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Abstract—The reconstruction of a 3D mesh using 

displacement vectors for medical images is a recent method that 

allows the exploitation of modern GPUs. This method 

demonstrated its efficiency by accelerating 3D visualization 

calculations and optimizing the storage process. In fact, it is 

divided into two main stages. The first step is the construction of 

a basic mesh by applying the Marching Cubes algorithm, and the 

second step is the extraction of the displacement vectors, which 

represent the details lost in the basic mesh. In fact, the Marching 

Cubes algorithm used to build the basic mesh suffers from some 

problems that we will try to overcome in this article. These 

problems are summarized in the ambiguity encountered during 

the construction of the basic mesh in some cases. Also, the 

resulting basic mesh must undergo modifications, in order not to 

have errors of form, which requires time and memory, and which 

gives the end a final mesh which is not optimal and even 

erroneous in certain situations. Our method is based on 

extracting the contours of the anatomy to be reconstructed from 

a sequence of 2D images. Each contour will be represented by a 

triangle. The shape of the basic mesh will then be the result of the 

connection of these triangles. This strategy avoids the use of the 

marching cubes algorithm in the reconstruction of the basic mesh 

in order to overcome the problems mentioned above. 
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I. INTRODUCTION 

Using medical imaging, it is now possible to visualize the 
patient’s internal anatomy without resorting to surgery. The 
images obtained are 2D slice series on which it is not always 
easy to interpret the different problems faced by physicians. In 
order to overcome these problems, 3D imaging has been 
developed [1]. This technique will allow doctors, to visualize 
his patient in virtual 3D. This will bring a better representation 
of the internal anatomy in order to optimize the chances of a 
good diagnosis [2]. 

On the other hand, the recent technological development 
of devices used in the medical field has contributed to the 
resolution of the medical images obtained. The reconstruction 
of a 3D mesh of the human anatomy from these images 
generates a very large number of polygons. It preserves many 
details of the 2D image that lead to problems in the amount of 
information stored, and in terms of the complexity of the 
display of calculations for real-time visualization. 

Therefore, this paper focuses on the algorithms of the 3D 
reconstruction of medical images using the tessellation of 
recent graphics cards. These algorithms, based in principle on 
the Marching Cubes algorithm [3] and a displacement map, 
have shown their efficiency by optimizing the amount of 
information to be stored in the 3D mesh, and by accelerating 
the rendering computations. These algorithms are based on a 
sequence of 2D medical images, which will be segmented to 
extract only the organ to be reconstructed. Then, the Marching 
Cubes algorithm is applied to these segmented images. 

The size of the cubes selected in the Marching Cubes 
algorithm must be large to have a low-resolution basic mesh, 
this is the basic mesh. The algorithm developed by [4] allows 
us to extract the lost details from each basic mesh triangle 
using the information we have in the medical images. These 
details are stored as displacement vectors. 

The Marching Cubes algorithm used to build a low-
resolution basic mesh causes some ambiguity problems during 
the construction of the mesh in some cases, so the basic mesh 
has to be modified to avoid shape errors, which requires time 
and memory, and gives a final mesh that is not optimal and 
even erroneous in some situations. 

The rest of this paper is organized as follows: the 
background and related works are reviewed in Section 2; in 
Section 3, our methodology is discussed; Section 4 was 
devoted to discussing our results, and in Section 5, we 
summarize our work with conclusion. 

II. RELATED WORKS 

Among the 3D reconstruction algorithms used in the 
medical field is the Marching Cubes. The latter generates a 3D 
polygonal object from a three-dimensional scalar field [5]. 
This algorithm executes this scalar field, taking eight points at 
a time from an imaginary cube and determines the creation 
polygons to represent part of the iso-surface contained in this 
cube. This algorithm is based on a precomputed table of 256 
configurations of the number of polygons in a cube [6], 
treating each of the eight scalar values as a bit in an 8-bit 
integer. Although the MC algorithm has proven to be efficient, 
it suffers from several problems. Many solutions have been 
proposed to solve these problems. 
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The first problem detected in the MC algorithm is the case 
of ambiguities found in some configurations. In fact, the same 
cube can be triangulated in several ways. The author in [7] 
have identified the problem of face ambiguity, which occurs 
when two diagonally opposite vertices are labeled positive and 
two negatives are labeled negative. This ambiguity can lead to 
holes in the topology. The authors in [8] and [9] independently 
show another type of ambiguity that occurs inside a cube. 
These ambiguities can often be resolved by adding additional 
test points in each cube. Several methods are proposed to 
solve this problem, either for ambiguous cases on faces [7] or 
inside cubes [10] and [11]. 

