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Abstract—Distance vector routing protocol determines the 

best route for forwarding information from one node to another 

node based on distance. For calculating the best route, Distance-

vector routing protocols use the Bellman-ford algorithm and the 

Ford-Fulkerson algorithm. The Bellman-Ford distributed 

algorithm calculates the shortest path. On the other hand, 

Routing Information Protocol is commonly used for managing 

router information management protocol within a Local Area 

Network or an interconnected Local Area Network group. The 

main problem with Distance Vector Routing protocols is routing 

loops. Because the Bellman-Ford Algorithm cannot prevent 

loops. Moreover, the routing loop triggers a problem with Count 

to Infinity. This research paper gives an effective solution to the 

Count to Infinity problem for link down situation and also for 

the router down situation in both complex and linear sub-

network. For the router down situation, when any router goes 

down, then other nodes will recalculate their routing table with 

the dependency column. Moreover, the costs are calculated by 

the shortest path algorithm. If any link is down and all routers 

are up, then all routers will recalculate their routing table using 

Dijkstra instead of the Bellman-Ford algorithm. To determine 

the loops and prevent the loops are the main objectives. This 

method is mainly based on a routing table algorithm where the 

Dijkstra algorithm will be used after each iteration and will 

modify the routing table for each node. Preventing the routing 
loops will not converge into Count to Infinity Problem. 

Keywords—Distance vector routing; local area network; 

routing information protocol 

I. INTRODUCTION 

Nowadays, scientists are trying to reduce the packet loss 
problem. Everybody needs high-speed internet and, they want 
everything fast. However, because of packet loss, the service 
becomes slow, the network connection gets disrupted, and 
sometimes it loses the whole network connectivity. It creates 
significant problems in real-time data transfer programs. So, a 
better network means less packet loss. Distance Vector 
Routing is one of the dynamic algorithms [1]. Whenever a 
router goes down, routing loops usually occur in DVR. Then it 
creates a linear topology. Linear topology generates count to 
infinity problem. Because of that, a huge number of packets 
will be lost and, that is an immense issue. If all router gets to 
know earlier that any router already got down by observing an 
extra column of the routing table, then the packet loss problem 
can be minimized and which will improve the network 
connectivity. The modification of the routing table and 
alternation of the algorithm into the Dijkstra algorithm might 
cause less packet loss problem, and then the network 
connectivity will become well. 

II. ROUTING ALGORITHM 

Routing is a method of determining the routes to reach the 
destination that data packets will obey. A table of routing table 
is created in this process which contains information about the 
routes that data packets follow. Different routing algorithms 
are used to determine which route an incoming data packet 
needs to be transmitted efficiently to its destination. 

A. Distance Vector Routing Algorithm 

The Distance vector uses the Bellman-Ford algorithm for 
finding the shortest paths [2]. It can also be calculated by 
Dijkstra algorithm. Every node calculates the distance from 
other routers. The shortest path is created based on the metric. 
The metric is referred to as a count or a distance. In the 
Distance vector, the process of exchanging information is 
done iteratively [1]. There is no information exchange 
between the neighbourhoods until the information received 
from at least one neighbour directly and the algorithm does 
not require all the neighbours are asynchronous with each 
other. In distance vector, each node maintains the distance 
from it, to its possible destination and sends a periodic routing 
update. For periodic routing updates, the convergence time is 
slow. The slow convergence leads to count-to-infinity and 
routing loops problem [1]. 

B. Dijkstra Algorithm 

Dijkstra algorithm solves the shortest path algorithm, and 
it is better than the Bellman-Ford algorithm. It works better 
when multiple paths present in the topology, and it helps to 
choose the shortest path [3][4]. In the following algorithm, the 

code u ← vertex in Q with min dist[u], searches for the vertex 
u in the vertex set Q that has the least dist[u] value. Length (u, 
v) returns the length of the edge joining (i.e. the distance 
between) the two neighbour-nodes u and v. The variable alt on 
line 18 is the length of the path from the root node to the 
neighbour node v if it were to go through u. If this path is 
shorter than the current shortest path recorded for v, that 
current path is replaced with this alt path. The previous array 
is populated with a pointer to the "next-hop" node on the 
source graph to get the shortest route to the source [5]. The 
Dijkstra algorithm is a Dynamic programming approach. A 
complex problem is divided into sub-problems in the Dynamic 
programming approach, then combine the solutions of these 
sub-problems to get an overall solution. So, Dijkstra's 
algorithm is a greedy approach. So, it does not create routing 
loops. In the Bellman-Ford algorithm, it cannot prevent loops, 
but through Dijkstra, it can be prevented. If any link or router 
down then, it will apply a greedy approach that will prevent 
the loops and solve the Count to infinity problem. 
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III. COUNT TO INFINITY PROBLEM 

