
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

673 | P a g e

www.ijacsa.thesai.org

Performance Analysis of Advanced IoT Encryption

on Serialization Concept: Application Optimization

Approach

Johan Setiawan
1
, Muhammad Taufiq Nuruzzaman

2
*

Department of Informatics

Universitas Islam Negeri Sunan Kalijaga Yogyakarta

Yogyakarta, Indonesia

Abstract—This study investigates the effect of serialization

concepts with cipher algorithms and block mode on structured

data on execution time in low-level computing IoT devices. The

research was conducted based on IoT devices, which are

currently widely used in online transactions. The result of

overheating on the CPU is fatal if the encryption load is not

reduced. One of the consequences is an increase in the

maintenance obligations. So that from this influence, the user

experience level will have bad influence. This study uses

experimental methods by exploring serialization, ciphers, and

block mode using benchmarks to get better data combination

algorithms. The four test data groups used in benchmarking will

produce an experimental benchmark dataset on the selected

AES, Serpent, Rijndael, BlowFish, and block mode ciphers. This

study indicates that YAML minify provides an optimal

encryption time of 21% and decryption of 27% than JSON

Pretty if an average of the whole test is taken. On the other hand,

the AES cipher has a significant effect on the encryption and

decryption process, which is 51% more optimal for the YAML

minify serialization

Keywords—Internet of Things; benchmark; cipher; block

mode; serialization

I. INTRODUCTION

Computers and IoT are useful in assisting the activities of
certain individuals or business groups. These business
domains include Trade, Transportation, Health [1]–[4], and
other specific matters discussed in research [5]–[7]. With the
expansion of computers, all devices equipped with a
microprocessor have been embedded to sustain mobility and
the device's toughness. Devices controlled automatically or
remotely are a family of IoT (Internet of Things) supporting
devices. IoT uses the M2M (machine-to-machine) concept
communication[8] without any human relationship [2][9].

Communication between IoT devices uses information
data and instructions that have been designed or regulated by
the manufacturer. The information sent and received by
devices usually does not want to be known or understood by
parties or devices [10][4][11][12] with no interest in
destroying or converting the information. Therefore,
manufacturers should consider durability and safety at a low
cost [13]. The information security risks can be in the form of
modifications or interruptions, and these risks can affect the
continuity of the process or business flow that is

running[8][12][14]. In tackling these threats, data encryption
is required [15]. Encryption is a method used to convert
original data into artificial data to become rugged and not
accessible for humans to read. The encryption process's
drawback tends to impose more processing on the
microprocessor embedded in an IoT device. It can result from
small and limited microprocessor capabilities [16][17] and
large amounts of data in the encryption process [18]–[20]. As
a result of an encryption algorithm's complexity, the
microprocessor on the IoT device is more burdened.

The direct effect of microprocessor devices that get high
loads or pressures to overheat is the length of the computation
process of a device so that it affects UX (User Experience)
because it can reduce the level of efficiency [21][22] Users
will feel bored in waiting for computation so that it has an
impact on ongoing business processes [21][22][23][24]. On
the other hand, the impact of overheating microprocessor
pressure is that the device is not durable. It harms device
providers that have to carry out more routine maintenance. In
[3] research discussed one method of encrypting data with a
Catalan object base and two structural combinations on IoT
devices; however, that study did not discuss the concept of
serialization in structured data to the encryption process.
Therefore, The research related to the analysis and evaluation
of several algorithms that are often used in data encryption
which includes; AES, Rijndael, Serpent and Blowfish. The
encryption process uses several different data serialization
concepts to improve application performance on IoT systems
thus that it can provide less computation, time and memory
and provide a better impact on user UX (User Experience)
while sustaining a level of security information. At the same
time, the advantages for companies that will be gained from
this article are used as an option for IoT device providers in
dealing with the problem of overheating on the low-level
computational microprocessor utilized.