The Marching Cubes algorithm divides the space into a 
regular cubic grid. The resolution of the resulting polygonal 
surface depends directly on the size of the grid. Increasing the 
number of cubes in the grid can increase the resolution of the 
polygonal area, but the number of resulting triangles can be 
large even if the original area is quite simple. To reduce the 
number of triangles, several methods have been developed to 
apply the Marching Cubes algorithm of the adaptive grid. A 
method that introduces the concept of multi-resolution grid 
generation [12], an algorithm that adapts the size of the 
triangles to the shape of the surface, has been proposed by [9]. 
The author in [13] proposed another method that keeps the 
same grid size and increases the resolution of the moving 
surface from the grid peaks to the surface of the cube, thus 
increasing the number of cubes containing the surface. 

In all the proposed solutions to improve the Marching 
Cubes algorithm, we always have the problem of the huge 
mesh obtained at the end of this treatment, which directly 
influences the fluidity of the visualization of this mesh in real 
time. Among the algorithms proposed to solve this problem, 
we have the algorithm proposed by [14] which is based on the 
Marching Cubes and on the tessellation of recent graphics 
cards. This algorithm has proven its interest in optimizing the 
amount of information to store for 3D mesh and to speed up 
display calculations using recent GPUs. 

This algorithm uses a sequence of medical images. These 
images are segmented to extract only the organ to be 
reconstructed. Then we apply, on these segmented images, the 
Marching Cubes algorithm [15]. 

The size of the cubes chosen in the Marching Cubes 
algorithm or its extensions must be important to have a low-
resolution mesh, it is the basic mesh. 

The algorithm developed by [14] extracts the lost details of 
each polygon from the basic mesh using the information that 
we have in medical images. These details are saved as 
displacement vectors. 

The method used in the work of [14] causes some 
problems in the precision of the final high-resolution mesh. 

Indeed, the use of Marching Cubes algorithm in the 
reconstruction of basic mesh always poses some problems: 

 The first problem posed by this algorithm is the cases of 
ambiguities found in certain configurations. For the 
same cube we can have several ways of triangulating 
(Fig. 1). 

 

Fig. 1. Ambiguity of Faces and Cubes. Several Triangulations possible for 

the same case. 

These ambiguities can cause inconsistencies, such as holes 
in the basic mesh (Fig. 2). 

In Fig. 2, we represent two neighboring cells. The left cell 
is triangulated, the voxels having the value 1 in a separate way 
(case 1), the neighboring cell on the right is triangulated, the 
voxels have the value 1 in a connected way (case 2). Both 
triangulations are valid, but they generate a triangular 
interface incompatible with a hole. The dotted lines indicate 
respectively the edges of the triangle in the other cell. 

 The second problem detected is the need to modify the 
mesh obtained by Marching Cubes in order to be used 
in Displacement Mapping. This treatment consists in 
removing some vertex from the mesh and merging 
triangles to obtain quadrilaterals. The application of this 
treatment on certain areas, indicated as complicated, 
leads to a deformation of the basic mesh (Fig. 3). 

 

Fig. 2. The Possible Triangulations of Marching Cubes for Two 

Neighboring Cells. 

 

Fig. 3. Complicated Area in a basic Mesh. 
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In this figure, we have a mesh obtained after the 
application of Marching Cubes on two slices. Vertex A is 
located in a complicated area, the removal of this vertex leads 
to the deformation of this mesh. The solution adapted by the 
original article is not to change its position, which causes the 
existence of triangles (the two green triangles) in which we 
cannot add the details lost with displacement mapping. 

