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Abstract—The encryption efficiency of the Rivest-Shamir-

Adleman cryptosystem is based on decreasing the number of 

multiplications in the modular exponentiation (ME) operation. 

An addition chain (AC) is one of the strategies used to reduce the 

time consumed by ME through generating a shortest/short chain. 

Due to the non-polynomial time required for generating a 

shortest AC, several algorithms have been proposed to find a 

short AC in a faster time. In this paper, we use the evolutionary 

algorithm (EA) to find a short AC for a natural number. We 

discuss and present the role of every component of the EA, 

including the population, mutation operator, and survivor 

selection. Then we study, practically, the effectiveness of the 

proposed method in terms of the length of chain it generates by 

comparing it with three kinds of algorithms: (1) exact, (2) non-

exact deterministic, and (3) non-exact non-deterministic. The 

experiment is conducted on all natural numbers that have 10, 11, 

12, 13, and 14 bits. The results demonstrate that the proposed 

algorithm has good performance compared to the other three 

types of algorithms. 

Keywords—Addition chain; short chain; evolutionary 

algorithm; modular exponentiation; RSA 

I. INTRODUCTION 

The purpose of cryptography is to secure communications 
over an open channel. To achieve this, two procedures are 
used, encryption and decryption. In simple terms, encryption is 
a process of transforming a given data, called plaintext, to 
unmeaningful data, called ciphertext, which can be reinstated 
to original form through the process of decryption. 

One of the modern and strong encryption techniques used 
to encrypt data is the Rivest-Shamir-Adleman (RSA) 
cryptosystem. Encryption in RSA is based on generating a 
secret message c from the original message m using the 
modular exponentiation (ME) formula. 

            

where the pair (e,N) is the public key and N is a composite 
odd number and equal to the product of two prime numbers. 
Similarly, for decryption, one needs to compute. 

            

where d is the private key. 

The main challenge associated with the encryption and 
decryption techniques in RSA is that the time consumed, in 
particular for decryption, is quite large because its performance 
is based on the ME mathematical operation that requires high 
computation resource. The time consumed in ME is due to the 

computation of a sequence (thousands, 1024-4096) of 
multiplications and squares for large-size numbers. Therefore, 
several techniques have been proposed to speed up the 
computation of multiplication and ME using sequential and 
parallel computation, for examples [6, 8, 19, 20, 35]. 

One of the strategies that can be used to decrease the 
number of multiplications in ME involves the use of an 
addition chain (AC) [27, 30]. An AC [22] for a number e is a 
finite increasing sequence of non-repeated natural numbers 
such that the start element of the sequence is 1 and any next 
element in the sequence is the sum of any two previous 
elements that are not necessarily distinct. The final element in 
the sequence is e. There are different types of chain besides the 
ACs, such as addition-subtraction chains [21,28], addition-
multiplication chains [2, 9], Lucas chains and q-chains [22, 25] 
and addition sequence [7,17]. 

For a natural number e, there are many ACs of different 
lengths. A chain with minimal length is called a shortest AC, 
otherwise it is called a short AC. Therefore, if we can construct 
a shortest AC for   as                    , then    
can be computed in a minimal number of multiplications as  , 
  ,    ,…, ,   . 

For example, for the natural number     , we can 
construct different chains for e with different lengths as (1) 
   (                           )  of length 10, (2)    
(                      )  of length 8, and (3)    
(                   )  of length 7. Therefore, the minimum 
number of multiplications to compute     is 7 and can be 
computed as  ,       ,         ,       
  ,          ,            ,           , 
          ,           . 

A large number of algorithms have been designed to find a 
solution to the AC problem. The goal of these algorithms is 
either to (1) find a shortest AC or (2) find a short AC. In 
respect of the first goal, the branch and bound method is one of 
the efficient strategies that has been used to find a shortest AC 
(see for examples, [1,3,12,34]). Another improvement strategy 
that has been suggested to find a shortest AC is to use high-
performance computing to speed up the computation required 
to find the exact solution. The authors in [5] and [10] used a 
graphics processing unit and multicore system, respectively, to 
find a solution for the AC more quickly as compared to using 
sequential algorithms. However, while these solutions produce 
a chain that is shortest and therefore the solution is optimal, the 
running time of these algorithms is in non-polynomial time. 
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On the other hand, many non-exact algorithms [4,13-
16,18,23,24,26-33,36] have been proposed to find a short AC. 
In these algorithms, the length of the generated AC is not 
necessarily minimal and the algorithms run in polynomial time. 
Many different strategies have been proposed to find a solution 
to produce a short AC. We can classify these algorithms into 
two classes based on their behavior into deterministic 
algorithms and non-deterministic algorithms. The non-
deterministic algorithm may generate different lengths in 
different runs for the same input e, while the deterministic 
algorithm produces the same length of AC even with different 
runs. 

