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Abstract—Data curation is the process of acquiring multiple 

sources of data, assessing and improving data quality, 

standardizing, and integrating the data into a usable information 

product, and eventually disposing of the data. The research 

describes the building of a proof-of-concept for an unsupervised 

data curation process addressing a basic form of data cleansing 

in the form of identifying redundant records through entity 

resolution and spelling corrections. The novelty of the approach 

is to use ER as the first step using an unsupervised blocking and 

stop word scheme based on token frequency. A scoring matrix is 

used for linking unstandardized references, and an unsupervised 

process for evaluating linking results based on cluster entropy. 

The ER process is iterative, and in each iteration, the match 

threshold is increased. The prototype was tested on 18 fully-

annotated test samples of primarily synthetic person data varied 

in two different ways, good data quality versus poor data quality, 

and a single record layout versus two different record layouts. In 

samples with good data quality and using both single and mixed 

layouts, the final clusters had an average F-measure of 0.91, 

precision of 0.96, and recall of 0.87 outcomes comparable to 

results from a supervised ER process. In samples with poor data 

quality whether mixed or single layout, the average F-measure 

was 0.78, precision 0.74, and recall 0.83 showing that data quality 

assessment and improvement is still a critical component of 

successful data curation. The results demonstrate the feasibility 

of building an unsupervised ER engine to support data 

integration for good quality references while avoiding the time 

and effort to standardize reference sources to a common layout, 

design, and test matching rules, design blocking keys, or test 

blocking alignment. Also, the paper proposes how unsupervised 

data quality improvement processes could also be incorporated 

into the design allowing the model to address an even broader 

range of data curation applications. 
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I. INTRODUCTION 

As organizations ingest and process larger amounts of data, 
the time and effort it takes to prepare and integrate data into 
useful products are also increasing, and many researchers are 
working to alleviate this bottleneck using several different 
approaches [1], [2], [3]. The root cause of the time delay is 
human supervision of the curation steps including data quality 

analysis, data cleansing and standardization, entity resolution 
(ER), and data integration [4]. The goal of ER is to link two 
references if, and only if, the references are equivalent [5], [6]. 
The problem is only exacerbated by Big Data [7], [8]. Because 
of the time delay between receiving data and its availability for 
use, data analysts often face the choice of waiting for the 
preparation to be complete, or to by-pass the curation process 
and engage in their attempts at data preparation which may or 
may not follow the best practices. 

Many organizations are beginning to recognize this time 
and effort gap between data ingestion and final information 
product, and are moving to remedy this situation by increasing 
the level of automation in data curation processes [9]. These 
organizations along with software vendors and university 
researchers are trying to understand how to apply the same AI 
and ML techniques used for the data analytics at the end to the 
automation to the preceding data preparation processes [10], 
[11]. While many of these employ AI and ML [12], [3], [13], 
they still largely rely on some level of standardization in the 
source data. The ultimate goal is to develop systems for 
unsupervised data curation (UDC) which are metadata agnostic 
and can directly ingest and process raw data. The objective of 
UDC is to develop methods and techniques to process data at 
scale and successfully produce information products without 
manual intervention. Key components of the data curation 
process and prime targets for automation are the largely 
manual processes of data quality analysis, building 
transformation for data cleansing and standardization, and 
developing and testing rules for entity resolution and data 
integration (fusion). 

UDC has been likened to a “data washing machine” [14]. 
When using a household washing machine for laundry, the user 
first loads the dirty laundry, and detergent then selects the 
cycles. The washing machine automatically executes the 
cycles, and in the end, produces clean laundry. Similarly, the 
user of the data washing machine loads dirty data with 
appropriate reference data, then selects the data cycles (control 
parameters). The data washing machine then executes the 
cycles to produce clean data (an information product) 
appropriate for use in a particular application. 
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The focus of this research is to describe a proof-of-concept 
(POC) prototype to serve as both a starting point and a 
foundation upon which a more complete UDC can be built 
[15]. The primary goal is to develop unsupervised methods and 
techniques for both data cleaning and data integration (ER) 
capable of operating at scale. The current code for the POC 
described in this paper can be found at https://bitbucket. 
org/Awaad_Al_Sarkhi/dwm-datawashingmachine/src/master/ 