In this paper, we proposed a new algorithm to reconstruct 
the low-resolution mesh. This technique is essentially based 
on an algorithm that extracts the contours and their 
correspondences to form this mesh. Our method overcomes 
the problems associated with the use of Marching Cubes. 

III. METHODOLOGY 

This section describes the method developed in this article 
to reconstruct a basic mesh without using the Marching Cubes 
algorithm. This method consists in extracting, from a sequence 
of 2D medical images, the contours of the anatomy to be 
reconstructed, and then to represent them by triangles, and in 
the final step we connect these triangles to form the low-
resolution mesh. 

In the first part, we determine the input of our algorithm 
and explain the basic idea. The other two parts describe in 
more detail the main steps of the algorithm: contour extraction 
and linking the triangles (the contour points). A last part is 
here to show how to build the high-resolution mesh. 

A. Overview of the Algorithm 

To overcome the above-mentioned problems, we have 
chosen a new strategy to build the basic mesh. This strategy is 
based on the extraction of the contours of the anatomy to be 
reconstructed from a sequence of 2D medical images. This 
contour will be divided into three equal parts in order to 
deduce the coordinates of the three points that will represent 
this contour by a triangle. The basic mesh will be formed by 
the correspondence of the triangles of the image N with the 
image N+1. The positions of the points of the sides that exist 
between two 2D images are estimated by applying the 
principle of interpolation, because we have no real 
information between 2D images (Fig. 4). The result of this 
processing represents the basic shape of the element to be 
reconstructed. 

The next step is to extract the lost details from each 
triangle of the basic mesh using the information we have in 
these 2D images. These details are recorded as displacement 
vectors. And using this method we can also automatically 
generate the displacement map for our basic mesh (Fig. 5). 

The inputs of our basic mesh construction method are the 
same inputs as the original algorithm. They are the 2D 
medical images undergoing a segmentation to extract only the 
part that we are concerned (Fig. 6). 

B. Contour Extraction 

Based on the segmented slices, we must extract the 
contours of the object to be reconstructed. 

To detect these contours, several methods are possible, 
grouped into several classes, those based on non-linear 
filtering such as the median filter -and more recently- [16], 

those using high-pass filtering, such as the Prewitt, Sobel and 
Canny detectors [17], those of multi-scale analysis developed 
with wavelet theory [18] and [19], and those based on the rare 
approximation by redundant dictionary [20]. 

The previously mentioned methods of contouring consist 
of defining abrupt changes in pixel intensity. However, our 
issue recommends that we need to get a chained list of contour 
points, respecting a fixed order. So, the strategy we used is to 
extract one point from the considered contour, and then we 
must extract the other points in an orderly way by following 
the path of these contours. 

In the next step we will represent each contour by a 
triangle. We then calculate the center of gravity of each 
contour. The center of gravity will be the average of the points 
that make up the contour (Fig. 7). The horizontal projection of 
this point on the contour gives at least two points. The point 
with the maximum abscissa value will be the first vertex of the 
triangle, i.e. point A. The two vertices of the triangle, the 
remaining point B and C, must be separated by the same 
number of contour points. 

 

Fig. 4. The Result of the First Stage of the Reconstruction of a basic 3D 

Mesh from Medical Images. 

 

Fig. 5. Diagram Representing the different Steps of our Algorithm. 

 

Fig. 6. The Inputs to our Algorithm, the Medical Images [14]. 
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Fig. 7. Calculation of the Center of Gravity and Three Points that represent 

an Outline of a 2D Image. 

Each contour of slice N will be represented by three points 
forming a triangle. These will be the basis of the low-
resolution mesh of the anatomy to be reconstructed. 

C. Construction of the basic Mesh 

1) Contour matching: In our method, the construction of a 

basic mesh consists in making the correspondence between the 

contours of each slice n with those of slice n+1[21]. 

Drawing faces from the contours isn’t an easy thing, since 
it depends on solving three problems [22]: 

 Matching problem: How to match the contours in the N 
slice with a contour of the n+1 slice? 

