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Abstract—In the age of information explosion, there is a huge 

data that is stored in the form of database and accessed using 

various querying languages. The major challenges faced by a 

user accessing this data is to learn the querying language and 

understand the various syntax associated with it. Query given in 

the form of Natural Language helps any naïve user to access 

database without learning the query languages. The current 

process of conversion of Natural Language to SQL Query using a 

rule-based algorithm is riddled with challenges -- identification of 

partial or implied data values and identification of descriptive 

values being the predominant ones. This paper discusses the use 

of a synchronous combination of a hybrid Machine Learning 

model, Elastic Search and WordNet to overcome the above-

mentioned challenges. An embedding layer followed by a Long 

Short-Term Memory model is used to identify partial or implied 

data values, while Elastic Search has been used to identify 

descriptive data values (values which have lengthy data values 

and may contain descriptions). This architecture enables 

conversion systems to achieve robustness and high accuracies, by 

extracting meta data from the natural language query. The 

system gives an accuracy of 91.7% when tested on the IMDb 

database and 94.0% accuracy when tested on Company Sales 
database. 
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I. INTRODUCTION 

Availability of data and its analytics have revolutionized 
our life in all aspects. One of the popular methods of storing 
and accessing data is using Structured Query Language 
(SQL). SQL is a domain-specific programming language 
designed to store and access data in relational databases. It 
requires professional skills to use it. With the demand for data 
increasing exponentially, a simpler querying method which 
requires lesser or no learning time is a necessity. Hence, 
significant efforts are on to make Natural Language an 
interface between humans and the data stored in computers. 
Querying database using Natural Language makes data access 
simpler and affordable by all users. 

Currently majority of the conversion systems that convert 
Natural Language to SQL query employ rule-based algorithms 
[1], [2]. One of the main challenges of this method is to 
identify implied or partial data values in the Natural 
Language. Another frequent failure case of such algorithms is 
the inability to capture the lengthy data values, often the 
attributes which contain descriptions and hence referred to as 

‘descriptive values’ in this paper. The proposed system aims 
to resolve these shortcomings and increase the accuracy and 
robustness of the Natural Language to SQL query conversion 
systems. 

To understand the challenge of identifying implied/partial 
data values in a domain specific database, consider the 
following example Natural Language query given to a sales 
database: ‘Get the price of product red scooter’. This can be 
understood by a rule-based algorithm that ‘red scooter’ is a 
product and has to be searched in the corresponding ‘product’ 
attribute. However, the query ‘Get the price of red scooter’ 
requires the system to understand that scooter is a data value 
of ‘product’ attribute. Another interesting query is, ‘Get the 
price of red two-wheeler’ which requires the system to be 
intelligent and robust to understand that the user is implying 
the data-value ‘scooter’ with the use of the term ‘two-
wheeler’. 

The proposed system uses an embedding layer followed by 
an LSTM model to pick up n-grams which are similar to 
determine a data value with a confidence greater than a pre-set 
threshold. The system has also been equipped with WordNet 
to find hyponyms of attributes to pick up implied values, in 
cases where the schema vocabulary is not expressive enough 
to train the embedding layer well. 

Descriptive columns have been dealt with separately in 
this architecture. For example, let a database maintained by a 
pet adoption centre, have an entry with ‘Animal Name’ as 
‘Baxter’ with ‘Description’ as ‘He is a highly active and 
enthusiastic six-month old dog. He is black in colour and 
loves to chase vehicles’. A Natural Language query, ‘Name 
the six-month dog which is fun loving and dark in colour’ 
would be highly challenging to convert to the right SQL 
query, without special care being taken to understand the 
semantics. The proposed system uses Elastic Search to 
identify such ‘descriptive values. 

In all the existing systems, either an unintelligent rule-
based system is adopted or the machine learning models are 
burdened with the entire task of conversion. The proposed 
system, which adapts a few concepts implemented in [10] and 
[11], although essentially a rule-based algorithm, uses 
machine learning models, WordNet and Elastic Search to 
enhance the conversion by overcoming the challenges faced 
by rule-based systems. Hence the system is more robust and 
the accuracy of conversion increases by an approximated 11-
16%. 
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The paper describes the architecture and the techniques 
used by the proposed system and tests the performance of the 
system on the IMDb database [3]. To test the performance on 
‘descriptive data values’, the system is tested on Company 
Sales database. It is to be noted that when tested on the same 
database used to test the SQLizer [4], the architecture’s 
accuracy is 13.8% higher, considering SQLizer’s ‘Top 1’ 
results. 