The rest of this article is organized as follows. Section II
discusses previous research that has been carried out as a
literature study for the author. Section III discusses the
research methods used. The experiment is a method used by
the author to obtain benchmark data on a combination of
serialization, cipher and block mode. Section IV provides data
design, benchmark flow design, data collection process and
analysis process from experiments. Section V concludes this
article.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

674 | P a g e

www.ijacsa.thesai.org

II. RELATED WORKS

Data is an essential thing in business that must be secured
when transmitted over public networks. It relates to attacks
that threaten data modification and interruption. Encryption
and data authentication schemes that are implemented can
shield data from these attacks to not be read by unauthorized
people [4][10]. Nevertheless, on the other hand, encryption
can burden the microprocessor [3], resulting in overheating.
Sudip Maitra et al. Have published research related to
evaluating the performance of the encryption algorithm on IoT
devices with the XTEA and AES algorithms to obtain an
algorithm with more optimal memory, time, and energy. The
research has been conducted using an experimental method
utilizing an oscilloscope device to help identify the energy
consumed in the encryption process. From these results, it was
found that the XTEA algorithm is better in terms of efficiency
if the IoT device does not use the AES accelerator [18]. On
the other hand, Geovandro C. et al. Has researched the
evaluation of cryptographic algorithms' performance on IoT
and operating systems [17].

Nur Rachmat et al. has implemented the analysis of the
performance of Rijndael, Serpent, Twofish on an android
smartphone. The conclusion of the research that Serpent has
good performance at execution time [25]. Furthermore,
Muzafer H. Saračević et al. have been carried out providing a
proposal to use encryption on Catalan object-based IoT and
two structural combinations. In this research, the whole
procedure is based on the Catalan number's characteristics and
the representation numbers and combinatorial problems. Apart
from improving the quality of encryption, that study
recommended lightweight computing like e-health and smart
cities [3]. Moreover, several studies are almost similar in
[26]–[28].

III. RESEARCH METHOD

Researchers use the research method to collect data that
followed up as material for investigation and analysis. The
research method provides information from the research
design to be composed of time, place, and data source. At this
condition, the researcher applies experimental research
methods. It will provide an overview of the effect of data
serialization of pretty JSON, JSON minify, YAML, and
YAML minify as machine-to-machine communication. It is
against several encryption algorithms/ciphers at AES,
Blowfish, Rijndael, and Serpent on IoT devices to get better
device performance. The steps taken in this study were
coding, data collection, data grouping, benchmarking, and the
analysis process. The procedure of the research method used
in this study can be seen in Fig. 1.

A. Research Tools

Tools are vastly crucial in research since it can affect the
results of the analysis to be performed. This study uses an IoT
device in the form of Orange Pi Zero. It is a tiny computing
device with a more complex system to assist the data
collection process with specifications shown in Table I.

Fig. 1. Research Method.

TABLE I. IOT HARDWARE SPECIFICATION

Type Specifications

CPU Manufacture AllWinner / ARMv7

CPU Core 4 Cores

CPU Speed 1.5 GHz

RAM 512 MB

Disk 32 GB

OS Linux Ubuntu 18.04 LTS

B. Data Collection

Data will operate as serialized data in JSON and YAML
with the pretty and minify schemes in this process. From some
of these data serialization concepts, the next step is to
benchmark the data encryption process to adjust the system or
algorithm to get better processing on specific platforms [29].
The benchmarking process in this study uses the Golang
programming language. The author uses that in benchmarking
to get data benchmarks with low-level programming
languages [30]. Thus the golang application will be compiled
into binary so that it becomes faster [31].

C. Data Grouping

The grouping process will determine the percentage level
of time efficiency or processing carried out in the encryption
and decryption process. The process will group on the type of
encryption or decryption used based on data serialization.
From the benchmark results obtained, researchers can
compare these results. A more efficient variety of data
serialization, cipher, and block mode combination will be
discovered for the IoT application encryption and decryption
process.