II. A PROOF-OF-CONCEPT (POC) FOR UNSUPERVISED 

DATA CURATION (UDC) 

The purpose of the POC is to demonstrate the feasibility of 
cleaning and integrating entity references in an automated 
fashion for certain types of data and certain phases of the 
curation process. The primary use case addressed by the POC 
is “multiple sources of the same information” as described in 
[16] as one of ten root causes of data quality problems. The 
novelty of the POC is it attempts to perform unsupervised 
entity resolution (ER) first rather than data cleaning, the 
opposite of most supervised processes. The objective of the 
POC is to minimize human intervention to analyze and 
transform the data and still obtain usable results as measured 
by the accuracy of clustering, i.e. a working data washing 
machine for data deduplication. 

The POC for the data washing machine was written in 
Python and Java and uses frequency-based blocking, a multi-
token scoring matrix as its ER matching process, and entropy-
based quality evaluation of clustering [17] , [18] , [19], [20] 
The assumptions of the POC are 

 The input to the process is a text file in a comma-
separated values (CSV) format. 

 Each text line is a reference to the same type of entity 
such as person entities (patients, customers, students), 
business entities, or materials (product listings, 
machine parts). 

 The references are not assumed to be standardized with 
a uniform metadata tagging. No metadata is used in the 
POC process. Any metadata in the form of a header 
record is discarded. 

 The first string value in each text line is a unique 
reference identifier. 

To facilitate experimentation with various unsupervised 
techniques, the POC was developed as a series of sub-
processes or phases to facilitate experimentation. Currently, 
phases have been implemented, and the fourth phase for token 
correction is under development. The organization of this paper 
is as follows: 

 Phase I: Punctuation removal, upper casing, and 
tokenization. 

 Phase II: Global standardization (replacement) of non-
numeric tokens at the file level. 

 Phase III: Removal of stop words, blocking, and 
clustering of equivalent references (entity resolution). 

A. Phase I - Tokenization 

The first Phase reads each reference as a line of text and 
performs a series of operations. The first is to separate the 
reference identifier, convert all letters to uppercase, and replace 
the field delimiters (typically a comma) with a blank character. 
Next, all non-word characters (\W) are replaced. For 
experimentation, two methods of replacement for non-word 
characters were tried. In the first method called "Compress," 
the non-word characters are replaced by a null character. For 
example, if a field has the value "123-456", then after replacing 
the hyphen character with a null character is becomes the 
single string "123456". In the second method called "Splitter," 
each non-word character is replaced by a blank character. The 
same example "123-456" becomes two strings (tokens), "123" 
and "345". 

The motivation for the Compress method was to transform 
characteristic values with punctuation such as telephone 
numbers and dates into a single string. Interestingly, for the 
data used for the initial validation of the POC, the Splitter 
method generally gave better results than the Compress 
method. 

In addition to non-word character replacement, upper 
casing, and tokenization, the first Phase also has an option to 
de-duplicate tokens. If the duplicate token option is employed, 
any duplicates of tokens within the same reference are 
removed, otherwise, duplicates are left in the reference. In the 
end, the cleaned tokens from each reference are reassembled 
into a blank delimited string and written to the tokenized 
reference file. 

B. Phase II – Global Token Replacement 

Phase II attempts an unsupervised correction of misspelled 
tokens based on the token frequency and string similarity. The 
replacement uses the assumption, if a high frequency, the non-
numeric token is very similar to a low-frequency, non-numeric 
token, the low-frequency token is likely to be a misspelling of 
the high-frequency token and can be replaced by the high-
frequency token. The validity of this assumption is dependent 
upon several factors. These include, what is a high frequency, 
what is a low frequency, and what is very similar. 

The process is controlled by four parameters: 

 MinFreqStdToken – The minimum frequency of a 
token that can be used to replace another token, i.e. can 
function as a "standard" token. 

 MinLenStdToken – The minimum string length of a 
standard token. 