II. RELATED WORK 

Conversion of Natural Language to SQL query was first 
explored in 1992, by Nikolaus Ott et al [5] where Natural 
Language inputs were mapped to an augmented SQL 
language. Different approaches to such conversions, some of 
which involve machine learning are discussed further. 

S. Javubar et al has used standard natural language 
techniques such as morphological analysis, semantic analysis, 
mapping tables for retrieval of reports from social web data 
[1]. Xiaojun Xu et al in their paper ‘SQLNet: Generating 
Structured Queries from Natural Language Without 
Reinforcement Learning’ attempt the conversion by filling in 
the slots of a standard SQL template with the data values 
present in the sentence using a CNN model. The performance 
is being considered on two different parameters, Query-Match 
with accuracy of 65.5% and Execution Accuracy of 71.5% [6]. 

Victor Zhong et.al in their paper ‘Seq2SQL: Generating 
Structured Queries from Natural Language using 
Reinforcement Learning’ use separate rules i.e. Neural 
Network models for each SQL clause. The different clauses 
considered are as follows 

1) Aggregation clause – The tokens in the sentence are 

first mapped to its scalar attention score and these are 

normalized to obtain a distribution of input encodings. Sum of 

all the input encodings is taken and a multi-layer perceptron is 

used to convert the sum to a score corresponding to the 

aggregation (α). Softmax function is used to normalize the 

scores. 

2) Select clause – Encoding of the column name with a 

LSTM and a multi-layer perceptron is applied over the column 

representations, conditioned on the input representation, to 

compute a score for each column. 

3) Where clause – Reinforcement learning is applied to 

learn a policy to optimize execution results of expected 

correctness. 
Finally, a mixed objective function is applied to combine 

the result of all the three clauses. The performance is 
considered on two different parameters, Query-Match 
Accuracy is 48.3% and Execution Accuracy of 59.4% [7]. 

Geordani et al. use concept of structured kernels e.g. 
Sequence and Tree Kernels which is referred to as structures 
that are created to classify the words present in the input query 
into appropriate tags. In this paper, a detailed comparison on 
different kernels were considered and appropriate combination 
were made to generate better results. Accuracies were 
considered for both datasets - Geo dataset (75.9%) and 
RestQueries dataset (84.7%) [8]. P. Utama et al in their paper 
‘An End-to-end Neural Natural Language Interface for 
Databases’ use a novel concept of Neural Query Translation. 
An automatically generated dataset is fed into a Recurrent 
Neural Network and is used at runtime to convert natural 
language into SQL query. An Interactive auto-completion 
system increases translation accuracy since users enter less 
ambiguous sentences as input. Accuracies were considered for 
both datasets - Geo dataset – (48.6%) and Patients dataset 
(75.93%) [9]. 

F. Li et al. in their paper ‘Constructing an interactive 
natural language interface for relational databases’ explore the 
construction of parse trees and query trees to individually map 
words into their corresponding SQL tags. The system is 
commonly referred to as NaLIR (Natural Language Interface 
for Relational databases). An accuracy of 57.14% was 
achieved for the MAS dataset [2]. 

III. PROPOSED SYSTEM 

The proposed system extracts the dataset from the input 
relational database in CSV format. It must be noted that the 
system is not specific to a particular schema, but the models 
need to be re-trained if a new database is to be introduced. 
Three separate components work synchronously to extract 
maximum latent information from the dataset, which can 
either be used to enrich the natural language or be stored to 
use during conversion. 

The system architecture has been described in Fig. 1. Each 
of the components described here is explained in detail in the 
following sections. 
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Fig. 1. System Architecture. 

IV. DATASET EXTRACTION 

A major challenge faced while integrating machine 
learning into the architecture is to find a suitable dataset. The 
dataset is extracted from the input relational database. Apache 
Common CSV Library [12] has been used to extract the 
dataset in the form of CSV files. Along with the relational 
database, markers for attributes which contain descriptive 
values’ (Ex: Experience, Description, etc.) is to be provided as 
input. Note that the system architecture is not schema specific 
and the ML model must be re-trained for a new database. 