Count-to-Infinity Problem is one of the most important 
issues in Distance Vector Routing (DVR) Algorithm. When an 
interface goes down, routing loops usually occur in DVR. 
Which actually creates linear subnet. When two routers send 
an update to each other at the same time, it can also occur 
[6][7]. Distance Vector Routing reacts rapidly to good news, 
but leisurely to bad news [8]. In distance vector routing, it 
uses the Bellman-Ford algorithm to propagate. To see how 
slow bad news propagates, consider the situation of 1(a) in 
which all the lines and router are initially up. Router B, C, D, 
and E have the distance to A of 1, 2, 3, and 4 respectively. 
Suddenly A goes down, or the line between A and B is cut, 
which is effectively the same thing from B’s point of view in 
Fig. 1(b). At the first packet exchange, B does not hear 
anything from A. Fortunately, C says: do not worry; I have a 
path to A of length 2. As a result, B thinks it can reach A via 
C, with a path length of 3 and D & E do not update their 
entries for A on their first exchange. 
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(a). Before Count to Infinity Problem. 
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Fig. 1. (b). After Count to Infinity Problem. 

On the second exchange, C notices that each of its 
neighbour’s claims to have a path to A of length 3. It picks 
one of them at random and makes its new distance to A of 
length 4, as shown in the third row. Subsequent exchanges 
produce the history shown in the rest of Fig. 1(a) and 1(b) [8]. 

Linear Subnet: Whenever a router goes down, routing 
loops usually occur in DVR. Then it creates a linear topology. 
Linear topology creates count to infinity problem. 

In Fig. 2 a complex network is shown, but every time a 
router goes down, the routing loops will happen. 

If router E from Fig. 2 goes down, then there will be a 
linear sub-network which is shown in Fig. 3. 

 

Fig. 2. A Complex Network. 

 

Fig. 3. A Linear Sub-Network. 

IV. RELATED WORK 

The main difference between link sate and distance vector 
routing is, link-state uses an algorithm derived from Dijkstra's 
shortest path algorithm where distance-vector uses a 
distributed Bellman-Ford algorithm [8]. The distance vector 
routing algorithm suffers from the count-to-infinity problem. 
Count-to-infinity problems can be solved by preventing loops 
[9][8][1]. Researchers tried to prevent them by using various 
ways. Mr. D. Ganesh solved the count to infinity problem by 
using RSTP (Rapid Spanning Tree) protocol, Bridge protocol 
unit, building and maintaining SP (Spanning Tree) tree and 
changing the topology. They also follow some rules which are 
If a bridge can no longer reach the root bridge via its root port 
and does not have an alternate port, it declares itself to the 
root; A bridge sends out a BPDU immediately after the 
topology information it is announcing has changed, A 
designated port becomes the root port if it receives a better 
BPDO than what the bridge has received before. That is, this 
BPDU announces a better path to the root than via the current 
root port. When a bridge loses connectivity to the root bridge 
via its root port, and it has one or more alternative ports, it as 
its new root port. By using these rules, they portioned the 
network. Whenever a network is partitioned, if the partition 
does not contain the root bridge as a cycle, there exists a race 
condition that can result in the count-to-infinity behaviour. 
Count-to-infinity may even occur without a network partition. 
This new topology information will go around the loop until it 
reaches an alternate port caching stale, but better information. 
Again this stale information will choose the new information 
around the loop in a count to infinity. This will keep going 
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until the stale topology information reaches its massage [8]. 
Amit D. Kothari and Dharmendra T. Patel have also solved 
the count-to-infinity problem by using the test packet. They 
have some criteria for this test packet. First of all, they give 
source and destination addresses with the sequence number. 
They also declare the packet type like a query for any router 
and answer for the router. They also count the hop which 
initializes with 0 and increments by each intermediate router. 
The test packet will travel through source address to lastly. 
Then the address of the test router via the test packet is to be 
forwarded. Then it will give status where 1 is positive, and 0 is 
negative. The value will be a delay for the last neighbour. For 
error handling it will checksum. To solve the count to infinity, 
they design this type of test packet [1]. 

There is various way to solve the Count to Infinity. 

1) Routing information protocol uses split horizon. Split 

horizon is a process where the actual distance to a destination 

is not reported to a node through which reaches the destination 

For example if node A has learned a route to node C through 

B, then A does not send the distance vector of C to node B 

during a routing update [9]. 

