
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

494 | P a g e
www.ijacsa.thesai.org

Enhancement of Natural Language to SQL Query

Conversion using Machine Learning Techniques

Akshar Prasad1, Sourabh S Badhya2, Yashwanth YS3, Shetty Rohan4, Shobha G5, Deepamala N6

Department of Computer Science and Engineering

RV College of Engineering

Bengaluru, India

Abstract—In the age of information explosion, there is a huge

data that is stored in the form of database and accessed using

various querying languages. The major challenges faced by a

user accessing this data is to learn the querying language and

understand the various syntax associated with it. Query given in

the form of Natural Language helps any naïve user to access

database without learning the query languages. The current

process of conversion of Natural Language to SQL Query using a

rule-based algorithm is riddled with challenges -- identification of

partial or implied data values and identification of descriptive

values being the predominant ones. This paper discusses the use

of a synchronous combination of a hybrid Machine Learning

model, Elastic Search and WordNet to overcome the above-

mentioned challenges. An embedding layer followed by a Long

Short-Term Memory model is used to identify partial or implied

data values, while Elastic Search has been used to identify

descriptive data values (values which have lengthy data values

and may contain descriptions). This architecture enables

conversion systems to achieve robustness and high accuracies, by

extracting meta data from the natural language query. The

system gives an accuracy of 91.7% when tested on the IMDb

database and 94.0% accuracy when tested on Company Sales
database.

Keywords—Machine learning; natural language to SQL query;

long short-term memory; embedding layer; elastic search; hybrid

architecture

I. INTRODUCTION

Availability of data and its analytics have revolutionized
our life in all aspects. One of the popular methods of storing
and accessing data is using Structured Query Language
(SQL). SQL is a domain-specific programming language
designed to store and access data in relational databases. It
requires professional skills to use it. With the demand for data
increasing exponentially, a simpler querying method which
requires lesser or no learning time is a necessity. Hence,
significant efforts are on to make Natural Language an
interface between humans and the data stored in computers.
Querying database using Natural Language makes data access
simpler and affordable by all users.

Currently majority of the conversion systems that convert
Natural Language to SQL query employ rule-based algorithms
[1], [2]. One of the main challenges of this method is to
identify implied or partial data values in the Natural
Language. Another frequent failure case of such algorithms is
the inability to capture the lengthy data values, often the
attributes which contain descriptions and hence referred to as

‘descriptive values’ in this paper. The proposed system aims
to resolve these shortcomings and increase the accuracy and
robustness of the Natural Language to SQL query conversion
systems.

To understand the challenge of identifying implied/partial
data values in a domain specific database, consider the
following example Natural Language query given to a sales
database: ‘Get the price of product red scooter’. This can be
understood by a rule-based algorithm that ‘red scooter’ is a
product and has to be searched in the corresponding ‘product’
attribute. However, the query ‘Get the price of red scooter’
requires the system to understand that scooter is a data value
of ‘product’ attribute. Another interesting query is, ‘Get the
price of red two-wheeler’ which requires the system to be
intelligent and robust to understand that the user is implying
the data-value ‘scooter’ with the use of the term ‘two-
wheeler’.

The proposed system uses an embedding layer followed by
an LSTM model to pick up n-grams which are similar to
determine a data value with a confidence greater than a pre-set
threshold. The system has also been equipped with WordNet
to find hyponyms of attributes to pick up implied values, in
cases where the schema vocabulary is not expressive enough
to train the embedding layer well.

Descriptive columns have been dealt with separately in
this architecture. For example, let a database maintained by a
pet adoption centre, have an entry with ‘Animal Name’ as
‘Baxter’ with ‘Description’ as ‘He is a highly active and
enthusiastic six-month old dog. He is black in colour and
loves to chase vehicles’. A Natural Language query, ‘Name
the six-month dog which is fun loving and dark in colour’
would be highly challenging to convert to the right SQL
query, without special care being taken to understand the
semantics. The proposed system uses Elastic Search to
identify such ‘descriptive values.

In all the existing systems, either an unintelligent rule-
based system is adopted or the machine learning models are
burdened with the entire task of conversion. The proposed
system, which adapts a few concepts implemented in [10] and
[11], although essentially a rule-based algorithm, uses
machine learning models, WordNet and Elastic Search to
enhance the conversion by overcoming the challenges faced
by rule-based systems. Hence the system is more robust and
the accuracy of conversion increases by an approximated 11-
16%.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

495 | P a g e
www.ijacsa.thesai.org

The paper describes the architecture and the techniques
used by the proposed system and tests the performance of the
system on the IMDb database [3]. To test the performance on
‘descriptive data values’, the system is tested on Company
Sales database. It is to be noted that when tested on the same
database used to test the SQLizer [4], the architecture’s
accuracy is 13.8% higher, considering SQLizer’s ‘Top 1’
results.