V. PARTIAL AND IMPLIED VALUES 

This section describes how the system identifies and 
extracts the partial and implied data values. This meta data can 
be used to either enrich the natural language input or be used 
directly by the rule-based conversion algorithm. 

A. Pre-Processing Techniques 

1) Reconstruction of dataset: The dataset extracted in the 

earlier step is a flat file containing the data values for all the 

attributes. A temporary feature vector is formed by obtaining 

the unique values of each attribute. 

The data value and its attribute name separated by a 
placeholder value is used as the target value for each sample. 
This ensures that an extensive search to determine the attribute 
of the identified partial/implied value is avoided later. 

2) Splitting, Tokenization and One-hot encoding: It was 

observed that the patterns in data values are best captured 

when the data value is split into words and each word is split 

into n-grams (value of n is determined by length of word). 

Intuitively, the syllables of each word of a data value are used 

as the features. 

Each unique split (syllable) in the dataset is designated an 
integer (tokenized) as the model accepts only integer values. 
(The samples now consist of variable number of integers.) A 
label encoder followed by a one hot encoder is used to convert 
the target vector to an integer binary matrix. 

3) Random sampling: To make the model robust and to 

expose the word embedding layer to a more varied 

vocabulary, a random sampling technique for augmentation is 

employed. 

Iterating through each sample, a variable number of 
tokens/integers (the range of which is calculated based on the 
length of the sample) is randomly chosen for a fixed number 
of times (based on the number of samples) and appended to 
the dataset along with its target value (which is a binary 
vector). It is to be noted that random sampling does not affect 
the ordering of the remaining tokens. 

4) Padding and Truncation: To ensure that all samples are 

of uniform length, the samples are padded with trailing zeros. 

The samples are then truncated to the 75th quartile of lengths 

to ensure that most features are not the padded zeros. 

Repeating the features of data values which have very few 

tokens increased the accuracy of detection of such 

attributes/data values. 

The pre-processing steps have been summarized in Fig. 2. 
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Fig. 2. Pre-Processing Summary. 

B. Embedding Layer 

Word embeddings are representations of words in an n-
dimensional vector space. This representation has helped 

bridge the gap between machine’s and human brains’ 
understanding of the language. An embedding layer maps 
each word in the given corpus to a dense vector which 
represent the projection of the word into a specified 
dimensional space. The vectors for the words are learnt based 
on its surrounding words in the given corpus. As a result, the 
vectors of words with similar meaning will be ‘close to each 
other’. For example, the Euclidean distance between the 
vectors representing ‘school’ ‘college’ will be much lesser 
than between vectors representing ‘school’ and ‘dog’. 

Hence this approach succeeds in capturing the context of a 
word or sentence. This can be observed in Fig. 3, where the 
verb tense relationships and country-capital relationships have 
been recognized by the trained embedding layer. 

C. Long Short-Term Memory (LSTM) 

LSTM is a variant of Recurrent Neural Networks (RNN). 
RNNs which succeeded in creating a perception of storage or 
memory, often failed due to exploding and vanishing 
gradients. This failure case was overcome by LSTM with the 
use of a memory cell. The memory cell contains the current 
memory of the node which can be written into, read and 
erased just like a computer memory. (Note: This memory is 
analogous.) 

The current timestep and the previous timestep’s output is 
fed as an input to the LSTM node as seen in Fig. 4. The node 
contains a memory cell and four simple one-layer neural 
networks. While one neural network generates the new 
memory, two other neural networks control the significance 
given to the old memory and the new memory, and the other 
neural network generates the output from the new memory. 
Note that a ‘tanh’ activation function is used for memory 
generation, while a sigmoid activation is used to determine the 
significance. 

Since LSTM specializes in processing series of samples 
where the temporal locality carries great significance, it has 
been used in this architecture to understand a series of dense 
vectors and classify them into the correct data value. 

 

Fig. 3. Embedding Layer [13]. 
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Fig. 4. Long Short-Term Memory [14]. 