 MaxFreqErrToken – The maximum frequency of a 
token that can be replaced by a standard token, i.e. can 
be treated as an “error” token. 

 MaxStringDist – The maximum string (character) 
distance between a standard token and an error token 
before the error token can be replaced (usually 1 as 
measured by Levenshtein edit distance). 

The replacement table has a one-to-many relationship 
between standard tokens and error tokens. One standard token 
could replace many different error tokens, but an error token 
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can only be replaced by one standard token. Some actual 
examples of rows from the Replacement Table for Sample S8 
are shown in Table I where  

 MinFreqStdToken =10 

 MaxFreqErrToken = 3 

 MinLenStdToken = 4 

 MaxStringDiff = 1 

Table I shows some examples of token replacements 
generated in Phase II. It is important to note the token changes 
made in Phase II are not permanent changes to the source data. 
The token changes in Phase II are intended to improve the 
cluster (ER) results in Phase III. 

TABLE I. EXAMPLE ROWS FROM REPLACEMENT 

 Std Token Freq Error Token Freq 

1 APT 82 APTZ 1 

2 APT 82 APLT 1 

3 APT 82 APTR 1 

4 CALIFORNIA 58 CALFORNIA 3 

5 CALIFORNIA 58 CALIFORANIA 1 

6 TEXAS 48 TEAS 3 

7 TEXAS 48 TEXAYS 1 

8 APARTMENT 32 PARTMENT 2 

9 APARTMENT 32 APARTMENTS 1 

Research is continuing on the development of Phase IV to 
make more accurate token corrections (standardization) at the 
cluster level. If it can be demonstrated the clusters produced by 
Phase III are reasonably accurate, then the criteria for 
identifying misspellings described for Phase II can be more 
aggressive when applied at the cluster level than at the file 
level. For example, while the replacements shown in Table I at 
the file level risks overwriting valid tokens, the same 
replacement is more likely to be valid within a cluster of 
references believed to be for the same person. Changes at the 
cluster level could also be applied to numeric tokens. For 
example, if five out of six references in a cluster have the token 
"413", and the sixth reference has “431”, and all six instances 
are preceded and followed by the same token, then it is not 
unreasonable to assume “431" is a mistyped version of “413”. 

C. Phase III – Clustering (ER) 

The purpose of Phase III is to cluster records for the same 
entity in support of data deduplication and data integration. 
This phase is more complex than Phases II and III and involves 
iterating over the tokenized source records coming out of 
Phase II. The clustering phase is a series of 13 processes 
labeled P1 through P13. 

1) Process P1: Tokenize and compute token frequencies: 

Because the references have already been tokenized in Phase 

I, the re-tokenization here is simply a matter of separating the 

reference identifier and splitting the remaining substring by 

blank (white) space. While computing token frequencies is 

redundant with the same process in Phase II, for experimental 

purposes this was done to make Phase II an optional process 

allowing the evaluation of data integration results with and 

without token replacement. 

2) Process P2: Tokenizing references and appending 

blocking tokens: Process P2 is the start of an iterative process 

on the “reprocess file”. Initially, the reprocess file is a copy of 

the original input file from which the frequency dictionary 

was created in Process P1. However, as the POC progresses, 

the reprocess file becomes a smaller and smaller subset of the 

original input source until there are there no more references 

to the process ending the iterations. 

Process P2 repeats the tokenization process described in 
Process P1 in which each reference is split into a list of tokens. 
However, Process P2 has access to the token frequency 
dictionary previously build in P1. Process P2 has two primary 
functions: 

 To rebuild each input reference as a string of blank-
separated tokens, omitting all tokens found to have a 
frequency above the stop word frequency threshold (σ) 
creating “skinny references.” 

 To output a copy of the skinny reference for each 
blocking token found in the reference. 

Again, a blocking token is simply any token with a 

frequency below the blocking frequency threshold . This 
means the output from P2 will have more records than the 
input assuming almost all references have at least one blocking 
token, and many have more than one. 