Examples of deterministic algorithms [4,11,18,20,22,30] 
for a short AC include the binary method, window method, 
factor method, and continued fraction method. The difference 
between these methods lies in the strategy used to find the 
solution, the length of the generated short AC, and the running 
time. In general, the running time of these algorithms is very 
fast when compared to that of exact algorithms. Also, the 
window and continued fraction methods give a better output 
than other methods. 

Examples of non-deterministic algorithms [13-16,23,26-
29,31-33] for a short AC include the genetic algorithm (GA), 
evolutionary algorithm (EA), ant colony algorithm, swarm 
intelligence algorithms, and artificial immune algorithm. All 
these algorithms are based on many factors such as the size of 
the population, the maximum number of iterations, and the 
strategies of different operators such as crossover and/or 
mutation. In general, non-deterministic algorithms can produce 
a short AC with a length that is better than that generated by 
the deterministic algorithms, see [26, 32]. 

From a review of the previous works related to the 
generation of a short AC, we can make several of observations. 
First, experimental studies have been conducted on (1) certain 
numbers only or (2) a small set of numbers within a data range 
such as 30 random numbers in the range [1,2048]. Second, in 
some research works, the value of some parameters, such as 
the total number of generations, is large. This leads to an 
increase in the running time of artificial intelligence (AI) 
algorithms. Third, in some previous algorithms, the number of 
independent runs for each natural number is 30 or 50, which is 
a large number and leads to increase running time. 

In this paper, we are interested in using the EA to find an 
approximate solution for the AC problem. The proposed 
algorithm is based on modifying one of the EAs [16] for a 
short AC in relation to three aspects (1) the process of 
generating the elements of chain, (2) mutation operator, and (3) 
survivor selection. The developed algorithm exhibits good 
performance in terms of the generated length of the AC as 
compared to previous methods. To prove the effectiveness of 
the developed algorithm, we conducted an experimental study 
on all integers with 10, 11, 12, 13, and 14 bits. We used two 
types of algorithms for the comparison: (1) an exact algorithm 
that gives a minimal length AC; and (2) non-exact algorithms 
(deterministic and non-deterministic) that give a short chain. 

The rest of the paper consists of five sections. In Section II, 
we describe the background to the AC problem and the EA. 
Next, in Section III, we briefly review the related works on the 

AC problem that use AI strategies to find a short chain. Then, 
in Section IV, we present the proposed algorithm and the 
details of the EA for a short AC. This is followed by Section V, 
in which we provide the results of our measurements to 
determine the effectiveness of the proposed algorithm on 
different ranges of bits for the exponent e, as well as the results 
of a comparison with the outputs of exact and approximate 
solutions in the literature. Finally, in Section VI, we conclude 
the work and highlight our future works. 

II. BACKGROUND 

In this section, first, we provide a brief background on the 
definition of the AC problem, the types of chain and their 
elements [22]. Then, we give an overview of the EA and its 
components. 

A. The Addition Chain Concept 

An AC for a natural number e is a sequence of natural 
numbers   ,  ,  ,…,   such that. 

     , 

      +  , 0      , and 

     . 

The length of the AC for e is the number of steps needed to 
compute e, which is equal to the number of elements in the 
chain minus one, m. The second rule for generating a chain for 
e leads to the possibility of constructing a large number of 
different chains for e. This means that the lengths of the 
different chains for the same e may be different in general. 
Therefore, there are two types of chain based on the length of 
the chain as follows: 

 If the length, m, of an AC for e is minimal, the length of 
the chain is denoted as  ( ) and the chain is termed a 
shortest AC. 

 If the length, m, of the AC for e is greater than  ( ), the 
chain is termed a short AC. 

For the natural number e, we define two functions as 
follows: 

  ( )  is the length of the binary representation for e 
minus one and equal to ⌊     ⌋. 

 v(e) is the number of 1’s in the binary representation of 
e. 