The number of nodes used and the number of epochs are 
relatively small because of the following reasons: 

1) Due to the nature of the dataset, there are high chances 

of over-fitting. 

2) Speed of training the model must be high, as the model 

is re-trained every time a new schema is introduced. 

D. Classification of Inputs 

The input Natural Language query is tokenized and split 
into different sequences. Sequences of 1 word (1-gram) up to 
sequences of n words (n-gram, where n is determined by the 
number of tokens) is considered for prediction. The largest 
sequences and its classification are considered (i.e., sub-
sequences are ignored). 

The final, high confidence classifications given by the 
LSTM model can be used in multiple ways, couple of them 
are outlined below: 

1) Enrich the natural language query: Replace the 

classified data value with the incomplete/implied data value 

(largest n-gram) and precede the attribute before the data 

value. 

2) Store the data values and attribute names: Store the 

data value- attribute pair using a HashMap or any list and use 

it as required by the conversion algorithm. 

VI. DESCRIPTIVE VALUES 

This section describes the elastic search approach taken for 
identifying and mapping the descriptive data values. These 
values are lengthy and tend to have high degrees of 
incompleteness and implications. 

A modified version of the embedding layer and LSTM 
model approach was tried for such values as well. The 
approach’s accuracy exceeds the elastic search approach only 

if the data values’ vocabulary is expressive enough to develop 
a suitable vector space while training the embedding layer. As 
this is rare, the Elastic Search approach has been explored in 
this paper. 

A. Architecture 

Descriptive sentences are those sentences that provide 
broader context to the query. The extracted CSV file is used to 
create an index in Elastic Search. Elastic Search’s Bulk API 
[15] provides the necessary functions that can create and store 
large data simultaneously. The ‘helpers’ module [16] in 
Python which is one of the ways to access this API is being 
used in this case to create and store the data from the .csv file. 
The benefit of using Bulk API is that it indexes chunks of data 
at once rather than one after the other. The input query is 
made to pass through the following to get the required 
information: 

1) Analyzers: Analyzers are used to process the input 

query to a desired format. The analyzers are a class of in-built 

functions that bring the data to a standard format. Elastic 

Search has in-built analyzers such as Stop analyzer and 

Standard analyzer. Custom analyzers can be built to comply 

with the needs of the application. The system in this case 

makes use of ‘Stop’ and ‘English Language’ Analyzer [17], 

[18]. 

a) Stop Analyzer: This analyzer splits the text into 
individual words and removes all the pre-defined stop-words 

which are defined for English. Stop Analyzer also lower cases 

the remaining words after the removal of stop words. Elastic 

Search also supports Stop Analyzers in multiple languages. 

Ex: Input: Get the doctors with master’s degree. 

Analyzer: Get doctors master’s degree 

It is to be noted that ‘with’ and ‘the’ tokens are discarded. 

b) English Language Analyzer: This analyzer converts 

the words of the input query to its root word. This is used 

when all the words in the input query have different tenses. 

This analyzer brings them to their basic form. This makes the 

processing of the remaining words easier. 

Ex: Input: Show all products which are red bikes. 

Analyzer: Show all product which road bike. 

It is to be noted that ‘bikes' has changed to ‘bike' and 
‘products' has changed to ‘product'. 

2) Searching through multiple attributes: Multiple 

columns can be searched in Elastic Search. This can be done 

by using the “multi_match” keyword [19]. The JSON request 

body which is to be sent to Elastic Search server can be 

written as follows: 

{ “query”:  
 { “multi_match”:  

  { “query”: input query,  

   “fields”:[list of descriptive column names];  

  }  

 }  

} 
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Format: Query for multiple attributes 

The input query mentioned in the JSON request is the 
output obtained after the input query has been processed from 
the analyzers. “fields” represents the set of column names 
through which descriptive information needs to be searched 
for. 

Ex: Input: Show all items which are road bikes. 

Analyzer: show all product which road bike. 

The request query is as follows: 

{ “query”:  

 { “multi_match”:  
  { “query”:“ list all item which road bike”,  

   “fields”: [‘UserDescription’, 

‘ItemDescription’];  

  }  

 }  

} 

Example: The input query is being searched across:  

‘UserDescription’ and ‘ItemDescription’ fields of the 
index. 