IV. RESULT AND DISCUSSIONS

A. Benchmark Design

Several schemes of the data structure to be used in the
benchmark have different characteristics so that the data used
will have various levels of influence. The data sample is
traditional data commonly used in communication between
devices. The traditional JSON data structure is used as a
variety of file sizes, including 1.5 KB, 2.1 KB, 3.0 KB and 3.5
KB. The data will be converted with serialization concept.

At this step, some of the cipher and block mode algorithms
listed in Table II will be designed as a benchmark process
stage executed after the data serialization process. In this case,
it is assumed that the data have been through the serialization
process such as JSON and YAML with the concept of
minifying and pretty. The process diagram can be seen in
Fig. 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

675 | P a g e

www.ijacsa.thesai.org

TABLE II. CIPHER AND BLOCK MODE

Cipher Block Modes

AES-256 CBC, CTR, ECB

BlowFish CBC,EBC,OFB

Serpent CBC,ECB,OFB,NOFB,CFB,NCFB,CTR

Rijndael-256 CBC,ECB,OFB,NOFB,CFB,CTR,NCFB

Fig. 2. Benchmarking Flow.

In Fig. 2, there are data arrays and secret keys that have
been provided. The data is used in the serialization process
and converted into an appropriate data structure. Furthermore,
in the benchmarking process section, the data used is data that
has gone through serialization. In conducting benchmarks,
serialized data will be looped with the number of n in the
benchmark function algorithm and block mode using the
provided secret key. After the benchmarking is complete, the
performance dataset will be used to conduct research using
comparative analysis.

In Table III, Schemes 1 and 2 are schemes that are often
operated in serialized data encryption and usually used in
applications. Meanwhile, Schemes 3 and 4 are comparison
schemes using different data serialization concepts and rarely
used from traditional types. With these functions'
combination, the benchmark process will be carried out to
gain speed/application optimization on the IoT encryption
process.

B. Experiment Flow Design

In directing experiments, the Package Benchmark used by
the researcher used a package that was already installed in the
Golang programming language. In contrast, the operating
system's encryption package is libmcrypt-dev, which is also
embedded in the Operating System used to have a better effect
on library performance. Furthermore, the encrypt library used
in the project is able to be seen in the repository
(https://github.com/mfpierre/go-mcrypt). In preparing the
benchmark function, the researcher provides a specimen that
can be seen in Fig. 3.

TABLE III. COMBINATION OF ENCRYPT AND SERIALIZATION

Schemes Functions

Scheme 1 EncryptAlg(JSON(Data))

Scheme 2 EncryptAlg(Minify(JSON(Data)))

Scheme 3 EncryptAlg(YAML(Data))

Scheme 4 EncryptAlg(Minify(YAML(Data)))

Fig. 3. Benchmark Function Scheme.

In Fig. 3, there is a function with the prefix 'Benchmark'
which serves as a marker that the function is applied to
perform benchmarking tests against "ChipperName" and
"BlockMode." The 'testing' package determines the number of
iterations performed in the function. At the same time,
'EncryptAlg' is a function been arranged as an application
helper according to the list in Table II and has been adjusted in
Table III assuming the 'Data' variable has been serialized first
or in 'DecryptAlg' variable 'Data' is data that have been
encrypted.

C. Benchmark Result

The purpose of the benchmark process is to find the
average execution time of each algorithm on the cipher and
block mode used in encryption. The results of this benchmark
will then be analyzed in the data analysis step. The formula for
the benchmark calculation of all sample data is as follows.

 () ∑ (())

 (1)

Where in that function, x is the benchmark function used
in Fig. 3. y is the data serialization function. n is total sample
data, in this case, the researcher uses four data samples that
have been described, and S is the list of sample data used and
has been used to serialize. From the results of calculations
using the formula 1, the data to be obtained will be listed as in
Tables IV and V on each scheme, cipher and block mode
used.