II. RELATED WORK

Conversion of Natural Language to SQL query was first
explored in 1992, by Nikolaus Ott et al [5] where Natural
Language inputs were mapped to an augmented SQL
language. Different approaches to such conversions, some of
which involve machine learning are discussed further.

S. Javubar et al has used standard natural language
techniques such as morphological analysis, semantic analysis,
mapping tables for retrieval of reports from social web data
[1]. Xiaojun Xu et al in their paper ‘SQLNet: Generating
Structured Queries from Natural Language Without
Reinforcement Learning’ attempt the conversion by filling in
the slots of a standard SQL template with the data values
present in the sentence using a CNN model. The performance
is being considered on two different parameters, Query-Match
with accuracy of 65.5% and Execution Accuracy of 71.5% [6].

Victor Zhong et.al in their paper ‘Seq2SQL: Generating
Structured Queries from Natural Language using
Reinforcement Learning’ use separate rules i.e. Neural
Network models for each SQL clause. The different clauses
considered are as follows

1) Aggregation clause – The tokens in the sentence are

first mapped to its scalar attention score and these are

normalized to obtain a distribution of input encodings. Sum of

all the input encodings is taken and a multi-layer perceptron is

used to convert the sum to a score corresponding to the

aggregation (α). Softmax function is used to normalize the

scores.

2) Select clause – Encoding of the column name with a

LSTM and a multi-layer perceptron is applied over the column

representations, conditioned on the input representation, to

compute a score for each column.

3) Where clause – Reinforcement learning is applied to

learn a policy to optimize execution results of expected

correctness.
Finally, a mixed objective function is applied to combine

the result of all the three clauses. The performance is
considered on two different parameters, Query-Match
Accuracy is 48.3% and Execution Accuracy of 59.4% [7].

Geordani et al. use concept of structured kernels e.g.
Sequence and Tree Kernels which is referred to as structures
that are created to classify the words present in the input query
into appropriate tags. In this paper, a detailed comparison on
different kernels were considered and appropriate combination
were made to generate better results. Accuracies were
considered for both datasets - Geo dataset (75.9%) and
RestQueries dataset (84.7%) [8]. P. Utama et al in their paper
‘An End-to-end Neural Natural Language Interface for
Databases’ use a novel concept of Neural Query Translation.
An automatically generated dataset is fed into a Recurrent
Neural Network and is used at runtime to convert natural
language into SQL query. An Interactive auto-completion
system increases translation accuracy since users enter less
ambiguous sentences as input. Accuracies were considered for
both datasets - Geo dataset – (48.6%) and Patients dataset
(75.93%) [9].

F. Li et al. in their paper ‘Constructing an interactive
natural language interface for relational databases’ explore the
construction of parse trees and query trees to individually map
words into their corresponding SQL tags. The system is
commonly referred to as NaLIR (Natural Language Interface
for Relational databases). An accuracy of 57.14% was
achieved for the MAS dataset [2].

III. PROPOSED SYSTEM

The proposed system extracts the dataset from the input
relational database in CSV format. It must be noted that the
system is not specific to a particular schema, but the models
need to be re-trained if a new database is to be introduced.
Three separate components work synchronously to extract
maximum latent information from the dataset, which can
either be used to enrich the natural language or be stored to
use during conversion.

The system architecture has been described in Fig. 1. Each
of the components described here is explained in detail in the
following sections.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

496 | P a g e
www.ijacsa.thesai.org

Fig. 1. System Architecture.

IV. DATASET EXTRACTION

A major challenge faced while integrating machine
learning into the architecture is to find a suitable dataset. The
dataset is extracted from the input relational database. Apache
Common CSV Library [12] has been used to extract the
dataset in the form of CSV files. Along with the relational
database, markers for attributes which contain descriptive
values’ (Ex: Experience, Description, etc.) is to be provided as
input. Note that the system architecture is not schema specific
and the ML model must be re-trained for a new database.

V. PARTIAL AND IMPLIED VALUES

This section describes how the system identifies and
extracts the partial and implied data values. This meta data can
be used to either enrich the natural language input or be used
directly by the rule-based conversion algorithm.

A. Pre-Processing Techniques

1) Reconstruction of dataset: The dataset extracted in the

earlier step is a flat file containing the data values for all the

attributes. A temporary feature vector is formed by obtaining

the unique values of each attribute.

The data value and its attribute name separated by a
placeholder value is used as the target value for each sample.
This ensures that an extensive search to determine the attribute
of the identified partial/implied value is avoided later.