Once the request is sent, the response is received in the 
form of JSON. The JSON body contains useful information 
such as the “source” field which describes the appropriate 
description along with the field to which it's being matched. 

In addition to this, there also exists a field called “_score” 
which indicates how relevant the description is to the matched 
description. The “_score” is calculated by Elastic Search by 
making use of a practical scoring function [20]. The practical 
scoring function is described in Elastics Search as follows: 

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) ∶
=  𝑐𝑜𝑜𝑟𝑑(𝑞, 𝑑)
− 𝑞𝑢𝑒𝑟𝑦𝑁𝑜𝑟𝑚(𝑞). ? (𝑡𝑓(𝑡 𝑖𝑛 𝑖𝑑). 𝑖𝑑𝑓(𝑡)2. (𝑡. 𝑔𝑒𝑡𝐵𝑜𝑜𝑠𝑡( )). 𝑛𝑜𝑟𝑚(𝑡, 𝑑)) 

Where, t refers to the term which is given in the input by 
the user, q is the cosine similarity between the vectors. 

coord(q,d) represents a score dependent on how many 
query terms a given document contains. 

tf(t in d) represents the term frequency of the term, t in the 
current document d. 

queryNorm(q) normalizing factor to alter queries’ scores 
to make them comparable. 

idf(t) stands for Inverse Document Frequency of t. 

t.getBoost() is a search time boost of the term in the 
current query q. 

norm(t,d) summarizes a few boost and length factors 
(indexing time). 

Hence, this scoring function is dependent on the number of 
times a word in the input query appears in the documents that 
are present in the index. Intuitively, the relevance score of a 
descriptive value increases as the frequency of occurrence in 
documents increases. 

Furthermore, a reasonable threshold for contextual 
relevance scoring must be set. Values above this limit are only 
to be considered for fieldname-value pair extraction. 

3) Searching through multiple attributes: After the 

generation of pairs of fieldnames and values, a statement 

which corresponds to SQL can be written as follows- 

WHERE fieldname1 = value1 AND fieldname2 = value2 
AND.… fieldnameN = valueN; 

Later, the following statement is appended to existing SQL 
output which does not handle descriptive or contextual 
columns. If there is no suitable pair then the statement is not 
generated and there is no effect on the output. 

A summary of these steps is depicted in Fig. 5. 

 

Fig. 5. System Architecture – Descriptive Values. 

VII. RESULTS 

A. Company Sales Database 

The system is tested on the Company Sales database, 
whose schema is depicted in Fig. 6. The database has six 
tables which contain the data of products, customers and its 
sales. 
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Fig. 6. ER Diagram of Company Sales Database. 

1) Experimental Setup: The tables ‘t_prds’ contains 

product data, ‘t_cstmrs’ contains customer data, ‘t_saldtls’ 

contains sales data, ‘t_prdcat’ contains product-category data, 

‘t_prdsubcat’ contains product-subcategory data and 

‘t_ggrphy’ contains the geographical location of the 

customers. 

The attribute ‘Description’ in ‘t_prds’ table contain 
‘descriptive values’ which describes each product. This 
column is marked while giving the database as input to the 
system. 

2) Partial and Implied Values – Results: Of the 50 natural 

language queries that were designed to test this feature, 48 

queries correctly identified the partial/implied data values and 

47 queries were mapped to the correct SQL query. 

The queries tested the ability of the system to generate 
queries with clauses such as WHERE, BETWEEN, HAVING, 
ORDER BY, GROUP BY, COUNT, SUM, MAX, MIN 
(aggregate functions). 

Table I shows some of the correctly mapped natural 
language queries. The data values which were partial or 
implied have been highlighted in bold and the identified 
attributes have been underlined. 

3) Descriptive Values – Results: The system was tested 

for 50 descriptive inputs and all the inputs mapped to 

appropriate descriptions and 49 of them formed to the correct 

SQL query. Results that were used for testing are shown in 

Table II. The descriptive data values have been highlighted in 

bold. 

E. IMDB Database 

The system is tested on the IMDb database whose schema 
is shown in Fig. 7. The database has tables that contain data of 
movies and its genres, actors, and directors. 

