
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

579 | P a g e
www.ijacsa.thesai.org

An Effective Solution to Count-to-Infinity Problem

for both Complex and Linear Sub-Networks

Sabrina Hossain1, Kazi Mushfiquer Rahman2, Ahmed Omar3, Anisur Rahman4

Department of Computer Science and Engineering, East West University, Dhaka, Bangladesh

Abstract—Distance vector routing protocol determines the

best route for forwarding information from one node to another

node based on distance. For calculating the best route, Distance-

vector routing protocols use the Bellman-ford algorithm and the

Ford-Fulkerson algorithm. The Bellman-Ford distributed

algorithm calculates the shortest path. On the other hand,

Routing Information Protocol is commonly used for managing

router information management protocol within a Local Area

Network or an interconnected Local Area Network group. The

main problem with Distance Vector Routing protocols is routing

loops. Because the Bellman-Ford Algorithm cannot prevent

loops. Moreover, the routing loop triggers a problem with Count

to Infinity. This research paper gives an effective solution to the

Count to Infinity problem for link down situation and also for

the router down situation in both complex and linear sub-

network. For the router down situation, when any router goes

down, then other nodes will recalculate their routing table with

the dependency column. Moreover, the costs are calculated by

the shortest path algorithm. If any link is down and all routers

are up, then all routers will recalculate their routing table using

Dijkstra instead of the Bellman-Ford algorithm. To determine

the loops and prevent the loops are the main objectives. This

method is mainly based on a routing table algorithm where the

Dijkstra algorithm will be used after each iteration and will

modify the routing table for each node. Preventing the routing
loops will not converge into Count to Infinity Problem.

Keywords—Distance vector routing; local area network;

routing information protocol

I. INTRODUCTION

Nowadays, scientists are trying to reduce the packet loss
problem. Everybody needs high-speed internet and, they want
everything fast. However, because of packet loss, the service
becomes slow, the network connection gets disrupted, and
sometimes it loses the whole network connectivity. It creates
significant problems in real-time data transfer programs. So, a
better network means less packet loss. Distance Vector
Routing is one of the dynamic algorithms [1]. Whenever a
router goes down, routing loops usually occur in DVR. Then it
creates a linear topology. Linear topology generates count to
infinity problem. Because of that, a huge number of packets
will be lost and, that is an immense issue. If all router gets to
know earlier that any router already got down by observing an
extra column of the routing table, then the packet loss problem
can be minimized and which will improve the network
connectivity. The modification of the routing table and
alternation of the algorithm into the Dijkstra algorithm might
cause less packet loss problem, and then the network
connectivity will become well.

II. ROUTING ALGORITHM

Routing is a method of determining the routes to reach the
destination that data packets will obey. A table of routing table
is created in this process which contains information about the
routes that data packets follow. Different routing algorithms
are used to determine which route an incoming data packet
needs to be transmitted efficiently to its destination.

A. Distance Vector Routing Algorithm

The Distance vector uses the Bellman-Ford algorithm for
finding the shortest paths [2]. It can also be calculated by
Dijkstra algorithm. Every node calculates the distance from
other routers. The shortest path is created based on the metric.
The metric is referred to as a count or a distance. In the
Distance vector, the process of exchanging information is
done iteratively [1]. There is no information exchange
between the neighbourhoods until the information received
from at least one neighbour directly and the algorithm does
not require all the neighbours are asynchronous with each
other. In distance vector, each node maintains the distance
from it, to its possible destination and sends a periodic routing
update. For periodic routing updates, the convergence time is
slow. The slow convergence leads to count-to-infinity and
routing loops problem [1].

B. Dijkstra Algorithm

Dijkstra algorithm solves the shortest path algorithm, and
it is better than the Bellman-Ford algorithm. It works better
when multiple paths present in the topology, and it helps to
choose the shortest path [3][4]. In the following algorithm, the

code u ← vertex in Q with min dist[u], searches for the vertex
u in the vertex set Q that has the least dist[u] value. Length (u,
v) returns the length of the edge joining (i.e. the distance
between) the two neighbour-nodes u and v. The variable alt on
line 18 is the length of the path from the root node to the
neighbour node v if it were to go through u. If this path is
shorter than the current shortest path recorded for v, that
current path is replaced with this alt path. The previous array
is populated with a pointer to the "next-hop" node on the
source graph to get the shortest route to the source [5]. The
Dijkstra algorithm is a Dynamic programming approach. A
complex problem is divided into sub-problems in the Dynamic
programming approach, then combine the solutions of these
sub-problems to get an overall solution. So, Dijkstra's
algorithm is a greedy approach. So, it does not create routing
loops. In the Bellman-Ford algorithm, it cannot prevent loops,
but through Dijkstra, it can be prevented. If any link or router
down then, it will apply a greedy approach that will prevent
the loops and solve the Count to infinity problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