There are different types of steps involved in the generation 
of an AC. The important steps are defined as follows: 

 The ith step in an AC is termed star, if        +  , 
0    . 

 The ith step in an AC is termed doubling, if    
    +    . 

 The ith step in an AC is termed plus-one, if    
    +  . 

B. The Evolutionary Algorithm 

An EA is a generic population-based metaheuristic 
optimization algorithm. An EA uses mechanisms inspired by 
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biological evolution, such as reproduction, mutation, 
recombination, and selection. 

Given a quality function to be maximized/minimized, a set 
of candidate solutions or population, called parents (i.e., 
elements of the function’s domain), can be randomly 
generated. Then, a quality function can be applied to these 
candidates to evaluate their fitness values, where the higher the 
fitness the better. Based on these fitness values, the best 
candidates are chosen to seed the next generation. This is done 
using two main strategies: 

 A variation operator that generates the necessary variety 
within the population to be used in the next generation. 
Examples of variation operators are recombination and 
mutation. 

 Selection that acts as a force that increases the mean 
quality of the solutions in the population. 

Recombination is an operator that is applied to two or more 
selected candidates to produce one or more new candidates 
(children). One the other hand, the mutation operator uses one 
candidate, which results in one new candidate. Hence, these 
operations on candidates to create a set of new candidates 
(offspring). The candidates’ fitness levels are evaluated before 
they compete – based on their fitness (and sometimes age) – 
with the old leads for a place in the next generation. This 
process is repeated until either a candidate with sufficient 
quality is found or a previously set computational limit is 
reached. Note that a combination of variation and selection 
leads to improved fitness values of consecutive populations. 

III. RELATED WORKS 

In this section, we briefly review different AI techniques 
that have been proposed to find a short AC. 

A number of researchers have presented solutions to the 
AC problem based on the GA. Nedjah and Mourelle [27,28] 
used binary encoding to represent the solution, where 1 
indicates that the number is present in the AC and 0 otherwise. 
They used four standard crossover operations: single-point, 
double-point, uniform, and arithmetic. Mutation is done by 
randomly changing some genes from 0 to 1 and vice-versa. The 
fitness function is based on the validity of the AC and its 
length. Cruz-Cortés et al. [13] adopted an integer encoding 
approach using variable-length chromosomes. They use a one-
point crossover operator and the fitness function is based on the 
length of the AC. 

The GA proposed by Osorio-Hernández et al. [31] works 
only on valid ACs (invalid chains are discarded) and represents 
each number from the AC corresponding to a gene in the 
chromosome. They use a repair process to generate valid 
solutions in the initial population and mutation operator. Also, 
they use a two-point crossover operator which applies value 
and rule copying operations. The fitness function is again 
based on the length of the AC. 

Domínguez-Isidro et al. [16] proposed using an EA, which 
is based on a mutation operator that is able to produce as set of 
valid solutions to the AC problem from a single solution. In 
addition, the proposed algorithm includes a replacement 

technique based on stochastic elements to introduce diversity 
into the population. The numbers in the AC are represented 
directly in the solution and their fitness is the length of the AC. 

Picek et al. [32] presented a GA with a repair strategy to 
enhance the performance of AC generation. The solution is 
encoded as a set of tuples of the form (vk,i,j), where vk is the 
value of the kth number in the AC while i and j are the 
positions of the previous numbers vi and vj, respectively, in the 
AC forming vk. The algorithm implements crossover and 
mutation operators similar to the ones used in the previous 
literature [27,28]. However, these operators are followed by a 
repair operation to guarantee the validity of the solution. 

Other researchers have used optimization techniques to find 
short ACs. Nedjah and Mourelle [29] proposed an ant colony 
optimization (ACO) approach based on a multi-agent schema 
with two types of memory: shared and local. The same authors 
implemented the ACO algorithm on a system-on-chip (SoC) to 
improve the computations [30]. 

On the other hand, Léon-Javier et al. [23] proposed 
algorithm based on particle swarm optimization (PSO). Mullai 
and Mani [26] used PSO and simplified swarm optimization to 
generate ACs for RSA for the purpose of using ACs to 
optimize computations in encryption/decryption processes to 
reduce processing time and power consumption in mobile 
devices. Cruz-Cortes et al. [14] introduced an artificial immune 
system for finding short ACs for moderate-sized exponents 
(i.e., less than 20 bits) and large exponents (i.e., up to 2048 
bits). 