2) The count to infinity problem can be avoided by using 

hold-down timers. This is a clock that is set within the node to 

help ensure network stability. 

When a node receives an update from a neighbour 
indicating that a previously accessible network is not working 
and is inaccessible, the hold-down timer will start. If a new 
update arrives from a neighbour with a better metric than the 
original network entry, the hold-down is removed, and data is 
passed. Nevertheless, an update is received from a neighbour 
node before the hold-down timer expires and it has a lower 
metric than the previous route. Therefore the update is 
ignored, and the hold-down timer keeps ticking. This allows 
more time for the network to converge [9]. 

V. METHODOLOGY 

A. Procedure 

Aiming at the difficulties in the count to infinity problem, 
this research proposed a method using Dijkstra Algorithm in 
each iteration and modifying the routing table with additional 
information. In the routing table, it added cost (shortest path), 
dependency, and status. 

1) Dependency: It denotes the dependency of a router. For 

example, for calculating the routing table for C if it chooses a 

path from Router A to C via B and when the node A is down 

from Fig. 4 then, B is dependency router of C. 

2) Status: It denotes the router is in hold situation or not. 

Which will prevent the routed loop in DVR. 

 

Fig. 4. A Linear Sub-Network of Three Routers. 

This research has designed a method for both complex 
network and linear sub-network. At first, it will check if there 
is any link down or not. However, it has four different cases. 

Case1: If all links are up, then it will go for checking the 
routers. If any routers are not down, then every node will 
calculate their routing table. 

Case2: If all links are up, but any of the routers is down, 
then every router will recalculate their routing table. Every 
router will check the dependency column while recalculating 
its routing table. From the dependency column, a router can 
get to know about the present status of each router. Which 
means a router can easily track if there is any router down or 
not. If a router finds any router as down and which is its 
dependency router, then it will also change its status as down. 
Gradually all router’s status will be down, and it will not 
create count to infinity problem. 

Case3: If any link is down and all routers are up, then all 
routers will also recalculate their routing table using Dijkstra. 
While recalculating the routing table, a router will call itself as 
a holding router by updating the status column in the routing 
table. Therefore, other routers can do their work without any 
obstacles, and in the meantime, they can transmit their 
required packets to each other. 

Case4: If any link is down and any router is also down 
then, at first it will follow case number 3 as mentioned in the 
above. And then it will follow the case of router down. 

B. Algorithm of Proposed Method 

In the two situations, one is for the topology links, and 
another is for routers. In four cases, two of the cases occur for 
the link down situation, and another two cases occur for router 
down situation. 

1: Function main(){ 

Randomly pick up any cases 

2: If (case 1){ 

Run generate routing table (source) 

Print routing table 

}  

3: If (case 2){ 

 I. Scan which router is down 

 II. Switch down the router 

 III. Run generate routing table (source) 
 IV. Print routing table 

} 

4: If (case 3){ 

 I. Scan which link is down 

II. Turn off the link 

III. Run generate routing table (any node of the link) 

IV. Print distance between the link’s node 

} 

5: If (case 4){ 

 I. Scan the link which is down  

II. Turn off the link  
III. Calculate distance vector 

IV. Print distance vector 

} 

} 

A B C 
1 2 

Router B is the 

dependency router of 
C to reach Router A 
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As the shortest path algorithm, it will use the Dijkstra 
Algorithm. Which is, 

1: Function generate routing table(source){ 

2: create vertex set Q 

3: for each vertex v in Graph:  

4: dist [v] ← INFINITY 

5: prev[v] ← UNDEFINED  

6: add v to Q  

7: dist[source] ← 0  

8: while Q is not empty:  

9: u ← vertex in Q with min dist[u]  

10: remove u from Q  

11: for each neighbor v of u: // only v that are still in Q  

12: alt ← dist[u] + length(u, v)  

13: if alt < dist[v]:  

14: dist[v] ← alt  

15: prev[v] ← u  

16: return dist[], prev[] 

} 

For preventing the routing loops if all routers state their 
dependency with the additional details in the routing table, 
then all nodes will be slowly informed if there is any router in 
the down condition which causes routing loops. Here, the 
routing loops problem will be prevented. Moreover, for link 
down situation packet loss problem may be arrived. So, if any 
link is down, then all routers will recalculate their routing 
table using Dijkstra. While recalculating the routing table, a 
router will call itself as a holding router by updating the status 
column in the routing table. 