580 | P a g e
www.ijacsa.thesai.org

III. COUNT TO INFINITY PROBLEM

Count-to-Infinity Problem is one of the most important
issues in Distance Vector Routing (DVR) Algorithm. When an
interface goes down, routing loops usually occur in DVR.
Which actually creates linear subnet. When two routers send
an update to each other at the same time, it can also occur
[6][7]. Distance Vector Routing reacts rapidly to good news,
but leisurely to bad news [8]. In distance vector routing, it
uses the Bellman-Ford algorithm to propagate. To see how
slow bad news propagates, consider the situation of 1(a) in
which all the lines and router are initially up. Router B, C, D,
and E have the distance to A of 1, 2, 3, and 4 respectively.
Suddenly A goes down, or the line between A and B is cut,
which is effectively the same thing from B’s point of view in
Fig. 1(b). At the first packet exchange, B does not hear
anything from A. Fortunately, C says: do not worry; I have a
path to A of length 2. As a result, B thinks it can reach A via
C, with a path length of 3 and D & E do not update their
entries for A on their first exchange.

∞ ∞ ∞

∞

Initially

1 ∞

∞

∞

After 1st

exchange

1 2 ∞

∞

After 2nd

exchanges

1 2 3 ∞

After 3rd

exchanges

1 2 3 4 After 4th

exchanges

(a). Before Count to Infinity Problem.

1 2 3

4

Initially

3 2

3

4

After 1st

exchange

3 4 3

4

After 2nd

exchanges

5 4 5 4

After 3rd

exchanges

5 6 5 6 After 4th

exchanges

∞ ∞ ∞ ∞ After infinity

exchanges

Fig. 1. (b). After Count to Infinity Problem.

On the second exchange, C notices that each of its
neighbour’s claims to have a path to A of length 3. It picks
one of them at random and makes its new distance to A of
length 4, as shown in the third row. Subsequent exchanges
produce the history shown in the rest of Fig. 1(a) and 1(b) [8].

Linear Subnet: Whenever a router goes down, routing
loops usually occur in DVR. Then it creates a linear topology.
Linear topology creates count to infinity problem.

In Fig. 2 a complex network is shown, but every time a
router goes down, the routing loops will happen.

If router E from Fig. 2 goes down, then there will be a
linear sub-network which is shown in Fig. 3.

Fig. 2. A Complex Network.

Fig. 3. A Linear Sub-Network.

IV. RELATED WORK

The main difference between link sate and distance vector
routing is, link-state uses an algorithm derived from Dijkstra's
shortest path algorithm where distance-vector uses a
distributed Bellman-Ford algorithm [8]. The distance vector
routing algorithm suffers from the count-to-infinity problem.
Count-to-infinity problems can be solved by preventing loops
[9][8][1]. Researchers tried to prevent them by using various
ways. Mr. D. Ganesh solved the count to infinity problem by
using RSTP (Rapid Spanning Tree) protocol, Bridge protocol
unit, building and maintaining SP (Spanning Tree) tree and
changing the topology. They also follow some rules which are
If a bridge can no longer reach the root bridge via its root port
and does not have an alternate port, it declares itself to the
root; A bridge sends out a BPDU immediately after the
topology information it is announcing has changed, A
designated port becomes the root port if it receives a better
BPDO than what the bridge has received before. That is, this
BPDU announces a better path to the root than via the current
root port. When a bridge loses connectivity to the root bridge
via its root port, and it has one or more alternative ports, it as
its new root port. By using these rules, they portioned the
network. Whenever a network is partitioned, if the partition
does not contain the root bridge as a cycle, there exists a race
condition that can result in the count-to-infinity behaviour.
Count-to-infinity may even occur without a network partition.
This new topology information will go around the loop until it
reaches an alternate port caching stale, but better information.
Again this stale information will choose the new information
around the loop in a count to infinity. This will keep going