 Tiling problem: How to connect the points of the 
contour Cn in the n slice with the points of the contour 
Cn+1 in the n+1 slice? 

 Connection problem: How to divide the contour Cn in 
slice n that corresponds to the contours Cn+1a and 
Cn+1b in slice n+1? 

The representations shown below, highlights feasible 
possibilities to solve the matching problem in the case where 
the number of contours in adjacent slices is not the same 
(Fig. 8) (contours can be split or merged). Although the 
matching problem depends on the connection issue, the 
assumption that it can occur in isolation is not ruled out; 
especially if the contour curves change strongly between 
adjacent slices. 

To determine the relationship between the contours of two 
consecutive slices, we used a correspondence factor. To 
calculate this factor, each contour is represented by a binary 
matrix of the same size as the slice. The pixels that are inside 
the contour will be represented by the value 1 and the others 
by the value 0 (Fig. 9). 

Thus, to determine the value of the correspondence factor 
between 2 contours C1 and C2 of two consecutive slices 
(Fig. 10), we apply the logical AND operator on the matrices 
of the two contours. 

 

Fig. 8. Three Possible Solutions to the Problem of Matching in the Event of 

a Change of Topology. 

 

Fig. 9. Representation of Matrices for the Contours of a Slice. 

 

Fig. 10. Calculation of the Result of Two Binary Matrices. 

The correspondence factor of a contour is then the sum of 
the elements of the resulting matrix, divided by the sum of the 
elements of the matrix of the same contour. 

We deduce that the correspondence factor of the contour 
C1 in relation to C2 is: 

𝐹𝑐(𝐶1/𝐶2) =
∑ 𝑒𝑙𝑡 𝑅

∑ 𝑒𝑙𝑡 𝐶1
=

4

6
 

and the correspondence factor of the contour C2 in relation 
to C1 is: 

𝐹𝑐(𝐶2/𝐶1) =
∑ 𝑒𝑙𝑡 𝑅

∑ 𝑒𝑙𝑡 𝐶2
=

4

4
 

So, to determine the relationship between the contours of 
slice N and the contours of slice N+1, using the 
correspondence factor, there are two possible cases: 

 Contour C1 of slice N is connected to only one contour 
C2 of slice N+1. 

 Contour C1 of slice N is connected to several contours 
of slice N+1. 
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In order to verify the first case, there must be a 
correspondence between C1 and C2 in both directions; i.e. the 
contour C1 must correspond to C2, and C2 must correspond to 
C1 (Fig. 11). This correspondence exists when the two 
correspondence factors Fc (C1 / C2) and Fc (C2 / C1) are 
respectively greater than a given threshold. In our case, we are 
working on a series of slices from recent scanners, with a 
distance between slices in the order of millimeters. So, the 
correspondence factor between the linked contours is close to 
100%. 

In this article, we must determine a threshold for the 
correspondence factor ( 𝑆𝑓 ) from which we can determine 

whether there is a correspondence between 2 contours or not. 
To make this choice, we have a compromise to make. On the 
one hand we must choose the lowest possible threshold in 
order to take into account all the particular cases of contour 
change from one slice to the other, and on the other hand, we 
must not have conflicts of correspondence if we accept very 
low correspondence factors. An example of this conflict is to 
have a correspondence of one contour of slice n with several 
contours of slice n+1. The value of the matching threshold we 
have chosen to meet this compromise is 50%. 

In the rest of this article, we assume that the C1 contour is 
related to a C2 contour if the two correspondence factors are 
greater than 50%. This assumption will not be true if there is a 
large distance between the slices. The thing that is not valid in 
our situation. 

And for the second case, we have one contour of slice N 
which corresponds to two or more contours (C2, C3… CK) of 
slice N+1. In this case, the correspondence factor is checked 
only in one direction (Fig. 12). 

In this figure, the contours of slice N+1 correspond to the 
same contour of slice N. The correspondence factors 
Fc(C2/C1) and Fc(C3/C1) are greater than the determined 
threshold. However, the correspondence factors Fc(C1/C2) 
and Fc(C1/C3) may be necessarily lower than the determined 
threshold. 