2) Splitting, Tokenization and One-hot encoding: It was

observed that the patterns in data values are best captured

when the data value is split into words and each word is split

into n-grams (value of n is determined by length of word).

Intuitively, the syllables of each word of a data value are used

as the features.

Each unique split (syllable) in the dataset is designated an
integer (tokenized) as the model accepts only integer values.
(The samples now consist of variable number of integers.) A
label encoder followed by a one hot encoder is used to convert
the target vector to an integer binary matrix.

3) Random sampling: To make the model robust and to

expose the word embedding layer to a more varied

vocabulary, a random sampling technique for augmentation is

employed.

Iterating through each sample, a variable number of
tokens/integers (the range of which is calculated based on the
length of the sample) is randomly chosen for a fixed number
of times (based on the number of samples) and appended to
the dataset along with its target value (which is a binary
vector). It is to be noted that random sampling does not affect
the ordering of the remaining tokens.

4) Padding and Truncation: To ensure that all samples are

of uniform length, the samples are padded with trailing zeros.

The samples are then truncated to the 75th quartile of lengths

to ensure that most features are not the padded zeros.

Repeating the features of data values which have very few

tokens increased the accuracy of detection of such

attributes/data values.

The pre-processing steps have been summarized in Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

497 | P a g e
www.ijacsa.thesai.org

Fig. 2. Pre-Processing Summary.

B. Embedding Layer

Word embeddings are representations of words in an n-
dimensional vector space. This representation has helped

bridge the gap between machine’s and human brains’
understanding of the language. An embedding layer maps
each word in the given corpus to a dense vector which
represent the projection of the word into a specified
dimensional space. The vectors for the words are learnt based
on its surrounding words in the given corpus. As a result, the
vectors of words with similar meaning will be ‘close to each
other’. For example, the Euclidean distance between the
vectors representing ‘school’ ‘college’ will be much lesser
than between vectors representing ‘school’ and ‘dog’.

Hence this approach succeeds in capturing the context of a
word or sentence. This can be observed in Fig. 3, where the
verb tense relationships and country-capital relationships have
been recognized by the trained embedding layer.

C. Long Short-Term Memory (LSTM)

LSTM is a variant of Recurrent Neural Networks (RNN).
RNNs which succeeded in creating a perception of storage or
memory, often failed due to exploding and vanishing
gradients. This failure case was overcome by LSTM with the
use of a memory cell. The memory cell contains the current
memory of the node which can be written into, read and
erased just like a computer memory. (Note: This memory is
analogous.)

The current timestep and the previous timestep’s output is
fed as an input to the LSTM node as seen in Fig. 4. The node
contains a memory cell and four simple one-layer neural
networks. While one neural network generates the new
memory, two other neural networks control the significance
given to the old memory and the new memory, and the other
neural network generates the output from the new memory.
Note that a ‘tanh’ activation function is used for memory
generation, while a sigmoid activation is used to determine the
significance.

Since LSTM specializes in processing series of samples
where the temporal locality carries great significance, it has
been used in this architecture to understand a series of dense
vectors and classify them into the correct data value.

Fig. 3. Embedding Layer [13].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

498 | P a g e
www.ijacsa.thesai.org

Fig. 4. Long Short-Term Memory [14].

The number of nodes used and the number of epochs are
relatively small because of the following reasons:

1) Due to the nature of the dataset, there are high chances

of over-fitting.

2) Speed of training the model must be high, as the model

is re-trained every time a new schema is introduced.

D. Classification of Inputs

The input Natural Language query is tokenized and split
into different sequences. Sequences of 1 word (1-gram) up to
sequences of n words (n-gram, where n is determined by the
number of tokens) is considered for prediction. The largest
sequences and its classification are considered (i.e., sub-
sequences are ignored).

The final, high confidence classifications given by the
LSTM model can be used in multiple ways, couple of them
are outlined below:

1) Enrich the natural language query: Replace the

classified data value with the incomplete/implied data value

(largest n-gram) and precede the attribute before the data

value.

2) Store the data values and attribute names: Store the

data value- attribute pair using a HashMap or any list and use

it as required by the conversion algorithm.

VI. DESCRIPTIVE VALUES

This section describes the elastic search approach taken for
identifying and mapping the descriptive data values. These
values are lengthy and tend to have high degrees of
incompleteness and implications.

A modified version of the embedding layer and LSTM
model approach was tried for such values as well. The
approach’s accuracy exceeds the elastic search approach only

if the data values’ vocabulary is expressive enough to develop
a suitable vector space while training the embedding layer. As
this is rare, the Elastic Search approach has been explored in
this paper.

