www.ijacsa.thesai.org

[30] N. Nedjah, and L. de Macedo Mourelle, “High-performance SoC-based
implementation of modular exponentiation using evolutionary addition
chains for efficient cryptography,” Applied Soft Computing, vol. 11, no.
7, pp. 4302-4311, 2011.

[31] L. Osorio-Hernandez, E. Mezura-Montes, N. Cruz-Cortes, and F.
Rodriguez-Henriquez, “A genetic algorithm with repair and local search
mechanisms able to find minimal length addition chains for small
exponents,” 2009 IEEE Congress on Evolutionary Computation,
Evolutionary Computation, Trondheim, Norway, 18-21 May 2009, pp.
1422–1429.

[32] S. Picek, C. Coello, Jakobovic, D. Jakobovic, and N. Mentens, “Finding
short and implementation-friendly addition chains with evolutionary
algorithms. J Heuristics vol. 24, pp. 457–481, 2018.

[33] S. Sanchez, J. Osorno, and E. Camarillo, “Simulated annealing meta-
heuristic for addition chain optimization,” European Journal of
Electrical and Computer Engineering, vol. 3, no. 6, pp. 1-4, 2019.

[34] E. Thurber, “Efficient generation of minimal length addition chains,”
SIAM J Computing, vol. 28, pp. 1247–1263, 1999.

[35] J. Yang and C. Chang, “Efficient residue number system iterative
modular multiplication algorithm for fast modular exponentiation,” IET
Computers & Digital Techniques, vol. 2, no. 1, 1-5, 2008.

[36] Yen, S.-M, “Cryptanalysis of secure addition chain for SASC
applications. Electronics Letters, vol. 31, no. 3, pp. 175–176, 1995.

[37] Shortest Addition Chain: http://wwwhomes.uni-bielefeld.de/achim/addi
tion _chain.html

[38] Gentic Addition Chain Algorithm: https://github.com/josip-u/add-chain-
solver.