IV. PROPOSED ALGORITHM 

In this section, we describe the main steps of the proposed 
algorithm that is aimed at solving the AC problem by using an 
EA. The input of the algorithm is a natural number e ≥2 and 
the output is a short AC   ,  ,  ,…,  . 

In order to describe the proposed algorithm using EA, first, 
we describe the main components of EA involved in solving 
the AC problem, namely, representation, initial population, 
fitness function, variant operators, and survivor selection. 
Then, we present the steps of the proposed algorithm. 

A. Representation 

Since an AC for a natural number e is a sequence of natural 
numbers,   ,  ,  ,…,  , the individual AC in the proposed 
EA is an array of dynamic length. The length of each 
individual is not fixed during the computation for two reasons. 
The first reason is the length of each individual in the search 
space may be different from the others. The second reason is 
the length of an individual AC may change during the different 
mutation operations. 

In order to represent the population of the problem, we 
assume that the number of elements in the population for the 
AC problem is n. The population represents as a 2-dimensional 
array, E. The first dimension represents the number of 
individuals in the search space, n, while the second dimension 
is the length of each individual which is variable. 

For example, let us assume that e = 37 and that we have 
four ACs for e, (1,2,4,8,16,32,36,37), 
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(1,2,3,6,9,15,17,20,29,35,37), (1,2,4,8,16,18, 36,37), and 
(1,2,3,5,10,20,30,35,37). Then the four chains can be 
represented as four arrays of different lengths, i.e., 8, 11, 7, and 
8, respectively, as in Fig. 1. 

1 1 2 4 8 16 32 36 37    

2 1 2 3 6 9 15 17 20 29 35 37 

3 1 2 4 8 16 18 36 37    

4 1 2 3 5 10 20 30 35 37   

Fig. 1. Four Chains for e=37. 

B. Evaluation Function 

Each individual AC needs to be evaluated using a fitness 
function to decide the best set of solutions. Since the goal of 
solving the AC problem is to find a sequence of natural 
numbers with minimal length, the value of the fitness function 
for each individual is the length of chain. Formally, if we have 

a chain    (                ) , then  (  )   , because 

the first element,   , in the chain is not counted. Note that, in 
some times, we write    (          ) for simplicity. 

C. Initial Population 

The first step in any EA is to generate a random initial 
population that consists of n individuals, i.e., ACs. Each 
individual should satisfy the following general conditions to be 
a valid AC: 

 The first two elements in any chain are 1 and 2. 

 Any element,   , in the chain can be constructed from 
the addition of any two previous elements,    and   , 

where      . 

 No elements in the chain are repeated. 

 The last element in the chain is e. 

 The elements of the chain are in increasing order of 
size. 

All elements in the AC, except the first two elements, are 
generated randomly. In order to generate the elements, we use 
the following variables: 

   , which is a real random number between 0 and 1. The 
variable is generated using a user-defined function 
RandomReal(  ). 

   , which is an integer random number between 0 and 

an integer -1. The variable is generated using a user-

defined function RandomInt(  ,). 

 diff, which is the difference between e and the current 
element,   , in the chain. 

The previous proposed strategy [16] used to generate an 
element in a chain is based on applying one of the following 
rules based on a random number: 

R1. Double the last element:           . 

R2. Add the last two elements:              

R3. Add the last element with a random element from 0 to 
i-1:           ,      . 

In our proposed algorithm, we modify this strategy by 
measuring, first, the difference, diff, between the target 
number, e, and the last element generated in the chain,   . 
Therefore, we have three cases for the value of diff as follows: 

Case 1: When diff is greater than or equal to   , the 
algorithm executes one of the rules, R1, R2 or R3, based on the 
value of a random number. 

Case 2: When diff is greater than or equal to     , the 
algorithm executes one of the rules, R2 or R3, based on the 
value of a random number. 

Case 3: When diff is less than     , the algorithm executes 
R3 based on the value of a random number. 

One of the advantages of using diff, in the first two cases, 
compared to other previous strategies is that it prevents the 
occurrence of the following cases: (1) generation of repeated 
elements, (2) generation of an element greater than the target 
element, and (3) generation of a non-increasing sequence 
without making a repair to the chain. For the third case, we 
need to repair the generated elements such that the new 
element is less than or equal to e. Note that we can add more 
cases for the variable diff, but this leads to an increase in the 
running time in general. 