1) Experimental Setup: The tables names are self-

explanatory and the database overall contains movies’, actors’ 

and directors’ data and are linked through ‘roles’ and 

‘movies_directors’ tables. 

The genres of movies and directors are also contained in 
the database. 

2) Partial and Implied Values – Results: Out of the 48 

natural language queries that were designed to test this feature, 

44 queries correctly identified the partial/implied data values 

and mapped to the correct SQL query. 

The queries again tested the ability of the system to 
generate queries with clauses such as WHERE, BETWEEN, 
HAVING, ORDER BY, GROUP BY, COUNT, SUM, MAX, 
MIN (aggregate functions). 

Table III contains some of the correctly mapped natural 
language queries. The data values which were partial or 
implied have been highlighted in bold and the identified 
attributes have been underlined. 

Note, the IMDb database has no scope for testing 
descriptive values. Company Sales database has been used for 
this purpose. 
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TABLE I. COMPANY SALES DATABASE: PARTIAL / IMPLIED VALUES 

Input Natural Language Query Enriched Natural Language Query Output SQL Query 

show all unmarried customers who 

are men 
show all single Gender 'male' customers 

SELECT * FROM t_cstmrs WHERE LOWER( MaritalStatus ) 

= 'single' AND LOWER( Gender ) = 'male' 

Names of customers who have 

graduated and from germany or 

france 

FullName Names of customers who have Education 

'graduate degree' and from CountryRegion 'germany' 

or CountryRegion 'france' 

SELECT t_cstmrs.FullName FROM t_cstmrs INNER JOIN 

t_ggrphy ON t_ggrphy.GeographyKey = 

t_cstmrs.GeographyKey WHERE LOWER ( 

t_ggrphy.CountryRegion ) = 'germany' OR LOWER 

(t_ggrphy.CountryRegion ) = 'france' ) AND (LOWER( 

t_cstmrs.Education ) = 'graduate degree' )  

get the price of red or dark helmet 
get the price of Color 'red' or Color ‘black' 

ProductSubCategoryName 'helmet' 

SELECT ListPrice , Color FROM t_prdsubcat INNER JOIN 

t_prds ON t_prdsubcat.ProductSubCategoryKey = 

t_prds.ProductSubCategoryKey WHERE LOWER( Color ) = 

'red' OR LOWER( Color ) = 'black' 

how much does tire tube cost how much does ProductName ‘road tire tube’ cost 
SELECT ListPrice , ProductName FROM t_prds WHERE 

LOWER( ProductName ) = 'road tire tube'  

get the orders from new south wales 

australia 

get the orders from StateProvince 'new south wales' 

CountryRegion 'australia' 

SELECT t_saldtls.OrderQuantity, t_ggrphy.CountryRegion, t_ 

t_cstmrs.FullName , t_ggrphy.StateProvince FROM t_ggrphy 

INNER JOIN t_cstmrs ON t_cstmrs.GeographyKey = 

t_ggrphy.GeographyKey INNER JOIN t_saldtls ON 

t_cstmrs.CustomerKey = t_saldtls.CustomerKey WHERE 

LOWER( t_cstmrs.StateProvince) = 'new south wales' AND 

LOWER( t_ggrphy.CountryRegion ) = 'australia' 

show subtotal of orders for helmet 
show subtotal of orders for 

ProductSubCategoryName 'helmet’ 

SELECT SUM( t_saldtls.SalesOrderint ) FROM t_prds INNER 

JOIN t_saldtls ON t_prds.ProductKey = t_saldtls.ProductKey 

WHERE LOWER( t_prds.ProductName ) = 'helmet'  

Names of customers in germany who 

purchased bicycle but not tires 

FullName Names of customers in CountryRegion 

'germany' who purchased ProductCategoryName 

'bikes' but not ProductSubCategoryName 'road tire 

tubes' 

SELECT t_cstms.FullName FROM t_cstmrs INNER JOIN 

t_ggrphy ON t_ggrphy.GeographyKey = 

t_cstmrs.GeographyKey INNER JOIN t_saldtls ON 

t_saldtls.CustomerKey = t_cstmrs.CustomerKey INNER JOIN 

t_prds ON t_prds.ProductKey = t_cstmrs.ProductKey INNER 

JOIN t_prdsubcat ON t_prdsubcat.ProductSubCategoryKey = 

t_prds.ProductSubCategoryKey WHERE LOWER( 

t_prdsubcat.ProductSubCategoryName ) != 'road tire tubes' 