Example: Suppose an input reference has the form 

R13, John Doe, Oak St, Anyville AL, 793-1234 

The tokenization of this reference would produce 9 tokens 
“R13”, “JOHN”, “DOE”, “OAK”, “ST”, “ANYVILLE”, 
“AL”, “793”, and “1234” (using Splitter tokenization). Also, 
suppose the tokens “JOHN”.  “DOE”, and “OAK” have a 

frequency below , and the tokens “AL”, “ST”, and “793” 
have a frequency above σ. Then P2 will generate three outputs. 

R13: JOHN: JOHN DOE OAK ANYVILLE 1234 

R13: DOE: JOHN DOE OAK ANYVILLE 1234 

R13: OAK: JOHN DOE OAK ANYVILLE 1234 

Because the input reference R13 contains three blocking 
tokens, P2 will output three skinny references, one for each 
blocking token. To simplify parsing, the output reference is 
divided into three segments using the colon (:) character. The 
first segment is the reference identifier, the second the blocking 
token, and the third the body of the reference. 

3) Process P3: Sorting by blocking tokens to create 

blocks: The purpose of Process P3 is to sort the output of the 

reference from process P2 into ascending order by blocking 

token (Segment 2 of the rebuilt references). Each sequence of 

consecutive references with the same blocking token will form 

a block for input to the ER process for record linking. 
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4) Process P4: Iterate blocks: Process P4 is the start of an 

iterative process (P5) to be performed on each block. P4’s 

primary function is to detect the sequences of consecutive 

records having the same blocking token, then pass this block 

of references on to P5. 

5) Process P5: Link reference pairs in blocks: In Process 

P5, each block undergoes a process to generate pairs of linked 

references. The technique implemented in the POC is to use a 

multi-token comparator. Every pair of references in the block 

is compared. For a block of N references, there will Nx(N-1)/2 

pairs. 

Any pairwise matching process can be inserted at this point 
including machine learning (ML) algorithms for linking. 
Because the entity references are text, this approach usually 
requires an additional process to convert references from the 
text to numeric vectors, a process called text embedding. Some 
results from using the DBScan clustering algorithm with 
doc2vec text embedding are shown in this paper (Table III). 

Most of the work described here used the scoring matrix. In 
this case, a variation of the Monge-Elkan method [21] for 
comparing multi-token values, but with the removal of stop 
words. When the scoring matrix processes a pair of references, 
each reference is first transformed into a list of tokens (words), 
then the stop word tokens are removed from the list. The 
remaining tokens from the first reference are used to label the 
rows of the matrix, and the remaining tokens from the second 
string label the columns of the matrix. The cell value of the 
matrix is a normalized similarity measure, i.e., a value in the 
interval [0,1], between the two tokens. In the POC, the 
normalized Damerau-Levenshtein Edit Distance (nLED) 
function was used. 

To illustrate the operation of the scoring matrix, consider 
the following two references: 

A045, Smith, John, Apt 21, 345 Oak St, Anytown, NY 

B167, Jon Smith, 345 Oak Street #21, Anytown, NY 

Furthermore, suppose the threshold for the comparator has 
been set to 0.80, and the list of stop words contains the token 
“NY.” The resulting token matrix would then appear. The 
process begins by finding the largest similarity value in the 
matrix. This value is the initial value of a total running value. 
After the largest similarity value is used to initialize the total 
value, all of the values in the same row and column are 
removed (set to zero). In the next iteration, the largest 
similarity value from the remaining values in the matrix is 
identified and added to the overall total. 

Again, all of the nLED values in the same row and column 
as the largest value are removed. The process continues in 
subsequent iterations until all of the similarity values have been 
removed from the matrix. In Fig. 1, the cells with underlined 
and bold font are the surviving similarity scores from this 
process. After the last iteration, the running total is divided by 
the number of iterations. If the calculated average value is 
greater than or equal to a threshold value provided by the user, 
then references are linked. At the end of the algorithm, the final 
matrix score for a pair of references in Fig. 1 is 0.83. 

 JON SMITH 345 OAK STREET 21 ANYTONW 

SMITH  1.00   0.17  0.14 

JOHN 0.75   0.25   0.14 

APT  0.20   0.17  0.29 

21      1.00  

345   1.00     

OAK    1.00   0.14 

ST  0.40   0.33  0.14 

ANYTOWN 0.29 0.14  0.14   0.71 

Fig. 1. Example Scoring Matrix (Zero Similarity Values Omitted). 