A. Architecture

Descriptive sentences are those sentences that provide
broader context to the query. The extracted CSV file is used to
create an index in Elastic Search. Elastic Search’s Bulk API
[15] provides the necessary functions that can create and store
large data simultaneously. The ‘helpers’ module [16] in
Python which is one of the ways to access this API is being
used in this case to create and store the data from the .csv file.
The benefit of using Bulk API is that it indexes chunks of data
at once rather than one after the other. The input query is
made to pass through the following to get the required
information:

1) Analyzers: Analyzers are used to process the input

query to a desired format. The analyzers are a class of in-built

functions that bring the data to a standard format. Elastic

Search has in-built analyzers such as Stop analyzer and

Standard analyzer. Custom analyzers can be built to comply

with the needs of the application. The system in this case

makes use of ‘Stop’ and ‘English Language’ Analyzer [17],

[18].

a) Stop Analyzer: This analyzer splits the text into
individual words and removes all the pre-defined stop-words

which are defined for English. Stop Analyzer also lower cases

the remaining words after the removal of stop words. Elastic

Search also supports Stop Analyzers in multiple languages.

Ex: Input: Get the doctors with master’s degree.

Analyzer: Get doctors master’s degree

It is to be noted that ‘with’ and ‘the’ tokens are discarded.

b) English Language Analyzer: This analyzer converts

the words of the input query to its root word. This is used

when all the words in the input query have different tenses.

This analyzer brings them to their basic form. This makes the

processing of the remaining words easier.

Ex: Input: Show all products which are red bikes.

Analyzer: Show all product which road bike.

It is to be noted that ‘bikes' has changed to ‘bike' and
‘products' has changed to ‘product'.

2) Searching through multiple attributes: Multiple

columns can be searched in Elastic Search. This can be done

by using the “multi_match” keyword [19]. The JSON request

body which is to be sent to Elastic Search server can be

written as follows:

{ “query”:
 { “multi_match”:

 { “query”: input query,

 “fields”:[list of descriptive column names];

 }

 }

}

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

499 | P a g e
www.ijacsa.thesai.org

Format: Query for multiple attributes

The input query mentioned in the JSON request is the
output obtained after the input query has been processed from
the analyzers. “fields” represents the set of column names
through which descriptive information needs to be searched
for.

Ex: Input: Show all items which are road bikes.

Analyzer: show all product which road bike.

The request query is as follows:

{ “query”:

 { “multi_match”:
 { “query”:“ list all item which road bike”,

 “fields”: [‘UserDescription’,

‘ItemDescription’];

 }

 }

}

Example: The input query is being searched across:

‘UserDescription’ and ‘ItemDescription’ fields of the
index.

Once the request is sent, the response is received in the
form of JSON. The JSON body contains useful information
such as the “source” field which describes the appropriate
description along with the field to which it's being matched.

In addition to this, there also exists a field called “_score”
which indicates how relevant the description is to the matched
description. The “_score” is calculated by Elastic Search by
making use of a practical scoring function [20]. The practical
scoring function is described in Elastics Search as follows:

𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑) ∶
= 𝑐𝑜𝑜𝑟𝑑(𝑞, 𝑑)
− 𝑞𝑢𝑒𝑟𝑦𝑁𝑜𝑟𝑚(𝑞). ? (𝑡𝑓(𝑡 𝑖𝑛 𝑖𝑑). 𝑖𝑑𝑓(𝑡)2. (𝑡. 𝑔𝑒𝑡𝐵𝑜𝑜𝑠𝑡()). 𝑛𝑜𝑟𝑚(𝑡, 𝑑))

Where, t refers to the term which is given in the input by
the user, q is the cosine similarity between the vectors.

coord(q,d) represents a score dependent on how many
query terms a given document contains.

tf(t in d) represents the term frequency of the term, t in the
current document d.

queryNorm(q) normalizing factor to alter queries’ scores
to make them comparable.

idf(t) stands for Inverse Document Frequency of t.

t.getBoost() is a search time boost of the term in the
current query q.

norm(t,d) summarizes a few boost and length factors
(indexing time).

Hence, this scoring function is dependent on the number of
times a word in the input query appears in the documents that
are present in the index. Intuitively, the relevance score of a
descriptive value increases as the frequency of occurrence in
documents increases.

Furthermore, a reasonable threshold for contextual
relevance scoring must be set. Values above this limit are only
to be considered for fieldname-value pair extraction.

3) Searching through multiple attributes: After the

generation of pairs of fieldnames and values, a statement

which corresponds to SQL can be written as follows-

WHERE fieldname1 = value1 AND fieldname2 = value2
AND.… fieldnameN = valueN;

Later, the following statement is appended to existing SQL
output which does not handle descriptive or contextual
columns. If there is no suitable pair then the statement is not
generated and there is no effect on the output.