In the special case, where there are two contours in the 
same slice N which correspond to each other, and which 
correspond to the same contour in slice N+1 (Fig. 13), one 
contour must be removed from slice N to take off this 
correspondence. In fact, the stronger match is the one that will 
remain. Also, since Fc(C2/C3) + Fc(C1/C3) is greater than 
Fc(C2/C1) + Fc(C1/C2), then contour C2 will be removed 
from this matching assumption. 

 

Fig. 11. Contour C1 of Slice N and Contour C2 of Slice N+1 are Linked. 

 

Fig. 12. The Contour C1 is Divided into Two Contours C2 and C3 in the 

following Slice. 

 

Fig. 13. Two Consecutive Slices that have Contours that Correspond to each 

other. 

2) Construction of the low-resolution mesh: The 

construction of the mesh amounts to linking the corresponding 

contours. And to obtain a low-resolution mesh we just connect 

the triangles that represent the contours. In this step, there are 

two cases: 

 A contour of slice N is connected to a single contour of 
slice N+1. 

 One contour of slice N is connected to two or more 
contours of slice N+1. 

In the first case, the construction of the mesh amounts to 
connecting the vertices (A, B, C) of the contour C1 with the 
vertices (A’, B’, C’) of the contour C2 respectively (Fig. 14). 

In the second case, the construction of the mesh amounts 
to connecting the contour C1 of the slice N with the vertices 
((A', B', C'), (A'', B'', C''),…) of contours (C2, C3,…, Ck) by 
taking into account the correspondence factors Fc (C1 / C2), 
Fc (C1 / C3),…, Fc (C1 / Ck). 
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Fig. 14. Connection of Contour C1 of Slice N to Contour C2 of slice N + 1. 

Contour C1 will be divided according to the number of 
contours that correspond to it, and according to the percentage 
of correspondence of contours C2, C3, ..., Ck with respect to 
contour C1 is calculated. 

The matching factor is used to calculate the matching 
percentage. 

We suppose that: ∑ 𝐹𝑐 (
𝐶1

𝐶𝑛
) = 𝑋 

𝑘

𝑛=1
 

And we use the triangular relation to calculate the 
percentage of correspondence: 

𝐹𝑐 (
𝐶1

𝐶𝑛
)   𝑃𝑐 (

𝐶1

𝐶𝑛
) 

X    100% 

Then, we have: 

𝑃𝑐(𝐶1/𝐶𝑛) =  𝐹𝑐(𝐶1/𝐶𝑛)  / X 

This percentages of correspondence indicate the 
percentage of correspondence of the contours C2, C3, ..., Ck 
with respect to the contour C1. And to locate the position of a 
contour Ck in the contour C1, we project the center of gravity 
of the contour Ck on the contour C1. Next, the correspondence 
area is calculated using the correspondence percentage 
(Fig. 15). Henceforth, we can determine the three points (A, 
B, C) of the sub-contour which corresponds to each contour 
Ck. 

In the figure above, the two contours C2 and C3 
correspond to the contour C1. So, to calculate the 
correspondence surface of each contour of slice N + 1 in 
contour C1, we first projected the centers of gravity of the two 
contours on contour C1. Then, we made the intersection of the 
straight line (D) passing by the two projections and the 
contour C1. However, we calculate the correspondence 
percentages Pc (C1 / C2) and Pc (C1 / C3). Subsequently, we 
did a sweep from the end of each intersection of the contour 
C1 with the line (D) according to the match percentages. In 
Fig. 15 the sub-outline on the right (green color) represents 
33.33% of the contour C1, and the sub-contour on the left 
(orange color) represents 66.67% of the contour C1. 

The next step is to match each contour of the N+1 slice to 
its corresponding contour in the N slice (Fig. 16). 

 

Fig. 15. The Correspondence of the Contour C1 to Two Contours C2 and C3 

of the Slice N + 1. 