VI. SIMULATION RESULT 

A. Simulation Result for Complex Network 

 The proposed method has been simulated using C++ to 
validate the proposed model. A group of four routers are 
placed at different costs, see Table I. Fig. 5 of the graph is 
given below. 

 

Fig. 5. A Graph with Various Costs. 

TABLE I. THE COSTS OF THE PATHS 

Routers A B C D 

A 
 

1 
 

2 

B 1 
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1 
 

2 

D 2 6 2  

At first, it will check if there is any link down or not. Then 
it will choose a case randomly from four cases. If it chooses 
Case 1 when the source router is A, then the routing Table II is 
going to appear as mentioned. 

TABLE II. CASE 1 WITH SOURCE ROUTER A 

Node Cost Dependency Status 

A 0 NULL UP 

B 1  A Up 

C 2  B Up 

D 4  C Up 

If it chooses Case 2 when the source router is A, and it 
goes down, then the routing Table III will be like this 

TABLE III. CASE 2 WITH SOURCE ROUTER A 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Up 

C 2 B Up 

D 4 C Up 

Then the router B’s status will be down as its dependency 
router A’s status is also down in Table IV. 

TABLE IV. ROUTER B’S STATUS IS DOWN WHEN ITS DEPENDENCY 

ROUTER’S STATUS A IS ALSO DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Down 

C 2 B Up 

D 4 C Up 

Then the router C’s status will be down as its dependency 
router B’s status is also down in Table V. 

TABLE V. ROUTER C’S STATUS IS DOWN WHEN ITS DEPENDENCY ROUTER 

B’S STATUS IS ALSO DOWN 

Node Cost Dependency Status 

 A 0 NULL Down 

B 1  A Down 

C 2  B Down 

D 4  C Up 

At last the router D’s status will be down as its 
dependency router C’s status is also down in Table VI. 

TABLE VI. ROUTER D’S STATUS IS DOWN WHEN ITS DEPENDENCY ROUTER 

C’S STATUS IS ALSO DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1  A Down 

C 2  B Down 

D 4  C Down 

A 
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So it will not cause the count to infinity problem. This is 
how this method handles Count to Infinity problem for a 
complex network. 

If it chooses Case 3 when the source is A, and the link 
between A and B is down, then the graph will be appear as 
Fig. 6. 

 

Fig. 6. The Link between A and B is Down. 

Then it will recalculate the shortest path with the Dijkstra 
Algorithm. And then the new path from router A to router B 
will be A->D->C->B which is shown in the Fig. 7. 

 

Fig. 7. New Path from Router A to Router B. 

If it chooses case 4, then at first, it will follow case number 
3 as mentioned in the above. And then it will follow the case 
of router down. 

B. Simulation Result for Linear Sub-Network 

Count to Infinity problem occurs due to linear sub-
network. In Count to Infinity Problem, the updating of the 
routing table continues infinite time. 

 

Fig. 8. A Linear Sub-Network of Five Routers. 

 In the linear sub-network of Fig. 8, when router A goes 
down, then the first five exchange of information is going to 
appear as mentioned in Table VII. 

After 101 number of exchange of information, the routing 
Table VIII will be like this. 

TABLE VII. FIRST FIVE EXCHANGE OF INFORMATION AFTER ROUTER A IS 

DOWN 

Router A B C D E 

1st Exchange NULL 5 3 6 10 

2nd Exchange NULL 5 7 6 10 

3rd Exchange NULL 9 7 10 10 

4th Exchange NULL 9 11 10 14 

5th Exchange NULL 13 11 14 14 

TABLE VIII. AFTER 101ST NUMBER OF EXCHANGE OF INFORMATION 

Router A B C D E 

102nd Exchange NULL 205 207 206 210 

103rd Exchange NULL 209 207 210 210 

104th Exchange NULL 209 211 210 214 

105th Exchange NULL 213 211 214 214 

Moreover, the routing Table IX will be updated for an 
infinite time. So, this is how the count to infinity problem 
occurs in linear sub-network. Nevertheless, in this proposed 
method, when router A goes down, then it will gradually let 
other routers know about its (Router A) condition. So, Count 
to infinity will not occur. If this proposed method applied for 
Fig. 8 when router A goes down, then this method will give a 
solution like this. 

TABLE IX. AFTER ROUTER A GOES DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Up 

C 3 B Up 

D 6 C Up 

E 10 D Up 

Then the router B’s status will be down as its dependency 
router A’s status is also down in Table X. 