The two subroutines InitialPopulation and 
GenerateSubChain are used to create the initial population. 

Subroutine InitialPopulation(   )  

Begin 

1. For     to   do  

2.                

3. RandomReal(  ) 

4. If (      ) 

5.        

6. Else  

7.        

8.     

9. GenerateSubChain( ,    ) 

10. Return   

End 
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Subroutine GenerateSubChain(      ) 

Begin 

1. Repeat 

2.             

3. If (diff       ) then 

4. RandomReal(  ) 

5. If (      ) 

6.                  

7. Else  

8. RandomReal(  ) 

9. If (      ) 

10.                    

11. Else  

12. RandomInt(  ,    ) 

13.                   

14. Else  

15. If (diff       ) then 

16. RandomReal(  ) 

17. If (      ) 

18.                    

19. Else  

20. RandomInt(  ,    ) 

21.                   

22. Else  

23. RandomInt(  ,    ) 

24.                   

25.  j=i-2  

26.  While (         do 

27.                    

28.    =j-1 

29.       

30. Until        

End 

D. Mutation 

In the EA, random strategy is used to mutate an individual 
element, AC, which means that for a given chain,   , we 
mutate    from a random position in the chain. This strategy to 
mutate an AC of length m is based on the following idea [16]: 
First, the algorithm picks, randomly, a position, j, in the AC 
between 3 and  . Second, the algorithm eliminates the 
elements of the AC from j to   and generates new random 
elements in the AC using the same strategy, i.e., the 
GenerateSubChain subroutine. Third, the algorithm repeats the 
second step t times and then the algorithm selects the best AC 
that has the smallest length. 

In our algorithm, we modify the above method to mutate 
the AC so that the selected random position that is used to 
mutate the chain is different, if possible, in each iteration, 
where we have t iterations. In the above-described mutated 

strategy, the position of mutation is fixed during all t iterations. 
Also, when we generate a random position in the chain   , in 
our method, we select it from a range of 3 to the number of bits 
in  , say  ( ). 

In order to generate t mutated chains from the chain,   , we 
use two auxiliary arrays. The first auxiliary array, Aux1, is used 
to save the best mutated chain from e, while the second 
auxiliary array, Aux2, is used to generate the mutated chain 
from the chain,   . At the end of t iterations, the best mutated 
AC for e is selected as offspring. 

Subroutine Mutation(       ) 

Begin 

1. For     to   do 

2. RandomInt(  ,  ( )   ) 

3.         

4.     (      )    (        ) 

5. GenerateSubChain(      ,   ) 

6. For     to   do 

7. RandomInt(  ,  ( )   ) 

8.         

9.     (      )    (        ) 

10. GenerateSubChain(      ,   ) 

11. If (|    |  |    |) then  

12.           

13.         

14. Return   

End 

Fig. 2 shows an example of applying the mutation to the 
chain   = (1,2,3,6,9,15,17,20,29,35,37), where the four 
random numbers used in the t = 4 iterations are 4, 5, 3, and 3, 
respectively. The results of the mutation are four chains with 
lengths 8, 7, 10, and 9, respectively. The subroutine Mutation 
returns the offspring (1, 2, 3, 6, 9, 18, 36, 37) of length 7 
instead of 10. 

 e 1 2 3 6 9 15 17 20 29 35 37 

             

     1 2 3 6 12 24 30 36 37   

     1 2 3 6 9 18 36 37    

     1 2 3 5 10 13 18 20 33 36 37 

     1 2 3 4 7 14 28 32 35 37  

Fig. 2. Four Mutated Chains for e=(1,2,3,6,9,15,17,20,29,35,37). 

E. Survivor Selection 

Survivor selection is the process of generating the next 
population from two population sets, where the first set is the 
current population and the second is the set of offspring that is 
generated from the mutation of the current population. 

The method of selecting the survivors is done by 
combining the two sets, current and offspring, into a set of 
chains and then sorting the combined set based on the length of 
the chain in increasing order of length. After the sorting 
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process has been completed, the first n smallest chains are 
selected based on length, such that the selected chains contain 
different elements. The two chains,    and  , are different if 

(1) the length of the two chains is different or (2) there exists at 
least one position, pos, such that the element at pos in the chain 
   is not equal to the element at pos in the chain  . 