 

Fig. 16. Construction of the Low-Resolution Mesh from Two Contours C2 

and C3 which Correspond to the Contour C1. 

D. Construction of the High-Resolution Mesh 

As shown in the previous diagrams, the constructed mesh 
is a basic mesh that does not reflect the true shape of the 
anatomy in question. It is necessary to add to it the details lost 
during the construction of the basic mesh in real-time 
visualization. The displacement vectors must then be extracted 
using the contour data and quadrilateral edges obtained after 
linking the triangles that represent the contours. 

The detail extraction method used in the original article, is 
based on the discretization of the edges that are on the 2D 
images in N points, then to extract for each point the 
corresponding displacement vector. 
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Two problems arise when using the displacement vector 
extraction algorithm to obtain a high-resolution mesh; the first 
is that all sides of polygons are discretized to N points, with N 
fixed. However, the widths of the sides are not identical 
(Fig. 17), and therefore logically the homogeneity of the final 
3D mesh will be altered with respect to the details extracted 
from each polygon. 

It can be noted that the level of detail extracted from side 
A is less important than that of side B. 

The second problem concerns the final shape of the 
anatomy to be reconstructed, which presents errors in certain 
situations. Drawing a perpendicular line from the points 
resulting from the discretization of each side sometimes gives 
two or more points of the intersection with the contour in 2D 
images. The choice of the extraction method of the original 
algorithm leads to erroneous results, because through this 
method the choice of the vector is always made between a 
point that belongs to the side and the closest intersection point 
of this side. This alters the accuracy of the result especially 
since the details no longer correspond to the true shape of the 
anatomy (Fig. 18). 

We notice that the obtained shape (c), using these 
displacement vectors (b), does not really resemble the true 
shape (a). 

In a more recent work by the same author [4] the 
extraction method has been modified to overcome the 
problems mentioned above. 

The new strategy used is to extract the displacement 
vectors is based on the extraction of the contour of the object 
to be reconstructed from the medical images, then, using 
discretization of these contours we generate the displacement 
vectors. 

 

Fig. 17. Heterogeneity of Details Extracted from each Side [4]. 

 

Fig. 18. Errors in Extracting the Small Reliefs. The Contour Obtained (c) by 

using the Displacement Vectors (b) does not Correspond Exactly to the True 

form (a) [4]. 

This new extraction method has an importance related to 
two main issues; the first concerns the generation of vectors 
considering the contour itself, this allows more precision for 
the construction of a real anatomical shape. The second 
interest is the integration of the same level of detail in all the 
polygons of the basic mesh, through the discretization of the 
contour of the anatomy with a fixed point. 

Displacement vectors will be used for the automatic 
generation of the displacement map, which is an image 
allowing to determine the distance and direction used to move 
the points of the surface during real-time visualization. 

We follow the same approach used in the original paper to 
generate the high-resolution mesh based on the basic mesh 
obtained with our new method and the displacement map 
(Fig. 19). 

 

Fig. 19. Rendering with Hardware Tessellation to Generate the High-

Resolution Mesh. 
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IV. RESULTS AND DISCUSSION 

The implementation of our new method for reconstructing 
a 3D mesh from medical images is based on: 

 The detection and extraction of contours from a 
sequence of medical images; 

 The construction of a low-resolution 3D mesh from the 
contours; 

 The construction of the high-resolution mesh from the 
displacement vectors and the basic mesh. 

The image sequence used in this paper is segmented to 
extract only the anatomy to be reconstructed. 

Initially, we tested our new 3D mesh reconstruction 
method in terms of the quality of the obtained 3D mesh. 

The basic mesh construction method used by the original 
algorithm is based on the use of the Marching Cubes 
algorithm, while determining the size of the cubes. This 
method causes cases of ambiguity in some configurations; i.e. 
for the same cube, there can be several ways of triangulation. 
Also, with this method, an additional step is mandatory to 
render the mesh obtained from the Marching Cubes algorithm 
in the form of quadrilaterals, in order to apply displacement 
mapping. And in some situations, complicated areas are 
confronted during this step, which cause deformations in the 
reconstruction of the high-resolution mesh. 