A B C D E
1 1 1 1

A B C D E
2 1 3 4

B

A

C D

E F

1

2 3

4

5

6

7

F A B C D
2 1 3 4

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

581 | P a g e
www.ijacsa.thesai.org

until the stale topology information reaches its massage [8].
Amit D. Kothari and Dharmendra T. Patel have also solved
the count-to-infinity problem by using the test packet. They
have some criteria for this test packet. First of all, they give
source and destination addresses with the sequence number.
They also declare the packet type like a query for any router
and answer for the router. They also count the hop which
initializes with 0 and increments by each intermediate router.
The test packet will travel through source address to lastly.
Then the address of the test router via the test packet is to be
forwarded. Then it will give status where 1 is positive, and 0 is
negative. The value will be a delay for the last neighbour. For
error handling it will checksum. To solve the count to infinity,
they design this type of test packet [1].

There is various way to solve the Count to Infinity.

1) Routing information protocol uses split horizon. Split

horizon is a process where the actual distance to a destination

is not reported to a node through which reaches the destination

For example if node A has learned a route to node C through

B, then A does not send the distance vector of C to node B

during a routing update [9].

2) The count to infinity problem can be avoided by using

hold-down timers. This is a clock that is set within the node to

help ensure network stability.

When a node receives an update from a neighbour
indicating that a previously accessible network is not working
and is inaccessible, the hold-down timer will start. If a new
update arrives from a neighbour with a better metric than the
original network entry, the hold-down is removed, and data is
passed. Nevertheless, an update is received from a neighbour
node before the hold-down timer expires and it has a lower
metric than the previous route. Therefore the update is
ignored, and the hold-down timer keeps ticking. This allows
more time for the network to converge [9].

V. METHODOLOGY

A. Procedure

Aiming at the difficulties in the count to infinity problem,
this research proposed a method using Dijkstra Algorithm in
each iteration and modifying the routing table with additional
information. In the routing table, it added cost (shortest path),
dependency, and status.

1) Dependency: It denotes the dependency of a router. For

example, for calculating the routing table for C if it chooses a

path from Router A to C via B and when the node A is down

from Fig. 4 then, B is dependency router of C.

2) Status: It denotes the router is in hold situation or not.

Which will prevent the routed loop in DVR.

Fig. 4. A Linear Sub-Network of Three Routers.

This research has designed a method for both complex
network and linear sub-network. At first, it will check if there
is any link down or not. However, it has four different cases.

Case1: If all links are up, then it will go for checking the
routers. If any routers are not down, then every node will
calculate their routing table.

Case2: If all links are up, but any of the routers is down,
then every router will recalculate their routing table. Every
router will check the dependency column while recalculating
its routing table. From the dependency column, a router can
get to know about the present status of each router. Which
means a router can easily track if there is any router down or
not. If a router finds any router as down and which is its
dependency router, then it will also change its status as down.
Gradually all router’s status will be down, and it will not
create count to infinity problem.

Case3: If any link is down and all routers are up, then all
routers will also recalculate their routing table using Dijkstra.
While recalculating the routing table, a router will call itself as
a holding router by updating the status column in the routing
table. Therefore, other routers can do their work without any
obstacles, and in the meantime, they can transmit their
required packets to each other.

Case4: If any link is down and any router is also down
then, at first it will follow case number 3 as mentioned in the
above. And then it will follow the case of router down.

B. Algorithm of Proposed Method

In the two situations, one is for the topology links, and
another is for routers. In four cases, two of the cases occur for
the link down situation, and another two cases occur for router
down situation.