A summary of these steps is depicted in Fig. 5.

Fig. 5. System Architecture – Descriptive Values.

VII. RESULTS

A. Company Sales Database

The system is tested on the Company Sales database,
whose schema is depicted in Fig. 6. The database has six
tables which contain the data of products, customers and its
sales.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

500 | P a g e
www.ijacsa.thesai.org

Fig. 6. ER Diagram of Company Sales Database.

1) Experimental Setup: The tables ‘t_prds’ contains

product data, ‘t_cstmrs’ contains customer data, ‘t_saldtls’

contains sales data, ‘t_prdcat’ contains product-category data,

‘t_prdsubcat’ contains product-subcategory data and

‘t_ggrphy’ contains the geographical location of the

customers.

The attribute ‘Description’ in ‘t_prds’ table contain
‘descriptive values’ which describes each product. This
column is marked while giving the database as input to the
system.

2) Partial and Implied Values – Results: Of the 50 natural

language queries that were designed to test this feature, 48

queries correctly identified the partial/implied data values and

47 queries were mapped to the correct SQL query.

The queries tested the ability of the system to generate
queries with clauses such as WHERE, BETWEEN, HAVING,
ORDER BY, GROUP BY, COUNT, SUM, MAX, MIN
(aggregate functions).

Table I shows some of the correctly mapped natural
language queries. The data values which were partial or
implied have been highlighted in bold and the identified
attributes have been underlined.

3) Descriptive Values – Results: The system was tested

for 50 descriptive inputs and all the inputs mapped to

appropriate descriptions and 49 of them formed to the correct

SQL query. Results that were used for testing are shown in

Table II. The descriptive data values have been highlighted in

bold.

E. IMDB Database

The system is tested on the IMDb database whose schema
is shown in Fig. 7. The database has tables that contain data of
movies and its genres, actors, and directors.

1) Experimental Setup: The tables names are self-

explanatory and the database overall contains movies’, actors’

and directors’ data and are linked through ‘roles’ and

‘movies_directors’ tables.

The genres of movies and directors are also contained in
the database.

2) Partial and Implied Values – Results: Out of the 48

natural language queries that were designed to test this feature,

44 queries correctly identified the partial/implied data values

and mapped to the correct SQL query.

The queries again tested the ability of the system to
generate queries with clauses such as WHERE, BETWEEN,
HAVING, ORDER BY, GROUP BY, COUNT, SUM, MAX,
MIN (aggregate functions).

Table III contains some of the correctly mapped natural
language queries. The data values which were partial or
implied have been highlighted in bold and the identified
attributes have been underlined.

Note, the IMDb database has no scope for testing
descriptive values. Company Sales database has been used for
this purpose.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

501 | P a g e
www.ijacsa.thesai.org

TABLE I. COMPANY SALES DATABASE: PARTIAL / IMPLIED VALUES

Input Natural Language Query Enriched Natural Language Query Output SQL Query

show all unmarried customers who

are men
show all single Gender 'male' customers

SELECT * FROM t_cstmrs WHERE LOWER(MaritalStatus)

= 'single' AND LOWER(Gender) = 'male'

Names of customers who have

graduated and from germany or

france

FullName Names of customers who have Education

'graduate degree' and from CountryRegion 'germany'

or CountryRegion 'france'

SELECT t_cstmrs.FullName FROM t_cstmrs INNER JOIN

t_ggrphy ON t_ggrphy.GeographyKey =

t_cstmrs.GeographyKey WHERE LOWER (

t_ggrphy.CountryRegion) = 'germany' OR LOWER

(t_ggrphy.CountryRegion) = 'france') AND (LOWER(

t_cstmrs.Education) = 'graduate degree')

get the price of red or dark helmet
get the price of Color 'red' or Color ‘black'

ProductSubCategoryName 'helmet'

SELECT ListPrice , Color FROM t_prdsubcat INNER JOIN

t_prds ON t_prdsubcat.ProductSubCategoryKey =

t_prds.ProductSubCategoryKey WHERE LOWER(Color) =

'red' OR LOWER(Color) = 'black'

how much does tire tube cost how much does ProductName ‘road tire tube’ cost
SELECT ListPrice , ProductName FROM t_prds WHERE

LOWER(ProductName) = 'road tire tube'

get the orders from new south wales

australia

get the orders from StateProvince 'new south wales'

CountryRegion 'australia'