6) Process P6: Linked pair generation: The purpose of 

Process P6 is to form the graph edges between pairs of 

references in the same cluster. Because the clusters are all 

formed from references in the single token block, they only 

represent the connections found between references sharing 

the token forming the block. 

7) Process P7: Post-resolution transitive closure: Unlike 

traditional match key blocking, frequency-based blocking 

does not produce a true partition of the input references where 

each input reference is in one, and only one, block. In 

frequency-based blocking, each reference is replicated by the 

number of blocking tokens it contains as in the example for 

Process P3. To create the final set of clusters, in which each 

reference occurs in one, and only one, cluster, the clusters 

created from the blocks must be merged and undergo a 

transitive closure process. 

The POC implements a very efficient sorting closure 
process described by Kolb et al [22]. While the sorting 
transitive closure is implemented in the POC as an in-memory, 
Java application, the algorithm is a highly-scalable, map/reduce 
process for execution in the Hadoop Distributed File System 
(HDFS) environment. 

8) Process P8: Iterate clusters: Process P8 transforms the 

transitive closure output into clusters of linked references. 

Because the output of the sorting closure process is already in 

sorted order by cluster identifiers, the clusters are simply 

groups of consecutive references with the same cluster 

identifier. 

9) Process P9: Entropy Calculation: Process P9 uses a 

variation of the Shannon entropy calculation [23] to assess the 

level of organization in each cluster of two or more references. 

The formula for the calculation of the entropy of a cluster is 

   ∑  (  )
 
         (  )            (1) 

Where tj is the j-th vertical token group in the cluster, and 
p(tj) is the probability of tj. 

For the POC, a vertical token group is defined to be the 
same token counted only once in each reference of a cluster. 
Thinking of the cluster as a matrix where the references are the 
rows and the columns are the tokens, then a vertical token 
group is a vertical grouping of the same token across different 
references. However, each token is counted only once in each 
reference. This means the maximum size of a vertical token 
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group is equal to the number of references in the cluster. The 
probability of a vertical token group is the size of the token 
group divided by the number of references in the cluster. For 
example, consider the following cluster of 3 references. 

R1: JOHN GRANT 123 GRANT ST 

R2: MARY GRANT 21 OAK STREET 

R3: MARY GRANT 21 OAK ST 

The first vertical token group is for the token “JOHN” 
which only occurs once in R1 forming a vertical token group of 
size 1 with a group probability of 1/3. The second vertical 
token group is for "GRANT" which has 3 tokens, one token 
each from R1, R2, and R3 giving this group a probability of 1.0 
(3/3). The second "GRANT" in R1 is not part of this token 
group because each token is only counted once in each 
reference. The token group for "123" has a probability of 1/3, 
the second "GRANT" group has a probability of 1/3, and the 
"ST" group a probability of 2/3. 

After exhausting all of the tokens in R1, there are still four 
uncounted tokens in R2 forming the “MARY” group with 
probability 2/3, “21” group probability 2/3, the “OAK” group 
probability 2/3, and the “STREET” group probability 1/3. 
Finally, there are no remaining uncounted tokens in R3. In 
total, there are 9 vertical token groups in the example cluster. 
The total entropy of the cluster is calculated from Formula (2) 
by: 
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Entropy is a measure of the organization of a cluster in 
terms of having similar tokens [24]. The entropy of a cluster 
decreases as references in a cluster have more and more similar 
tokens. By this measure, a cluster will have an entropy of 0 if, 
and only if, all of the references have the same tokens. 

10) Process P10: Assessment of clusters based on entropy: 

In Process P10, the entropy of each cluster as calculated in 

Process P9 is assessed against the user-defined entropy 

threshold . If a cluster has an entropy less than , it is judged 

as an acceptable cluster, and the reference identifier and 

cluster identifiers from the clusters are written to the Saved 

Clusters output file. Otherwise, the cluster identifiers are 

discarded, and the references are written to the Reprocess file. 