1: Function main(){

Randomly pick up any cases

2: If (case 1){

Run generate routing table (source)

Print routing table

}

3: If (case 2){

 I. Scan which router is down

 II. Switch down the router

 III. Run generate routing table (source)
 IV. Print routing table

}

4: If (case 3){

 I. Scan which link is down

II. Turn off the link

III. Run generate routing table (any node of the link)

IV. Print distance between the link’s node

}

5: If (case 4){

 I. Scan the link which is down

II. Turn off the link
III. Calculate distance vector

IV. Print distance vector

}

}

A B C
1 2

Router B is the

dependency router of
C to reach Router A

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

582 | P a g e
www.ijacsa.thesai.org

As the shortest path algorithm, it will use the Dijkstra
Algorithm. Which is,

1: Function generate routing table(source){

2: create vertex set Q

3: for each vertex v in Graph:

4: dist [v] ← INFINITY

5: prev[v] ← UNDEFINED

6: add v to Q

7: dist[source] ← 0

8: while Q is not empty:

9: u ← vertex in Q with min dist[u]

10: remove u from Q

11: for each neighbor v of u: // only v that are still in Q

12: alt ← dist[u] + length(u, v)

13: if alt < dist[v]:

14: dist[v] ← alt

15: prev[v] ← u

16: return dist[], prev[]

}

For preventing the routing loops if all routers state their
dependency with the additional details in the routing table,
then all nodes will be slowly informed if there is any router in
the down condition which causes routing loops. Here, the
routing loops problem will be prevented. Moreover, for link
down situation packet loss problem may be arrived. So, if any
link is down, then all routers will recalculate their routing
table using Dijkstra. While recalculating the routing table, a
router will call itself as a holding router by updating the status
column in the routing table.

VI. SIMULATION RESULT

A. Simulation Result for Complex Network

 The proposed method has been simulated using C++ to
validate the proposed model. A group of four routers are
placed at different costs, see Table I. Fig. 5 of the graph is
given below.

Fig. 5. A Graph with Various Costs.

TABLE I. THE COSTS OF THE PATHS

Routers A B C D

A

1

2

B 1

1 6

C

1

2

D 2 6 2

At first, it will check if there is any link down or not. Then
it will choose a case randomly from four cases. If it chooses
Case 1 when the source router is A, then the routing Table II is
going to appear as mentioned.

TABLE II. CASE 1 WITH SOURCE ROUTER A

Node Cost Dependency Status

A 0 NULL UP

B 1 A Up

C 2 B Up

D 4 C Up

If it chooses Case 2 when the source router is A, and it
goes down, then the routing Table III will be like this

TABLE III. CASE 2 WITH SOURCE ROUTER A

Node Cost Dependency Status

A 0 NULL Down

B 1 A Up

C 2 B Up

D 4 C Up

Then the router B’s status will be down as its dependency
router A’s status is also down in Table IV.

TABLE IV. ROUTER B’S STATUS IS DOWN WHEN ITS DEPENDENCY

ROUTER’S STATUS A IS ALSO DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 2 B Up

D 4 C Up

Then the router C’s status will be down as its dependency
router B’s status is also down in Table V.

TABLE V. ROUTER C’S STATUS IS DOWN WHEN ITS DEPENDENCY ROUTER

B’S STATUS IS ALSO DOWN

Node Cost Dependency Status

 A 0 NULL Down

B 1 A Down

C 2 B Down

D 4 C Up

At last the router D’s status will be down as its
dependency router C’s status is also down in Table VI.

TABLE VI. ROUTER D’S STATUS IS DOWN WHEN ITS DEPENDENCY ROUTER

C’S STATUS IS ALSO DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 2 B Down

D 4 C Down

A

B

C

D

2

1

1

2

6

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

583 | P a g e
www.ijacsa.thesai.org

So it will not cause the count to infinity problem. This is
how this method handles Count to Infinity problem for a
complex network.

If it chooses Case 3 when the source is A, and the link
between A and B is down, then the graph will be appear as
Fig. 6.

Fig. 6. The Link between A and B is Down.

Then it will recalculate the shortest path with the Dijkstra
Algorithm. And then the new path from router A to router B
will be A->D->C->B which is shown in the Fig. 7.

Fig. 7. New Path from Router A to Router B.

If it chooses case 4, then at first, it will follow case number
3 as mentioned in the above. And then it will follow the case
of router down.

B. Simulation Result for Linear Sub-Network

Count to Infinity problem occurs due to linear sub-
network. In Count to Infinity Problem, the updating of the
routing table continues infinite time.

Fig. 8. A Linear Sub-Network of Five Routers.

 In the linear sub-network of Fig. 8, when router A goes
down, then the first five exchange of information is going to
appear as mentioned in Table VII.