SELECT t_saldtls.OrderQuantity, t_ggrphy.CountryRegion, t_

t_cstmrs.FullName , t_ggrphy.StateProvince FROM t_ggrphy

INNER JOIN t_cstmrs ON t_cstmrs.GeographyKey =

t_ggrphy.GeographyKey INNER JOIN t_saldtls ON

t_cstmrs.CustomerKey = t_saldtls.CustomerKey WHERE

LOWER(t_cstmrs.StateProvince) = 'new south wales' AND

LOWER(t_ggrphy.CountryRegion) = 'australia'

show subtotal of orders for helmet
show subtotal of orders for

ProductSubCategoryName 'helmet’

SELECT SUM(t_saldtls.SalesOrderint) FROM t_prds INNER

JOIN t_saldtls ON t_prds.ProductKey = t_saldtls.ProductKey

WHERE LOWER(t_prds.ProductName) = 'helmet'

Names of customers in germany who

purchased bicycle but not tires

FullName Names of customers in CountryRegion

'germany' who purchased ProductCategoryName

'bikes' but not ProductSubCategoryName 'road tire

tubes'

SELECT t_cstms.FullName FROM t_cstmrs INNER JOIN

t_ggrphy ON t_ggrphy.GeographyKey =

t_cstmrs.GeographyKey INNER JOIN t_saldtls ON

t_saldtls.CustomerKey = t_cstmrs.CustomerKey INNER JOIN

t_prds ON t_prds.ProductKey = t_cstmrs.ProductKey INNER

JOIN t_prdsubcat ON t_prdsubcat.ProductSubCategoryKey =

t_prds.ProductSubCategoryKey WHERE LOWER(

t_prdsubcat.ProductSubCategoryName) != 'road tire tubes'

AND LOWER(t_prdsubcat.ProductSubCategoryName) =

'bikes' AND LOWER (t_ggrphy.CountryRegion) = 'germany'

TABLE II. COMPANY SALES DATABASE: DESCRIPTIVE VALUES

Input Natural Languge Query Output SQL Query

list price of black products which is

responsive, maneuverable, low budget

and can go off-road.

SELECT t_prds.ListPrice FROM t_prds WHERE t_prds.Description = 'This low budget bike gives a high

performance.. It is maneuverable and responsive. Highly suitable to go off-road' AND (LOWER(t_prds.Color) =

'black'

Name the Road Series all round bike item

for road and racing.

SELECT t_prds.ProductName FROM t_prdcat INNER JOIN t_prdsubcat ON t_prdcat.ProductCategoryKey =

t_prdsubcat.ProductCategoryKey INNER JOIN t_prds ON t_prdsubcat.ProductSubCategoryKey =

t_prds.ProductSubCategoryKey WHERE t_prds.Description = 'Has specifications similar to our Road series bikes,

but the frame size has been made to suit a woman. All round bike, suitable for road and racing' AND LOWER(

t_prdcat.ProductCategoryName) = 'racing' AND LOWER(t_prdsubcat.ProductSubCategoryName) = 'bike')

Get the customers who have bought a bike

which is comfortable, provides durable

frame and high power

SELECT t_cstmrs.FullName FROM t_cstmrs CustomerKey INNER JOIN t_prds ON t_prds.ProductKey =

t_saldtls.ProductKey INNER JOIN t_saldtls ON t_saldtls.CustomerKey = t_csrmrs. WHERE t_prds.Description =

‘Has a lot of the same features as our high end bikes such as a comfortable, durable frame, and high power’;

Select the items with plush custom saddle

and space for panniers

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'The all new plush custom saddle gives

you the extra comfort while riding. Newly designed carrier gives you the extra space to add panniers and luggage

bags. It provides high stability even when fully loaded.'

Name the pink products which is

aerodynamic bike designed for a woman.

SELECT t_prds.ProductNam

e FROM t_prds WHERE t_prds.Description = 'The sleek aerodynamic body designed for a woman allows you to

either race,cross-train, or just socialize. Advanced seat technology provides comfort all day.’ AND (LOWER(

t_prds.Color) = 'pink'

Name the items which are developed by

Adventure Works Cycles Professional

race team

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'Tt posseses a very light weight heat-

treated steel frame, and highly precise steering contro006C. Developed with the Adventure Works Cycles

professional race team, is driven only by champions'

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

502 | P a g e
www.ijacsa.thesai.org

Get the price of items which is a higher

end mountain bike with rear suspension

SELECT t_prds.ListPrice FROM t_prds WHERE t_prds.Description = 'With enhanced performance achieved by

using the ground breaking SQ Frame, highly strong rear suspension, this is a higher end model moutain bike’

Show the price of bikes meant for racing

enthusiasts with low budget

SELECT t_prds.ListPrice FROM t_prdcat INNER JOIN t_prdsubcat ON t_prdcat.ProductCategoryKey =

t_prdsubcat.ProductCategoryKey INNER JOIN t_prds ON t_prdsubcat.ProductSubCategoryKey =

t_prds.ProductSubCategoryKey WHERE t_prds.Description = 'It is a low budget super strong bike that can ride on

all terrains while keeping you in complete control. It is suited for all you racing enthusiasts' AND (

t_prdcat.ProductCategoryName = 'bikes')

Select an item with mountain wheel for

entry-level rider.
SELECT * FROM t_prds WHERE t_prds.Description = 'Replacement mountain wheel for entry-level rider.'