AND LOWER( t_prdsubcat.ProductSubCategoryName ) = 

'bikes' AND LOWER ( t_ggrphy.CountryRegion ) = 'germany' 

TABLE II. COMPANY SALES DATABASE: DESCRIPTIVE VALUES 

Input Natural Languge Query Output SQL Query 

list price of black products which is 

responsive, maneuverable, low budget 

and can go off-road. 

SELECT t_prds.ListPrice FROM t_prds WHERE t_prds.Description = 'This low budget bike gives a high 

performance.. It is maneuverable and responsive. Highly suitable to go off-road' AND ( LOWER( t_prds.Color ) = 

'black' 

Name the Road Series all round bike item 

for road and racing. 

SELECT t_prds.ProductName FROM t_prdcat INNER JOIN t_prdsubcat ON t_prdcat.ProductCategoryKey = 

t_prdsubcat.ProductCategoryKey INNER JOIN t_prds ON t_prdsubcat.ProductSubCategoryKey = 

t_prds.ProductSubCategoryKey WHERE t_prds.Description = 'Has specifications similar to our Road series bikes, 

but the frame size has been made to suit a woman. All round bike, suitable for road and racing' AND LOWER( 

t_prdcat.ProductCategoryName) = 'racing' AND LOWER( t_prdsubcat.ProductSubCategoryName) = 'bike' )  

Get the customers who have bought a bike 

which is comfortable, provides durable 

frame and high power 

SELECT t_cstmrs.FullName FROM t_cstmrs CustomerKey INNER JOIN t_prds ON t_prds.ProductKey = 

t_saldtls.ProductKey INNER JOIN t_saldtls ON t_saldtls.CustomerKey = t_csrmrs. WHERE t_prds.Description = 

‘Has a lot of the same features as our high end bikes such as a comfortable, durable frame, and  high power’; 

Select the items with plush custom saddle 

and space for panniers 

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'The all new plush custom saddle gives 

you the extra comfort while riding. Newly designed carrier gives you the extra space to add panniers and luggage 

bags. It provides high stability even when fully loaded.' 

Name the pink products which is 

aerodynamic bike designed for a woman. 

SELECT t_prds.ProductNam 

e FROM t_prds WHERE t_prds.Description = 'The sleek aerodynamic body designed for a woman allows you to 

either race,cross-train, or just socialize. Advanced seat technology provides comfort all day.’ AND ( LOWER( 

t_prds.Color) = 'pink' 

Name the items which are developed by 

Adventure Works Cycles Professional 

race team 

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'Tt posseses a very light weight heat-

treated steel frame, and highly precise steering contro006C. Developed with the Adventure Works Cycles 

professional race team, is driven only by champions' 
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Get the price of items which is a higher 

end mountain bike with rear suspension 

SELECT t_prds.ListPrice FROM t_prds WHERE t_prds.Description = 'With enhanced performance achieved by 

using the ground breaking SQ Frame, highly strong rear suspension, this is a higher end model moutain bike’  

Show the price of bikes meant for racing 

enthusiasts with low budget 

SELECT t_prds.ListPrice FROM t_prdcat INNER JOIN t_prdsubcat ON t_prdcat.ProductCategoryKey = 

t_prdsubcat.ProductCategoryKey INNER JOIN t_prds ON t_prdsubcat.ProductSubCategoryKey = 

t_prds.ProductSubCategoryKey WHERE t_prds.Description = 'It is a low budget super strong bike that can ride on 

all terrains while keeping you in complete control. It is suited for all you racing enthusiasts'  AND ( 

t_prdcat.ProductCategoryName = 'bikes' ) 

Select an item with mountain wheel for 

entry-level rider. 
SELECT * FROM t_prds WHERE t_prds.Description = 'Replacement mountain wheel for entry-level rider.' 

Name the items which have pioneering 

frame technology as the HQ steel frame. 

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'The same pioneering frame technology 

is used to give you the highest value as the HQ steel frame.' 