TABLE X. ROUTER B’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY 

ROUTER A’S STATUS IS DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Down 

C 3 B Up 

D 6 C Up 

E 10 D Up 

Then the router C’s status will be down as its dependency 
router B’s status is also down in Table XI. 

Then the router D’s status will be down as its dependency 
router C’s status is also down in Table XII. 

TABLE XI. ROUTER C’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY 

ROUTER B’S STATUS IS DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Down 

C 3 B Down 

D 6 C Up 

E 10 D Up 

1 
C 

B 

6 

A D 

2 

2 

The link between 

 A to B is down 

2 2 

A D C B 
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TABLE XII.  ROUTER D’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY 

ROUTER C’S STATUS IS DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Down 

C 3 B Down 

D 6 C Down 

E 10 D Up 

At last the router E’s status will be down as its dependency 
router D’s status is also down in Table XIII. 

TABLE XIII. ROUTER E’S STATUS IS DOWN AND ALSO IT’S DEPENDENCY 

ROUTER D’S STATUS IS DOWN 

Node Cost Dependency Status 

A 0 NULL Down 

B 1 A Down 

C 3 B Down 

D 6 C Down 

E 10 D Down 

So, in this method, there will be no routing loops. So, the 
Count to Infinity Problem will not occur. 

C. Simulation of Graphs 

Generally, Count to Infinity occurs in linear sub-network. 
All routers of the topology gradually increase their routing 
table for an infinite time. A graph of Count to Infinity is given. 

From Fig. 9 there is a combined graph of 4 routers of 
Fig. 8. In Fig. 9, where the blue curve is for Router B. Before 
router A goes down the cost of B was 1. However, after router 
A got down, then router B updated its cost with the help of 
router C. Nevertheless, C's cost was updated with the help of 
router B before. So, after the 1st exchange of information, the 
cost of router B was updated from 1 to 5. Moreover, it will 
gradually update its cost for an infinite time. Furthermore, all 
routers followed the way of updating the cost as router B 
followed. So, all curves of the routers converge to infinity. In 
Fig. 9, the 1st – 5th exchanges, 102nd – 105th exchanges, and 
1002nd – 1005th exchanges have shown. 

If each Router's costs plot respect to the number of 
exchanges in this method, then a graph as Fig. 10 will appear. 

According to Fig. 8, the cost of router B was 1 before 
router A goes down. However, in the 1st exchange of 
information, the cost of the router will not change as there was 
direct dependency with router A, but now it is down. After 
2nd exchange of information, router B’s status will also be 
down as its dependency router A’s status is already down. In 
3rd exchange of information when the router C wants to 
update its cost its status will be down as its dependency router 
B’s status is already down. Gradually router D and E will 
change their status as down while checking the dependency. 
After 4th exchange of information, all router’s status will be 
down. So the curves of all routers will not converge to 
infinity. 

 

Fig. 9. Number of Exchanges vs each Router’s Costs for Count to Infinity. 

 

Fig. 10. Number of Exchanges vs each Router’s Costs for Proposed Method. 

D. Comparison of Complexity 

Thus the count to infinity problem uses the Bellman-Ford 
algorithm, so the time complexity of Count to infinity is 
O(𝑉2). However, this method implemented Dijkstra instead of 
the Bellman-Ford algorithm. Though, Bellman-Ford is simpler 
than Dijkstra and suites well for distributed systems. 
Nevertheless, the time complexity of Bellman-Ford is more 
than Dijkstra. In this method, the Dijkstra Algorithm with 
minimum priority queue can be reduced the complexity to 
O(V + E log V). 
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VII. CONCLUSION 

For avoiding the Count-To-Infinity problem and reducing 
the packet loss, this method is applying the Dijkstra algorithm 
instead of the Bellman-Ford algorithm and that solve the 
Count-To-Infinity problem and reduce the packet loss. Now it 
does not face any problem with real-time data transfer, and the 
network connection will be undisrupted. This problem is 
solved for two types of situations one is router down, and the 
other one is linked down. For router down, the method handles 
the situation by giving additional information about the router, 
which is dependency. When any router goes down, then other 
nodes will recalculate their routing table with the dependency 
column. The shortest path algorithm calculates the costs. For 
link down situation, if any link is down and all routers are up, 
then all routers will recalculate their routing table using the 
Dijkstra algorithm instead of the Bellman-Ford algorithm. 
These are an effective way to solve the Count-To-infinity 
problem. There are some mechanisms known, such as defining 
the maximum count, split horizon, poison reverse, triggered 
update, and hold down timer. However, using this proposed 
way, an effective result will come out, and the packet loss will 
become less. 
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