References written to the Reprocess file will go through the 

entire blocking and ER process again but at a higher match 

threshold. By definition, all clusters of size one (singleton 

clusters) have an entropy of 0 and are written directly the 

Saved Clusters file. 

For each cycle of the POC, the size of the Saved Clusters 
file increases while the size of the Reprocess file decreases. 
The Reprocess file will eventually become empty as the match 

threshold  approaches 1.0. At very high match thresholds, the 
references in a block can only form clusters if they are highly 
similar and generate clusters of very-low entropy, otherwise, 
they break down into singleton clusters. In either case, they 

will eventually pass to the Saved Clusters file and the 
Reprocess file will be empty. An example of this process is 
shown in Table I. The statistics are produced as part of the 
statistics report when running a sample. In this case, the 
statistics are for Sample S4 of 1,912 references. As shown in 

Table IV, the parameters for this run were β=12, σ=22, =4.2, 

and the starting value of =0.5. 

The volume of work continually decreases with each 
iteration. Note that some references written to the reprocess file 
will not be used in the next iteration. This is because, at the 
beginning of the next iteration, the reprocess file is re-blocked 
and re-clustered. During the clustering process, reference-to-
reference links are only produced for references linked to at 
least one other reference. For example, 27 references were 

written to the reprocess file at the end of the =0.8 iterations, 
but only 14 of these references survived to form 6 clusters of 

two or more references when the match threshold  was 
increased to 0.90. 

11) Process P11: Reprocess decision: As described in 

Process P10, at some point the Reprocess file will be empty. 

When this happens, the reprocessing cycle stops, and the final 

join (Process P13) is performed. 

12) Process P12: Increasing Match Threshold: If there are 

references to be reprocessed, then the match threshold is 

increased before the reprocess is started. Increasing the match 

threshold will require references to be more similar before 

they are linked into the same cluster. In all of the results 

reported here, the increment value was 0.1 (10%). 

13) Process P13: Final join to original source: Although 

no further iterations are necessary when the Reprocess file is 

empty, there are still two tasks to complete. The first task is to 

ensure every reference in the source is represented in the final 

set of clusters. Some references in the source may not be 

transferred to the Saved Clusters file. Depending upon the 

value of blocking frequency threshold , some references may 

not contain blocking tokens and are not output from Process 

P2. 

The second task is to append the final cluster identifier to 
each reference in the source. The goal is to create a Final 
output comprising every reference in the source along with its 
proper cluster identifier. Both of these tasks can be completed 
by performing an outer join by reference identifiers between 
the original Reference Source file and the Saved Clusters file. 

D. Cluster Cleaning 

While this process has not been implemented in the POC, 
work is currently underway to develop unsupervised 
techniques for cleaning and standardizing tokens within the 
same cluster. The current approach is very much the same as 
the Global Token Replacement described in the Second Phase. 
However, replacements can be more aggressive at the cluster-
level versus the file level. Across an entire reference file, there 
could easily be an entire sequence of house numbers, such as 
123, 124, 125, and so on. For this reason, numeric tokens are 
specifically excluded from replacement globally. However, at 
the cluster level, it is much more probable that if 5 of 6 
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references have the token 123 and the sixth reference has 124, 
the replacement of 124 by 123 would be a correction. 

III. POC TEST SAMPLES AND RESULTS 

To test the POC, 18 samples were taken from four fully 
annotated reference sources. Aside from having equivalent 
references to match, the samples also exhibited combinations 
of two other characteristics – high data quality (DQ=Good) 
versus low data quality (DQ=Poor) and uniform record layout 
(Mixed=No) versus mixed (Mixed=Yes) record layout.  In all 
cases, the Splitter Tokenization Method with token de-
duplication was used in Phase I. To gauge the effect of Phase II 
(Global Token Replacement) each sample was run with, and 
without, the global token replacement. In the cases where token 
replacement was run, the settings described in Section on the 
Second Phase the parameters were fixed at  

 MinFreqStdToken =5 

 MaxFreqErrToken =3 

 MinLenStdToken = 5 

 MaxStringDiff = 1 

To establish a baseline, all samples were run with 0.50 as 

the initial value of  and 0.10 as the increment value for. The 
initial values for β and σ were set using the linear regression 
prediction formulas (3) and (4) for the non-iterative model 

[25]. However, the actual values for β, σ, and  were set 
manually by observing the correlation between the F-measure 
of each cluster and the computed entropy as logged by the 
system (Table IV). Then exploring a range of values around 
these estimates using a grid search automated with a robotic 
Python process to run each range of settings and collect the 
precision, recall, and F-measure results. The results for all 18 
samples using the best parameter settings are given in 
Table IV. 