After 101 number of exchange of information, the routing
Table VIII will be like this.

TABLE VII. FIRST FIVE EXCHANGE OF INFORMATION AFTER ROUTER A IS

DOWN

Router A B C D E

1st Exchange NULL 5 3 6 10

2nd Exchange NULL 5 7 6 10

3rd Exchange NULL 9 7 10 10

4th Exchange NULL 9 11 10 14

5th Exchange NULL 13 11 14 14

TABLE VIII. AFTER 101ST NUMBER OF EXCHANGE OF INFORMATION

Router A B C D E

102nd Exchange NULL 205 207 206 210

103rd Exchange NULL 209 207 210 210

104th Exchange NULL 209 211 210 214

105th Exchange NULL 213 211 214 214

Moreover, the routing Table IX will be updated for an
infinite time. So, this is how the count to infinity problem
occurs in linear sub-network. Nevertheless, in this proposed
method, when router A goes down, then it will gradually let
other routers know about its (Router A) condition. So, Count
to infinity will not occur. If this proposed method applied for
Fig. 8 when router A goes down, then this method will give a
solution like this.

TABLE IX. AFTER ROUTER A GOES DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Up

C 3 B Up

D 6 C Up

E 10 D Up

Then the router B’s status will be down as its dependency
router A’s status is also down in Table X.

TABLE X. ROUTER B’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY

ROUTER A’S STATUS IS DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 3 B Up

D 6 C Up

E 10 D Up

Then the router C’s status will be down as its dependency
router B’s status is also down in Table XI.

Then the router D’s status will be down as its dependency
router C’s status is also down in Table XII.

TABLE XI. ROUTER C’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY

ROUTER B’S STATUS IS DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 3 B Down

D 6 C Up

E 10 D Up

1
C

B

6

A D

2

2

The link between

 A to B is down

2 2

A D C B

1

A B C D E
2 3 4 1

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

584 | P a g e
www.ijacsa.thesai.org

TABLE XII. ROUTER D’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY

ROUTER C’S STATUS IS DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 3 B Down

D 6 C Down

E 10 D Up

At last the router E’s status will be down as its dependency
router D’s status is also down in Table XIII.

TABLE XIII. ROUTER E’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY

ROUTER D’S STATUS IS DOWN

Node Cost Dependency Status

A 0 NULL Down

B 1 A Down

C 3 B Down

D 6 C Down

E 10 D Down

So, in this method, there will be no routing loops. So, the
Count to Infinity Problem will not occur.

C. Simulation of Graphs

Generally, Count to Infinity occurs in linear sub-network.
All routers of the topology gradually increase their routing
table for an infinite time. A graph of Count to Infinity is given.

From Fig. 9 there is a combined graph of 4 routers of
Fig. 8. In Fig. 9, where the blue curve is for Router B. Before
router A goes down the cost of B was 1. However, after router
A got down, then router B updated its cost with the help of
router C. Nevertheless, C's cost was updated with the help of
router B before. So, after the 1st exchange of information, the
cost of router B was updated from 1 to 5. Moreover, it will
gradually update its cost for an infinite time. Furthermore, all
routers followed the way of updating the cost as router B
followed. So, all curves of the routers converge to infinity. In
Fig. 9, the 1st – 5th exchanges, 102nd – 105th exchanges, and
1002nd – 1005th exchanges have shown.

If each Router's costs plot respect to the number of
exchanges in this method, then a graph as Fig. 10 will appear.

According to Fig. 8, the cost of router B was 1 before
router A goes down. However, in the 1st exchange of
information, the cost of the router will not change as there was
direct dependency with router A, but now it is down. After
2nd exchange of information, router B’s status will also be
down as its dependency router A’s status is already down. In
3rd exchange of information when the router C wants to
update its cost its status will be down as its dependency router
B’s status is already down. Gradually router D and E will
change their status as down while checking the dependency.
After 4th exchange of information, all router’s status will be
down. So the curves of all routers will not converge to
infinity.

Fig. 9. Number of Exchanges vs each Router’s Costs for Count to Infinity.

Fig. 10. Number of Exchanges vs each Router’s Costs for Proposed Method.