In Table IV and V to measure the percentage of time
reduction from scheme 1 with scheme 4 uses the formula
which can be seen in formula 2 - 4.

 () ∑ (())
 (2)

 () ∑ (())
 (3)

 ()
 () ()

 ()
 (4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

676 | P a g e

www.ijacsa.thesai.org

TABLE IV. BENCHMARK RESULT OF THE ENCRYPT COMBINATION WITH SERIALIZATION

No. Cipher Block Mode
Total Time (ns) Reduction Time from

Scheme 1 to 4 (%) Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 AES-256 CBC 1253844 667272 680424 628043 49,91

2 AES-256 CTR 1805709 1005851 1008796 979993 45,73

3 AES-256 ECB 768435 388808 394922 358955 53.29

4 Blowfish CBC 4034594 3782520 3778960 3752085 7.00

5 Blowfish EBC 4130058 3887133 3907471 3867405 6.36

6 Blowfish OFB 6331005 5072219 5072810 4970101 21.50

7 Serpent CBC 3108647 2831654 2806282 2773793 10.77

8 Serpent ECB 3251809 3589981 2934591 2886946 11.22

9 Serpent OFB 10200276 5750340 6385557 6067675 40.51

10 Serpent NOFB 3501421 3661894 3163832 3116317 11.00

11 Serpent CFB 9883248 5502608 6062519 5742311 41.90

12 Serpent NCFB 3439166 3057695 3118968 3055999 11.14

13 Serpent CTR 3293048 2998750 2973943 2931130 10.99

14 Rijndael-256 CBC 3526985 3146207 3130867 3071622 12.91

15 Rijndael-256 ECB 3643133 5075309 3245767 3207467 11.96

16 Rijndael-256 OFB 23662065 11162439 13070587 12081937 48.94

17 Rijndael-256 NOFB 3903236 5163250 3452525 3411664 12.59

18 Rijndael-256 CFB 23303105 10860264 12758767 11777678 49.46

19 Rijndael-256 CTR 3702905 3304169 3273811 3232372 12.71

20 Rijndael-256 NCFB 3831561 3252175 3388191 3347123 12.64

TABLE V. BENCHMARK RESULT OF THE DECRYPT COMBINATION WITH SERIALIZATION

No. Cipher Block Mode
Total Time (ns) Reduction Time from

Scheme 1 to 4 (%) Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 AES-256 CBC 1258442 656637 656176 607571 51.72

2 AES-256 CTR 1829366 962004 969786 926403 49.36

3 AES-256 ECB 915100 449850 458863 420494 54.05

4 Blowfish CBC 4301414 3899693 3900940 3875388 9.90

5 Blowfish EBC 4363084 3986372 3997765 3956421 9.32

6 Blowfish OFB 6732089 5171293 5194958 5047958 25.02

7 Serpent CBC 3418887 2886116 2924647 2867847 16.12

8 Serpent ECB 3496962 3012961 3029684 2971746 15.02

9 Serpent OFB 10555775 6454063 6522322 6148184 41.76

10 Serpent NOFB 3731382 3252595 3264580 3220112 13.70

11 Serpent CFB 10339117 6133240 6175476 5809008 43.82

12 Serpent NCFB 3769358 3171058 3176920 3136047 16.80

13 Serpent CTR 3578474 3054691 3066020 3028263 15.38

14 Rijndael-256 CBC 3850404 3216844 3222877 3172646 17.60

15 Rijndael-256 ECB 3917032 3340315 3345704 3305081 15.62

16 Rijndael-256 OFB 24907847 13150971 13183803 12191129 51.06

17 Rijndael-256 NOFB 4226241 3561972 3577534 3524398 16.61

18 Rijndael-256 CFB 24651813 12773199 12888158 11890058 51.77

19 Rijndael-256 CTR 4037440 3365763 3374559 3335614 17.38

20 Rijndael-256 NCFB 4075122 3500502 3500835 3455867 15.20

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

677 | P a g e

www.ijacsa.thesai.org

In this formula, j(x) is a function to get the total benchmark

value from the JSON serialization data because b is a function

used for serializing JSON data. y(x) is a function to get the

total benchmark value from the YAML serialization since m
was the YAML minify function. In that formula, the value of
n is given 4 because this value is the total of the data sample. S
is a list of sample data used. Thus that in calculating the
percentage obtained from the value f(x).