 

Fig. 7. IMDb Database Schema [21]. 

TABLE III. IMDB DATABASE: PARTIAL / IMPLIED VALUES 

Input Natural Language Query Enriched Natural Language Query Output SQL Query 

List the names of actors who 

played a lawyer 

List the names of actors who played a 

Roles.Role ‘Attorney’ 

SELECT actors.first_name FROM actors INNER JOIN roles ON 

actors.id = roles.actor_id WHERE LOWER( roles.role ) = ‘attorney' 

List the category of films enacted 

by Leonardo Dicaprio 

List the movies.genre of films enacted by 

actors.first_name ‘Leonardo’ actors.last_name 

‘Dicaprio’ 

SELECT movies.genre FROM movies INNER JOIN roles ON 

movies.id = roles.movie_id INNER JOIN actors ON actors.id = 

roles.actor_id WHERE LOWER(actor.first_name) = 'leonardo' AND 

LOWER(actor.first_name) = 'dicaprio’ 

Name the satirical movies played 

by Frank Cady 

Name the movies.genre ‘Comedy’ movies 

played by actors.first_name ‘Frank’ 

actors.last_name ‘Cady’ 

SELECT movies.name FROM movies INNER JOIN roles ON movies.id 

= roles.movie_id INNER JOIN actors ON actors.id = roles.actor_id 

WHERE LOWER(actor.first_name) = 'frank' AND 

LOWER(actors.last_name) = ‘cady’ AND LOWER(movies.genre) = 

‘comedy' 

What are the fairy tale movies 

directed by Bill Condon 

Name the movies.genre ‘Fantasy’ movies 

played by directors.first_name ‘Bill’ 

directors.last_name ‘Condon’ 

SELECT movies.name FROM movies INNER JOIN roles ON movies.id 

= roles.movie_id INNER JOIN directors ON directors.id = 

movies_directors.director_id WHERE LOWER(directors.first_name) = 

‘bill' AND  

LOWER(directors.last_name) = ‘condon’ LOWER( movies.genre) = 

‘fantasy' ) 

 who directed the movie name 10 

Rillington Place 

who directed the movie movies.name ‘10 

Rillington Place’ 

SELECT directors.first_name , movies.name FROM movies INNER 

JOIN roles ON movies.id = roles.movie_id INNER JOIN actors ON 

actors.id = roles.actor_id INNER JOIN movies_directors ON movies.id 

= movies_directors.movie_id INNER JOIN directors ON directors.id = 

movies_directors.director_id where movie.name = '10 Rillington Place' 

show the movies directed by 

Richard and enacted by Daniel 

show the movies direced by 

directors.first_name ‘Richard’ and enacted by 

actors.first_name ‘Daniel’ 

SELECT movies.name , directors.first_name FROM movies INNER 

JOIN roles ON movies.id = roles.movie_id INNER JOIN actors ON 

actors.id = roles.actor_id INNER JOIN movies_directors ON movies.id 

= movies_directors.movie_id INNER JOIN directors ON directors.id = 

movies_directors.director_id WHERE directors.first_name = 'Richard' 

AND actors.first_name = ‘Daniel’ 
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VIII. CONCLUSION 

The proposed system addresses major challenges faced by 
many of the existing Natural Language to SQL Query 
conversion algorithms. 

Partial and implied data values in the natural language 
queries are identified by a trained hybrid ML model. WordNet 
is also used as a safety net to understand implied data values 
where the vocabulary of the input relational database is not 
expressive. Descriptive values are identified with the help of 
Elastic Search. 

Using the latent information gathered by the proposed 
architecture, the accuracy and the robustness of the Natural 
Language to SQL Query conversion system is proven to 
increase dramatically (11% to 16%). This has been 
demonstrated by extensively testing the system on the IMDb 
database as well as the Company Sales database. 

The accuracy of the system is 91.7% on IMDb database 
and 94.0% on Company Sales database when tested on a 
diverse set of queries. This is a significantly higher 
performance compared to the discussed systems in section II. 

This system can be used as a plug-in to any of the 
conversion systems being developed/used. The meta 
information extracted by the system helps developers boost 
the accuracy and robustness of their algorithm. 
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