A. Samples with Good Data Quality 

Stratified samples S1, S2, S4, S5, S7, S13, S14, and S15 
were drawn from a corpus of approximately 800K references 
created using the R-package “generator”, and degraded with 
data quality errors using the R-package “relErrorGeneratoR” 
from GitHub.com. While some reference-level errors such as 
misspelling, truncation, mixed formatting, and missing values 
were injected into the data during generation, the individual 
references in the 800K corpus are of relatively high quality. 

The majority of the data quality errors introduced into the 
800K corpus were data redundancy (duplicate record) errors to 
make the corpus more useful for entity resolution research. 
Shown here are two references from Sample S4 with Record 
Layout A. The only variations between the two references are 
the name truncation (initial) and different formats for telephone 
numbers and identification numbers. 

A926344: ANDREW, AARON, STEPHEN, 2475 
SPICEWOOD DR, WINSTON SALEM, NC, 27106, 601-70-
6106, (159)-928-5341 

A930444: A, AARON, STEPHEN, 2475 SPICEWOOD 
DR, WINSTON SALEM, NC, 27106, 601706106, 
(159)9285341 

Sample S6 was produced by the GeCo synthetic data 
generator [26], and Sample S3 is a file of 866 references to 
restaurants (businesses) from two public sources, Zagat’s and 
Fodor’s restaurant guides. The references contain restaurant 
names, addresses, city, phone, and type of cuisine. The file has 
been manually annotated and is known to have 112 pairs of 
equivalent references [27]. Examples of references from S3 are 
shown here. 

A001: Arnie Morton's of Chicago 435 S. La Cienega Blvd. 
Los Angeles 310-246-1501 Steakhouses 

A002: Arnie Morton's of Chicago 435 S. La Cienega Blvd. 
Los Angeles 310/246-1501 American 

B. Low Data Quality Samples 

Samples S9, S10, S11, S12, S16, S17, and S18 were taken 
from the SOG (Synthetic Occupancy Generator) project [28]. 
The SOG corpus has approximately 270K references with three 
different record layouts A, B, and C. The SOG corpus has a 
much higher level of data quality errors than the 800K corpus. 
Most records exhibit at least one error such as missing value, 
misspelling, truncation, inconsistent formatting, nicknames, 
and name and address changes. Shown here are three 
equivalent references from Sample S8 exhibiting a number of 
these data quality issues. 

A960175,lucia,r,oster,t20672,southwood,oaks,dr,porter,,tx,
77365,,,10896980,, 

A966807,lucia,r,wilson,12006,MOUNTAIN,RIDGE,RD,H
OUSTON,,TEXAS,77043,PO,BOX,280034, 
houston,,tx,77228,10896980,1917 

A971069,LUCIA,R,WILSON,20672,SOUTHWOOD,OA
KS,DR,PORTE,,TEXAS,77365,,,001-89-6980,, 

C. Mixed Layout Samples 

In addition to variations in quality, Sample S7 and Samples 
S10 through S18 were selected with mixed (heterogeneous) 
record layouts. For example, in Sample S7 about half of the 
references were in Record Layout A and the other half in 
Record Layout B. The two layouts used a different order for 
names and have different identity attributes, e.g. social security 
number in Layout A and date-of-birth in Layout B. An 
example of a pair of references from S7 is shown here. 