D. Analysis

All benchmark data will be grouped and analyzed more
deeply; thus, it becomes more informative data in graphical
form. In this study, four data samples have been converted
into four types of data structures tested on 20 combinations of
cipher and block. In this case, the comparison graph is
assumed to be derived from the execution time's total
evaluation result. A comparison of the traditional scheme 1
against scheme 4 on the cipher used can be seen in Fig. 4
to 11.

Fig. 4. AES-256 Encryption Time Comparison (ns).

Fig. 5. AES-256 Decryption Time Comparison (ns).

Fig. 6. BlowFish Encryption Time Comparison (ns).

Fig. 7. BlowFish Decryption Time Comparison (ns).

Fig. 8. Serpent Encryption Time Comparison (ns).

Fig. 9. Serpent Decryption Time Comparison (ns).

Fig. 10. Rijndael Encryption Time Comparison (ns).

0

500000

1000000

1500000

2000000

CBC CTR ECB

Encryption

Scheme 1 Scheme 4

0

500000

1000000

1500000

2000000

CBC CTR ECB

Decryption

Scheme 1 Scheme 4

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

CBC EBC OFB

Encryption

Scheme 1 Scheme 4

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

CBC EBC OFB

Decryption

Scheme 1 Scheme 4

0

2000000

4000000

6000000

8000000

10000000

12000000

CBC ECB OFB NOFB CFB NCFB CTR

Encryption

Scheme 1 Scheme 4

0

2000000

4000000

6000000

8000000

10000000

12000000

CBC ECB OFB NOFB CFB NCFB CTR

Decryption

Scheme 1 Scheme 4

0

5000000

10000000

15000000

20000000

25000000

CBC ECB OFB NOFB CFB CTR NCFB

Encryption

Scheme 1 Scheme 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

678 | P a g e

www.ijacsa.thesai.org

Fig. 11. Rijndael Decryption Time Comparison (ns).

Based on Fig. 4 to 11 in the comparison results of schemes
1 and 4 in Table III, the YAML minify serializations method
gets an upbeat assessment of the encryption and decryption
side. As for the algorithm and block mode used, AES ECB
gets better speed than BlowFish, Serpent, and Rijndael. Block
modes that provide better performance are ECB, CFB, and
OFB. The proposed encryption flow on the low-level IoT
platform uses YAML data serialization with the minify
scheme. It uses the AES ECB algorithm based on the graphic
data described. However, this is very relative to the device
used.

V. CONCLUSION

This research evaluated the cipher and block mode's
performance based on several data serialization schemes on
low computing devices. The trials' convener carried out using
several data serialization. The results were not too significant
between scheme one and scheme four on a particular cipher.
However, this experiment could have a very significant time-
cutting effect on the AES cipher trial with an average of 51%
pruning. However, the overall average for encryption will be
obtained at 21.85% and 27.36% in decryption. With this
research. The hope that it will allow developers to select
cipher, block mode, and data serialization to reduce the
execution time in the encryption or decryption process.

In the benchmarking process, the author only uses one IoT
device. In this case, the author cannot give a definite measure
of the figures presented. The author directed a still new system
benchmark, and there are no applications that burden the
microprocessor. However, it can explain how the serialization,
cipher, and block mode combination affects these devices'
performance.

The hope for the future, there is further research on this
field. For example, by changing data type, data length,
protocol, a programming language used or adding the other
IoT platform with processor architecture changed.