Our algorithm for survivor selection is different than that 
proposed in the previous work [16] in that our algorithm 
eliminates the step of calculating the fitness of a chain from q 
randomly selected chains. Also, our modified survivor 
selection algorithm involves deleting duplicated chains, i.e., 
two chains of the same length and containing the same 
elements are deleted. To do this, we use a different method to 
identify duplicated chains. The complete steps of the process of 
selecting the next generation are given in Subroutine 
SurvivorSel. 

Subroutine SurvivorSel(   ) 

Begin 

1.          

2. Sort(Temp) 

3. Aux1= Temp1 

4.         

5. Repeat 

6.      , flag=false,       

7. While (   ) and (flag=false) do 

8. If (|     |  |     |) then 

9.  flag=true,       

10.             

11. Else If (Equal(     ,      )) 

12.  flag=true 

13.       

14. If (flag=false) then 

15.       

16.             

17. Until (   ) or (  |    |) 

18. Return     

End 

F. Complete Proposed Algorithm 

The proposed algorithm starts by generating an initial 
population, E, consisting of n ACs. Each AC is a valid chain, 
meaning that it satisfies the conditions for an AC. Then the 
algorithm repeats a sequence of steps consisting of MaxNoIter 
iterations, where MaxNoIter is one of the parameters used in 
the EA and represents the maximum number of iterations. The 
first step in the repetition loop is the application of the 
mutation operator on the population set, E. The output of this 
step is a set of mutated ACs of size n. The second step in the 
repetition loop is the application of the survivor selection 
subroutine on the combination of the current population and 
mutated sets. The output of this step is the next generation of 
the population of ACs of size n. The complete pseudocode of 

the proposed algorithm is shown in Algorithm Evolutionary 
Addition Chain, EAC. 

Algorithm EAC (Evolutionary Addition Chain) 

Input: a natural number    . 

Output: a short chain (       ). 

Begin 

1. InitialParameters(MaxNoIter,  ,  ) 

2.   InitialPopulation(   ) 

3. For     to MaxNoIter do 

4.    Mutation(       ) 

5.   = SurvivorSel (   ) 

6. Return E1 

End 

V. PERFORMANCE EVALUATION OF THE EAC 

In this section, we study the performance of the proposed 
algorithm (EAC) in terms of the length of the generated AC. In 
order to verify performance, we compare the output of the 
EAC, i.e., the length of AC, with that of the following types of 
algorithm: 

 An exact algorithm, denoted as ExA. 

 Two non-exact deterministic algorithms, namely, the 
binary algorithm (BA) and the continued fraction 
algorithm (CFA). 

 Two non-exact non-deterministic algorithms, one based 
on the GA and one based on the EA. 

The following subsections describe the experimental setup, 
including the machine and software used in the coding of the 
algorithms, as well as the initialization parameters and the data 
required to execute the EA. Then, in the second, third, and 
fourth subsections we introduce and explain the results of the 
experimental study for the first, second, and third type of 
comparison, respectively. 

A. Experimental Setup 

Several parameters can be used in an experimental study to 
assess their effects on the performance of AC algorithms that 
are based on AI techniques: 

 The first parameter,  ( ) , is the size of the natural 
number  , which is equal to the number of bits, b. In 
our experiment we used       , 11, 12, 13, and 14 for 
all studied algorithms. 

 The second parameter,  ( ), is the set of all numbers of 

size (number of bits), b, which is equal to   . This 

means that  ( )  *                     + . 
This parameter was used for all studied algorithms in 
our experiment. 

 The third parameter, n, is the size of the population. In 
our study, n = 100, in line with previous works. This 
parameter was used for all studied EA. 

 The fourth parameter, MaxNoIter, is the maximum 
number of generations used in the computation. In our 
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experiment, we set MaxNoIter as 300 for all studied 
EA. 

 The fifth parameter, t, is the number of mutated 
sequences. In our study, t = 4, similar to previous works 
[16]. This parameter was used for all studied EA. 

All algorithms were implemented using C++ language on a 
computer running a Windows operating system, which had a 
2.4-GHz processor and a 32-GB memory. 

For a comparison between two algorithms, A and B, we 
first determined the number of bits b and generated all natural 
numbers of b bits,  ( ) . Second, we applied the two 

algorithms on the number      and measured the length of 
the output of both algorithms. Third, we increased the value of 
  by one. Then we repeated the second and third steps until the 

last element,           was reached. 