Name the items which have pioneering

frame technology as the HQ steel frame.

SELECT t_prds.ProductName FROM t_prds WHERE t_prds.Description = 'The same pioneering frame technology

is used to give you the highest value as the HQ steel frame.'

Fig. 7. IMDb Database Schema [21].

TABLE III. IMDB DATABASE: PARTIAL / IMPLIED VALUES

Input Natural Language Query Enriched Natural Language Query Output SQL Query

List the names of actors who

played a lawyer

List the names of actors who played a

Roles.Role ‘Attorney’

SELECT actors.first_name FROM actors INNER JOIN roles ON

actors.id = roles.actor_id WHERE LOWER(roles.role) = ‘attorney'

List the category of films enacted

by Leonardo Dicaprio

List the movies.genre of films enacted by

actors.first_name ‘Leonardo’ actors.last_name

‘Dicaprio’

SELECT movies.genre FROM movies INNER JOIN roles ON

movies.id = roles.movie_id INNER JOIN actors ON actors.id =

roles.actor_id WHERE LOWER(actor.first_name) = 'leonardo' AND

LOWER(actor.first_name) = 'dicaprio’

Name the satirical movies played

by Frank Cady

Name the movies.genre ‘Comedy’ movies

played by actors.first_name ‘Frank’

actors.last_name ‘Cady’

SELECT movies.name FROM movies INNER JOIN roles ON movies.id

= roles.movie_id INNER JOIN actors ON actors.id = roles.actor_id

WHERE LOWER(actor.first_name) = 'frank' AND

LOWER(actors.last_name) = ‘cady’ AND LOWER(movies.genre) =

‘comedy'

What are the fairy tale movies

directed by Bill Condon

Name the movies.genre ‘Fantasy’ movies

played by directors.first_name ‘Bill’

directors.last_name ‘Condon’

SELECT movies.name FROM movies INNER JOIN roles ON movies.id

= roles.movie_id INNER JOIN directors ON directors.id =

movies_directors.director_id WHERE LOWER(directors.first_name) =

‘bill' AND

LOWER(directors.last_name) = ‘condon’ LOWER(movies.genre) =

‘fantasy')

 who directed the movie name 10

Rillington Place

who directed the movie movies.name ‘10

Rillington Place’

SELECT directors.first_name , movies.name FROM movies INNER

JOIN roles ON movies.id = roles.movie_id INNER JOIN actors ON

actors.id = roles.actor_id INNER JOIN movies_directors ON movies.id

= movies_directors.movie_id INNER JOIN directors ON directors.id =

movies_directors.director_id where movie.name = '10 Rillington Place'

show the movies directed by

Richard and enacted by Daniel

show the movies direced by

directors.first_name ‘Richard’ and enacted by

actors.first_name ‘Daniel’

SELECT movies.name , directors.first_name FROM movies INNER

JOIN roles ON movies.id = roles.movie_id INNER JOIN actors ON

actors.id = roles.actor_id INNER JOIN movies_directors ON movies.id

= movies_directors.movie_id INNER JOIN directors ON directors.id =

movies_directors.director_id WHERE directors.first_name = 'Richard'

AND actors.first_name = ‘Daniel’

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

503 | P a g e
www.ijacsa.thesai.org

VIII. CONCLUSION

The proposed system addresses major challenges faced by
many of the existing Natural Language to SQL Query
conversion algorithms.

Partial and implied data values in the natural language
queries are identified by a trained hybrid ML model. WordNet
is also used as a safety net to understand implied data values
where the vocabulary of the input relational database is not
expressive. Descriptive values are identified with the help of
Elastic Search.

Using the latent information gathered by the proposed
architecture, the accuracy and the robustness of the Natural
Language to SQL Query conversion system is proven to
increase dramatically (11% to 16%). This has been
demonstrated by extensively testing the system on the IMDb
database as well as the Company Sales database.

The accuracy of the system is 91.7% on IMDb database
and 94.0% on Company Sales database when tested on a
diverse set of queries. This is a significantly higher
performance compared to the discussed systems in section II.

This system can be used as a plug-in to any of the
conversion systems being developed/used. The meta
information extracted by the system helps developers boost
the accuracy and robustness of their algorithm.