REFERENCES

[1] D. Richards, A. Abdelgawad, and K. Yelamarthi, “How Does
Encryption Influence Timing in IoT?,” 2018 IEEE Glob. Conf. Internet
Things, GCIoT 2018, pp. 1–5, 2019.

[2] Y. Hanada, L. Hsiao, and P. Levis, “Smart contracts for machine-to-
machine communication: Possibilities and limitations,” Proc. - 2018
IEEE Int. Conf. Internet Things Intell. Syst. IOTAIS 2018, pp. 130–136,
2019.

[3] M. H. Saracevic et al., “Data Encryption for Internet of Things
Applications Based on Catalan Objects and Two Combinatorial
Structures,” IEEE Trans. Reliab., 2020.

[4] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-
driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol.
2017, 2017.

[5] H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy efficient and
reliable transport of data in cloud-based IoT,” IEEE Access, vol. 7, pp.
64641–64650, 2019.

[6] D. Sharma and D. Jinwala, “Functional encryption in IoT E-Health care
system,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 9478, pp. 345–363, 2015.

[7] A. D. Dwivedi, L. Malina, P. Dzurenda, and G. Srivastava, “Optimized
blockchain model for internet of things based healthcare applications,”
2019 42nd Int. Conf. Telecommun. Signal Process. TSP 2019, pp. 135–
139, 2019.

[8] P. Radanliev, D. De Roure, C. Maple, J. R. . Nurse, R. Nicolescu, and U.
Ani, “Cyber Risk in IoT Systems,” Univ. Oxford Comb. Work. Pap.
Proj. reports Prep. PETRAS Natl. Cent. Excell. Cisco Res. Cent., vol.
169701, no. 2017, pp. 1–27, 2019.

[9] M. Chen, J. Wan, and F. Li, “Machine-to-machine communications:
Architectures, standards and applications,” KSII Trans. Internet Inf.
Syst., vol. 6, no. 2, pp. 480–497, 2012.

[10] G. A. Utomo, “Ethical hacking,” CyberSecurity dan Forensik Digit., vol.
2, no. 1, pp. 8–15, 2019.

[11] M. Stute et al., “A billion open interfaces for Eve and Mallory: MITM,
DOS, and tracking attacks on iOS and MACOS through apple wireless
direct link,” Proc. 28th USENIX Secur. Symp., pp. 37–54, 2019.

[12] I. Fitriani and A. B. Utomo, “Implementasi Algoritma Advanced
Encryption Standard (AES) pada Layanan SMS Desa,” JISKA (Jurnal
Inform. Sunan Kalijaga), vol. 5, no. 3, p. 153, 2020.

[13] M. Weyrich, J. Schmidt, and C. Ebert, “Machine-to-Machine
Communication,” IEEE, vol. 31, no. 4, pp. 19–23, 2014.

[14] P. Radanliev et al., “Definition of Internet of Things (IoT) Cyber Risk
Discussion on a Transformation Roadmap for Standardisation of
Regulations Risk Maturity Strategy Design and Impact Assessment,”
Sensors, no. March, pp. 1–9, 2019.

[15] M. M. Yahaya and A. Ajibola, “Cryptosystem for Secure Data
Transmission using Advance Encryption Standard (AES) and
Steganography,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., vol. 5,
no. 6, pp. 317–322, 2019.

[16] M. Khari, A. K. Garg, A. H. Gandomi, R. Gupta, R. Patan, and B.
Balusamy, “Securing Data in Internet of Things (IoT) Using
Cryptography and Steganography Techniques,” IEEE Trans. Syst. Man,
Cybern. Syst., vol. 50, no. 1, pp. 73–80, 2020.

[17] G. C. C. F. Pereira, R. C. A. Alves, F. L. da Silva, R. M. Azevedo, B. C.
Albertini, and C. B. Margi, “Performance evaluation of cryptographic
algorithms over IoT platforms and operating systems,” Secur. Commun.
Networks, vol. 2017, 2017.