In our comparisons of two algorithms, we measured the 
following criteria that are related to the length of the chain: 

  (   ) , which is the number of cases where the 
length of the AC generated by both algorithms is equal. 

  (   ) , which is the number of cases where the 
length of the AC generated by algorithm A is less than 
that generated by algorithm B. 

  (   ) , which is the number of cases where the 
length of the AC generated by algorithm A is greater 
than that generated by algorithm B. 

 MaxDiff(   ), which is the maximum difference in the 
length between the lengths of the ACs generated by 
algorithm A compared to those generated by algorithm 
B for a fixed number of bits, b. Note that MaxDiff(   ) 
is not necessarily equal to MaxDiff(   ). 

B. EAC and ExA 

In this subsection, we compare the proposed algorithm, 
EAC, with the exact solution, ExA. The minimal length of ACs 
for e can be obtained from [37]. 

Table I displays the results of implementing ExA and EAC 
on different values of b as described in the experimental setup 
subsection. The results in the table lead to the following 
observations: 

 For a fixed value of b, the output, i.e., the length of the 
AC, of both algorithms is the same in most of the cases, 
in that the percentage of  (       ) is greater than 
75%. 

 The percentage of  (       )  increases with an 
increase in the value of b. This means that with an 
increase in the value of b, the parameter MaxNoIter 
should be increased to obtain AC with short length near 
to the shortest length. 

 When there is a difference in the lengths, the length of 
the AC generated by the EAC is near to the minimal 
length for the studied cases, because the maximum 
difference between the short and the shortest chains 
is 2. 

 Even where the difference in the length of the AC 
generated by both algorithms is greater than 1, the 
percentage of such cases is small, in that it is less than 
2%. For example, for b = 13 and 14, the percentage of 
cases that have a length greater than the minimal length 
of 2 is 0.5% and 1.9%, respectively. 

C. EAC, BA and CFA 

In this subsection, we compare the proposed algorithm, 
EAC, with two deterministic non-exact algorithms, BA and 
CFA that are based on the Fermat strategy [11]. 

Table II displays the results of comparing the performance 
of EAC and BA. These results lead to the following 
observations. 

 The EAC performs better than the BA for all values of 
b, because the length of the AC generated by the EAC 
is less than or equal to that obtained by BA. 

 The length of the AC generated by EAC is less than that 
obtained by BA in most of the studied cases with a 
percentage more than 85%. 

 The maximum difference between the output of both 
algorithms increases with an increase in the number of 
bits, b. On the other hand, the percentage of the number 
of equal cases decreases with an increase in b. For 
example, the maximum difference between the two 
algorithms is 7, 8, and 9 for b = 12, 13, and 14, 
respectively. 

 Most of the differences in the length of the AC 
generated by EAC and BA occur when MaxDiff = 1, 2, 
3, and 4, as illustrated in Fig. 3. 

TABLE I. COMPARISON OF EAC AND EXA 

Criteria 
  

10 11 12 13 14 

 (       ) 
1017 

(99.3%) 

1961  

(95.7%) 

3706 
(90.5%

) 

6897 
(84.2%

) 

14042  
(76.5%

) 

 (       ) 
7 

(0.7%) 

87 

(4.3%) 

390 

(9.5%) 

1295 

(15.8%
) 

2342 

(23.5%
) 

MaxDiff

(       ) 
1 1 1 

2 

(0.5%) 

2 

(1.9%) 

TABLE II. COMPARISON OF EAC AND BA 

Criteria 
b 

10 11  12 13 14 

 (      ) 
145 
(14.2%) 

207 
(10.1%) 

296 
(7.2%) 

455 
 (5.6%) 

677 
(4.1%) 

 (      ) 
879 

(85.8%) 

1841 

(89.9%) 

3800 

(92.8%) 

7737 

(94.4%) 

15707 

(95.9%) 

 (      ) 0 0 0 0 0 

MaxDiff(      ) 5 7 7 8 9 

MaxDiff(      ) 0 0 0 0 0 
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Fig. 3. Distribution of difference in Lengths for EAC< BA. 