D. Comparison of Complexity

Thus the count to infinity problem uses the Bellman-Ford
algorithm, so the time complexity of Count to infinity is
O(𝑉2). However, this method implemented Dijkstra instead of
the Bellman-Ford algorithm. Though, Bellman-Ford is simpler
than Dijkstra and suites well for distributed systems.
Nevertheless, the time complexity of Bellman-Ford is more
than Dijkstra. In this method, the Dijkstra Algorithm with
minimum priority queue can be reduced the complexity to
O(V + E log V).

0

500

1000

1500

2000

2500

C
o

st
s

o
f

R
o

u
te

rs

Number of Exchanges

Cost for Router B Cost for Router C

Cost for Router D Cost for Router E

0

1

2

3

4

5

6

7

8

9

10

11

1 2 3 4 5 6

C
o

st
s

o
f

R
o

u
te

rs

Number of Exchanges

Cost of Router C Cost of Router D

Cost of Router E Cost of Router B

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

585 | P a g e
www.ijacsa.thesai.org

VII. CONCLUSION

For avoiding the Count-To-Infinity problem and reducing
the packet loss, this method is applying the Dijkstra algorithm
instead of the Bellman-Ford algorithm and that solve the
Count-To-Infinity problem and reduce the packet loss. Now it
does not face any problem with real-time data transfer, and the
network connection will be undisrupted. This problem is
solved for two types of situations one is router down, and the
other one is linked down. For router down, the method handles
the situation by giving additional information about the router,
which is dependency. When any router goes down, then other
nodes will recalculate their routing table with the dependency
column. The shortest path algorithm calculates the costs. For
link down situation, if any link is down and all routers are up,
then all routers will recalculate their routing table using the
Dijkstra algorithm instead of the Bellman-Ford algorithm.
These are an effective way to solve the Count-To-infinity
problem. There are some mechanisms known, such as defining
the maximum count, split horizon, poison reverse, triggered
update, and hold down timer. However, using this proposed
way, an effective result will come out, and the packet loss will
become less.

REFERENCES

[1] D. Kothari and D. T. Patel, “Methodology to Solve the Count-To-

Infinity Problem by Accepting and Forwarding Correct and Updated
Information Only Using Test Packet,” 2009 IEEE Int. Adv. Comput.

Conf. IACC 2009, no. April, pp. 26–31, 2009, doi:
10.1109/IADCC.2009.4808974.

[2] Alberto Leon-Garcia and India Widjaja. Communication Networks,

Fundamental Concepts and Key Architectures. McGraw ́-]Hill Higher
Education, Singapore, International Editions 2000. ISBN 0-07-022839-

6.

[3] B. F. Zhan, “Three fastest shortest path algorithms on real road
networks: Data structures and procedures,” J. Geogr. Inf. Decis. Anal.,

vol. 1, no. 1, pp. 70–82, 1997.

[4] A. Goldberg and R. E. Tarjan, “Expected Performance of Dijkstra’s
Shortest Path Algorithm,” Networks, no. 2 43, pp. 4–10, 1996.

[5] M. J. Bannister and D. Eppstein, “Randomized speedup of the Bellman-
Ford algorithm,” 9th Meet. Anal. Algorithmics Comb. 2012, ANALCO

2012, pp. 41–47, 2012, doi: 10.1137/1.9781611973020.6.

[6] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “Understanding and
mitigating the effects of count to infinity in ethernet networks,”

IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 186–199, 2009, doi:
10.1109/TNET.2008.920874.

[7] K. Elmeleegy, A. L. Cox, and T. S. E. Ng, “On count-to-infinity induced

forwarding loops in ethernet networks,” Proc. - IEEE INFOCOM, 2006,
doi: 10.1109/INFOCOM.2006.229.

[8] V. Rama and P. Vaddella, “An Effective Solution to Reduce Count-to-

Infinity Problem in Ethernet,” Int. J. Comput. Sci. Issues, vol. 7, no. 4,
pp. 44–49, 2010.

[9] R. K. MCA and R. U. MCA, “an Exploration of Count-To-Infinity

Problem in Networks,” Ijest.Info, vol. 2, no. 12, pp. 7155–7159, 2010,
[Online]. Available: http://www.ijest.info/docs/IJEST10-02-12-065.pdf.