[18] S. Maitra, D. Richards, A. Abdelgawad, and K. Yelamarthi,
“Performance Evaluation of IoT Encryption Algorithms: Memory,
Timing, and Energy,” SAS 2019 - 2019 IEEE Sensors Appl. Symp.
Conf. Proc., pp. 6–11, 2019.

[19] M. Frustaci, P. Pace, G. Aloi, and G. Fortino, “Evaluating critical
security issues of the IoT world: Present and future challenges,” IEEE
Internet Things J., vol. 5, no. 4, pp. 2483–2495, 2018.

[20] M. Botta, M. Simek, and N. Mitton, “Comparison of hardware and
software based encryption for secure communication in wireless sensor
networks,” 2013 36th Int. Conf. Telecommun. Signal Process. TSP
2013, pp. 6–10, 2013.

[21] A. Crescenzi, D. Kelly, and L. Azzopardi, “Impacts of time constraints
and system delays on user experience,” CHIIR 2016 - Proc. 2016 ACM
Conf. Hum. Inf. Interact. Retr., pp. 141–150, 2016.

[22] D. Biduski, E. A. Bellei, J. P. M. Rodriguez, L. A. M. Zaina, and A. C.
B. De Marchi, “Assessing long-term user experience on a mobile health
application through an in-app embedded conversation-based
questionnaire,” Comput. Human Behav., vol. 104, 2020.

0

5000000

10000000

15000000

20000000

25000000

30000000

CBC ECB OFB NOFB CFB CTR NCFB

Decryption

Scheme 1 Scheme 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

679 | P a g e

www.ijacsa.thesai.org

[23] O. Noguchi, M. Munechika, and C. Kajihara, “A Study on User
Satisfaction with an Entire Operation Including Indefinite-Length
Response Time ,” Total Qual. Sci., vol. 2, no. 2, pp. 70–79, 2016.

[24] L. T. Yong, “User experience evaluation methods for mobile devices,”
2013 3rd Int. Conf. Innov. Comput. Technol. INTECH 2013, pp. 281–
286, 2013.

[25] N. Rachmat and Samsuryadi, “Performance analysis of 256-bit aes
encryption algorithm on android smartphone,” J. Phys. Conf. Ser., vol.
1196, no. 1, 2019.

[26] N. Su, Y. Zhang, and M. Li, “Research on data encryption standard
based on AES algorithm in internet of things environment,” Proc. 2019
IEEE 3rd Inf. Technol. Networking, Electron. Autom. Control Conf.
ITNEC 2019, no. Itnec, pp. 2071–2075, 2019.

[27] H. K. Kim and M. H. Sunwoo, “Low Power AES Using 8-Bit and 32-Bit
Datapath Optimization for Small Internet-of-Things (IoT),” J. Signal
Process. Syst., vol. 91, no. 11–12, pp. 1283–1289, 2019.

[28] V. K. Sarker, T. N. Gia, H. Tenhunen, and T. Westerlund, “Lightweight
Security Algorithms for Resource-constrained IoT-based Sensor
Nodes,” IEEE Int. Conf. Commun., vol. 2020-June, 2020.

[29] I. I. Conference, “OpBench: A CPU performance benchmark for
ethereum smart contract operation code,” Proc. - 2019 2nd IEEE Int.
Conf. Blockchain, Blockchain 2019, pp. 274–281, 2019.

[30] S. S. Brimzhanova, S. K. Atanov, M. Khuralay, K. S. Kobelekov, and L.
G. Gagarina, “Cross-platform compilation of programming language
Golang for Raspberry Pi,” ACM Int. Conf. Proceeding Ser., vol. Article
10, pp. 1–5, 2019.

[31] C. Wang et al., “Go-Clone: Graph-embedding based clone detector for
Golang,” ISSTA 2019 - Proc. 28th ACM SIGSOFT Int. Symp. Softw.
Test. Anal., pp. 378–381, 2019.