In Fig. 20, point A is located in a complicated area. This 
point will lead to deformation when applying displacement 
vectors, since there is no information at this point. 

In our new method, the extraction of the contours and the 
use of the correspondence factor allows the construction of a 
3D mesh without ambiguity, and directly in the form of 
quadrilaterals. 

In fact, after extracting the contours in the 2D images, the 
correspondence factor for the contours of each image N is 
calculated with the image N+1. This factor makes it possible 
to indicate the contours that match each other unambiguously. 
Also, the construction of the basic 3D mesh is done by 
representing each contour by a triangle. Then, the triangles of 
the contours that correspond to each other are connected. This 
connection results in a mesh in the form of quadrilaterals (Fig. 
21). 

We also note that our new method incorporates an 
improvement made to this article in terms of displacement 
vectors [4] (Fig. 22). 

Note that the mesh obtained with high resolution 
corresponds to the real anatomical shape. 

Subsequently, we tested our new method at the storage 
level. The algorithm used in the original method allows us to 
generate a basic mesh with many vertices. But with our 3D 
mesh construction method which is based on contour 
extraction and the representation of each contour by a triangle, 
we notice that the amount of storage is less important (Fig. 23 
and Fig. 24). 

 
Low-Resolution Mesh. 

 
High-Resolution Mesh. 

Fig. 20. The Modification Step Leads to Deformations in Complicated Areas. 

 

Fig. 21. A basic Mesh in the form of Quadrilaterals with our New Method. 
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Fig. 22. The High-Resolution 3D Mesh Obtained after the Application of the 

Displacement Vectors by Integrating the Improvement. 

 

Fig. 23. Basic Mesh with the Original Method. 

 

Fig. 24. Basic Mesh with our New Method. 

If we compare the used memory space of the two 3D 
meshes between two 2D images (Table I), we find: 

We worked on a medical volume consisting of 30 slices. 
With the original method, we obtained a basic mesh size of 40 
501 bytes, and with our method, we obtained a basic mesh 
size of 37 675 bytes. 

We can see from these calculations that our new method is 
optimized in terms of storage. 

TABLE I. CALCULATION AND COMPARISON OF THE SIZE OF MESH IN THE 

ORIGINAL METHOD AND THE NEW METHOD 

 
Basic mesh 

between two 2D 

images 

Displacement vectors Total: 

The original 

method 

27 vertex 

*3 float(x,y,z) 

*4 octets 

500 vectors 

*2 char(x,y) 

*1 octet 

=1324 

bytes 

The new 

method 

12 vertex 

*3 float(x,y,z) 

*4 octets 

500 vectors 

*2 char(x,y) 

*1 octet 

=1144 

bytes 

V. CONCLUSION 

In this paper, we proposed an improvement of the 
algorithm that allows the reconstruction of the 3D mesh for a 
2D medical image sequence, using low-resolution mesh and 
displacement vectors. The use of displacement vectors to add 
small reliefs on a basic mesh has proven to reduce the amount 
of information stored in the final 3D mesh. Also, the 
automatic generation of the displacement map speeds up 
rendering calculations using the GPU. 

In this work, we modified the method used to build the 
basic mesh. This modification aims to eliminate the cases of 
ambiguity, particularly in certain types of objects which 
cannot be treated easily with the original method which uses 
the algorithm of Marching Cubes. Thus, it also makes it 
possible to obtain a low-resolution mesh directly usable during 
rendering without going through a modification step. 

In our new method, we extracted the contour of the 
anatomy to be reconstructed for the 2D images, then we built a 
3D mesh in minimal time, and optimized in terms of memory. 
Then we generated displacement vectors by discretizing the 
contour according to the level of detail we want to see. 

Our method has proven itself on two main points: 

 The reconstruction of the low-resolution 3D mesh using 
triangles that represent the contours provides a basic 
mesh without deformation problems that can be used in 
rendering. 

 The edge detection method allows to overcome the 
ambiguity problems from which the Marching Cubes 
algorithm suffers.  
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