REFERENCES

[1] Sathick KJ, Jaya A. Natural Language to SQL Generation for Semantic

Knowledge Extraction in Social Web Sources. Indian Journal of Science
and Technology. 2015; 8(1):1–10.

[2] F. Li and H. V. Jagadish. Constructing an interactive natural language

interface for relational databases. PVLDB 2014, 8:73–84.

[3] IMDb data files available for download [Online]. Available:

https://datasets.imdbws.com [Accessed: 19- Mar- 2020].

[4] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
2017. SQLizer: query synthesis from natural language. Proc. ACM

Program. Lang. 1, OOPSLA, Article 63 (October 2017), 26 pages.
DOI:https://doi.org/10.1145/3133887.

[5] N. Ott, "Aspects of the automatic generation of SQL statements in a

natural language query interface", Information Systems, vol. 17, no. 2,
pp. 147-159, 1992.

[6] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating

structured queries from natural language without reinforcement learning.
arXiv preprint ArXiv:1711.04436.

[7] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:

Generating structured queries from natural language using reinforcement
learning. arXiv Preprint arXiv:1709.00103 (2017).

[8] Giordani, A. and Moschitti, A. (2009b). Syntactic structural kernels for

natural language interfaces to databases. In Proceedings of the European
Conference on Machine Learning and Knowledge Discovery in

Databases: Part I, ECML PKDD, Berlin, Heidelberg. Springer-
Verlag.’09, pages 391–406.

[9] Prasetya Utama, Nathaniel Weir, Fuat Basik, Carsten Binnig, Ugur

Cetintemel, Benjamin Hättasch, Amir Ilkhechi, Shekar Ramaswamy and
Arif Usta.An End-to-end Neural Natural Language Interface for

Databases. arXiv Preprint arXiv:1804:00401.

[10] A. Prasad, G. Shobha, N. Deepamala, S. S. Badhya, Y. Yashwanth and
S. Rohan, "Machine Learning Techniques to Understand Partial and

Implied Data Values for Conversion of Natural Language to SQL
Queries on HPCC Systems," 2019 4th International Conference on

Computational Systems and Information Technology for Sustainable
Solution (CSITSS), Bengaluru, India, 2019, pp. 1-5. doi:

10.1109/CSITSS47250.2019.9031035.

[11] S. S. Badhya, A. Prasad, S. Rohan, Y. S. Yashwanth, N. Deepamala and
G. Shobha, "Natural Language to Structured Query Language using

Elasticsearch for descriptive columns," 2019 4th International
Conference on Computational Systems and Information Technology for

Sustainable Solution (CSITSS), Bengaluru, India, 2019, pp. 1-5. doi:
10.1109/CSITSS47250.2019.9031030.

[12] Apache Commons CSV API Documentation from the official website.

https://commons.apache.org/proper/commons-csv/apidocs/index.html
[Accessed: 19- Mar- 2020].

[13] R. Ruizendaal, "Deep Learning #4: Why You Need to Start Using
Embedding Layers", Medium, 2019. [Online]. Available: https://towards

datascience.com/deep-learning-4-embedding-layersf9a 02 d55ac12.
[Accessed: 19- Mar- 2020].

[14] S. Yan, LSTM node. 2016. [Online]. Available: https://medium.com/

mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714.
[Accessed: 19 - Mar- 2020].

[15] Bulk API, Elasticsearch Reference (7.2) in the official website.

https://www.elastic.co/guide/en/elasticsearch/reference/current/docsbulk
.html [Accessed: 19- Mar- 2020].

[16] Bulk Helpers, Python Elasticsearch Client in the official website.

https://elasticsearch-py.readthedocs.io/en/master/helpers.html
[Accessed: 19- Mar- 2020].

[17] Stop Analyzer, Elasticsearch Reference (7.2) in the official website.

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysi
s-stop-analyzer.html [Accessed: 19- Mar- 2020].

[18] Language Analyzers, Elasticsearch Reference (7.2) in the official

website. https://www.elastic.co/guide/en/elasticsearch/reference/current/
analysi s-lang-analyzer.html [Accessed: 19- Mar- 2020].

[19] Multi-match query, Elasticsearch Reference (7.2) in the official website.
https://www.elastic.co/guide/en/elasticsearch/reference/current/querydsl-

multi-match-query.html [Accessed: 19- Mar- 2020].

[20] TFIDFSimilarity (Lucene 4.6.0 API) in the official website.
https://lucene.apache.org/core/4_6_0/core/org/apache/lucene/search/

similarities/TFIDFSimilarity.html [Accessed: 19- Mar- 2020].

[21] IMDb Dataset Schema [Online]. Available: http://kt.ijs.si/
janez_kranjc/ilp_datasets [Accessed: 19- Mar- 2020].