Table III displays the results of comparing EAC and CFA. 
These results lead to the following observations: 

 The EAC shows better performance than the CFA for 
all values of b with percentage more than 25%. Also, 
the length of the AC generated by both algorithms is 
equal in more than 65% of all cases. 

 In a few cases (less than 5%), the length of the AC 
generated by the CFA is less than that obtained by the 
EAC. 

 The maximum difference between the two algorithms is 
limited to 2. 

 When  (       ), most cases occur when MaxDiff 
= 1, as illustrated in Fig. 4. 

D. EAC and GA 

In this subsection, we compare the proposed algorithm, 
EAC, with the GA. The details of the GA and its pseudocode 
can be found in [38]. 

Table IV displays the results of running the EAC and GA 
on different values of b. The results lead to the following 
observations: 

 The EAC outperforms GA for all values of b, because 
the length of the AC generated by the EAC is less than 
or equal to that obtained by GA in 99% of cases. 

 The percentage of  (      )  increases with an 
increase in the value of b. For example, the percentage 
of cases that have  (      ) for b = 11 and 12 are 
equal to 65.87% and 71.8%, respectively. 

 When the GA performs better than the EAC, the 
maximum difference in the length of ACs is 1. On the 
other hand, when the EAC performs better than the GA, 
the maximum difference in the length of the AC 
increases with an increase in b. 

 Most of the differences in the AC lengths generated by 
the EAC and the GA occur when 
MaxDiff(      )  1, 2 and 3, as illustrated in Fig. 5. 

Remark: We compared EAC with the EA that is proposed 
by [16], we found that there is no significant difference 
between the output of both algorithms, i.e., minimal length of 
ACs. The main difference between them is in the running time, 
where our algorithm is faster than the EA in [16] with almost 
25%. The reasons for reducing the running time come from (1) 
using the variable diff during generation the elements of 
chains, and (2) our proposed method for survivor selection. 

TABLE III. COMPARISON OF EAC AND CFA 

Criteria 
b 

10 11  12 13 14 

 (       ) 
772 
(75.4%) 

1433 
(70.0%) 

2805 

(68.5%

) 

5507 

(67.2%

) 

10856 

(66.3%

) 

 (       ) 
252 

(24.6%) 

610 

(29.8%) 

1262 
(30.8%

) 

2536 
(31.0%

) 

4934 
(30.1%

) 

 (       ) 0 
5  
(0.2%) 

29  
(0.7%) 

149  
(1.8%) 

594 
(3.6%) 

MaxDiff

(       ) 
2 2 2 2 2 

MaxDiff
(       ) 

0 1 1 1 2 

 

Fig. 4. Distribution of difference in Lengths for EAC< CFA. 

TABLE IV. COMPARISON OF EAC AND GA 

Criteria 
b 

10 11  12 13 14 

 (      ) 
435 

(42.5%) 

697 

(34.0%) 

1148 

(28.0%) 

1920 

(23.4%) 

2281 

(13.9%) 

 (      ) 
589 

(57.5%) 

1349 

(65.9%) 

2941 

(71.8%) 

6255 

(76.4%) 

14103 

(86.1%) 

 (      ) 0 
2 
(0.1%) 

7  
(0.2%) 

17 
 (0.2%) 

0 

MaxDiff(      ) 4 4 5 6 7 

MaxDiff(      ) 0 1 1 1 0 
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Fig. 5. Distribution of difference in Lengths for EAC< GA. 

VI. CONCLUSION AND FUTURE WORKS 

The AC can be used to decrease the number of 
multiplications in the encryption procedure of the RSA 
cryptosystem. In order to use the AC effectively, it is necessary 
to develop a method to find the shortest AC or a short AC. In 
this work, we discussed how we modified the EA to find a 
short AC in an efficient and simple way by focusing on the 
main components of EA such as representation, population, 
mutation and survivor selection. The proposed algorithm, 
EAC, was then implemented and compared with three types of 
algorithm (exact, non-exact deterministic, and non-exact non-
deterministic) to assess its effectiveness. The experimental 
results indicated that the EAC showed good performance in 
comparison with the other types of algorithm when applied to 
natural numbers of 10, 11, 12, 13, and 14 bits. 

In future work, we will extend our proposed algorithm to 
deal with large numbers of bits. We will also compare the 
performance of our algorithm with a wider range of 
deterministic and non-deterministic algorithms. Furthermore, 
we will consider running time as another criterion in the 
performance comparison. 
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