A944353,VICTOR,AGWU,KINGSLEY,1608 W 
NORTHWEST BLVD # O,WINSTON 
SALEM,NC,27104.0,730-69-2869 

B867674,VICTOR K AGWU,1608,W NORTHWEST 
BLVD # O,WINSTON SALEM,NC,27104,12/14/37, 

For samples selected from the SOG corpus, the difference 
in layouts was much greater. Here is an example of a pair of 
references from Sample S10. 

A993286,chavez,4149 WALSH LN,GRAQND PRAIRIE, 
TEXAS 75052,OFFICE BOX 54331,grand prairie, tx 
75054,10525947,,, 

A994281,barbie chavze,11R881 GULF POINTE DR APT 
E38,HOUSTON, TX 77089,,,,,,, 
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B904140,Barby ,CHAVEZ ,11881,GULF POINTE DR 
,Apt E38,HOUSTON,TX,77089,(713)165.7474,, 

As noted, the values for β, σ, , and the starting value of  
were found by a grid search. Prior research in using the scoring 
matrix for ER on samples from these same corpora [25] [29], 
[30], [31] provided some guidance of the best values for the 
blocking threshold frequency threshold β and the stop word 
frequency threshold σ based on the size of the sample and the 
standard deviation of its token frequency distribution. These 
formulas are 

β = (7.8864) + (0.0023)*Std_Dev + (0.0005)*Size      (3) 

σ = (-83.3106) + (2.9647)*Std_Dev + (0.0037)*Size     (4) 

However, the previous research did not involve the 
entropy-based, self-evaluation, or iteration with incrementally 
increasing match thresholds use in this research, thus it did not 
provide any guidance about the best setting for the entropy 

threshold . Instead, the estimated value for  was found by 
observing the entropy measure of each cluster and comparing it 
to the actual F-measure of the cluster. This was possible 
because all of the test samples were fully annotated. The F-
measure assessment of each cluster was an augmentation to 
Processes P5. As the entropy of each cluster is calculated, the 
cluster was also sent to an ER metrics program to determine 
the actual F-measure of the cluster as compared to the 
annotated truth set. 

The entropy and the actual F-measure of each cluster were 
captured in a Cluster Analysis text file. Table II shows a 
segment of the report produced when running Sample S2. The 
table shows the results of three iterations. Row 1 of Table II 

shows the last cluster produced by the initial value  at 0.5, 
Rows 2 through 6 show the entire second reprocess iteration of 

four clusters where the value  was 0.6. Row 7 is the first 

cluster of the last iteration where  was 0.7. As each cluster is 
formed, its entropy is calculated as shown in the column 
labeled "Entropy.” If the cluster’s entropy is above the value of 

 (set at 4.3 for this run) the cluster is judged to be “bad” and is 
written to the reprocess file for re-linking at the next higher 

value of the match threshold . 

On the other hand, if the entropy is less than or equal to , it 
is written to the “good” file as a final cluster. Table II shows 
for Rows 4 and 5 these were correct decisions. In both cases, 
the F-Measure was less than 1.0 when the entropy was above 
4.3. However, Row 2 is an exception. Even though the entropy 
of 9.0446 is above 4.3, the cluster had an F-Measure of 1.0 and 
was correctly linked. However, because the entropy was above 
the threshold, the references were put back for reprocessing in 
the third iteration. In the end, the F-Measure for S2 at the end 
of the process was 0.8842 as shown in Table II. 

TABLE II. SEGMENT OF ENTROPY VS. F-MEASURE REPORT FOR S2 

Row   Size Entropy F-Meas Precision Recall 

… 

1 0.5 4.3 2 0.00 1.0 1.0 1.0 

2 0.6 4.3 3 9.04 1.0 1.0 1.0 

3 0.6 4.3 2 1.00 1.0 1.0 1.0 

4 0.6 4.3 3 5.53 0.5 0.33 1.0 

5 0.6 4.3 4 5.50 0.5 0.33 1.0 

6 0.7 4.3 3 9.04 1.0 1.0 1.0 

7 0.7 4.3 2 2.00 1.0 1.0 1.0 

… 

D. Example Results using Machine Learning for P5 

In this example, Sample S4 was processed using DBScan 
(Density-Based Spatial Clustering of Applications with Noise) 
[32] as the ML clustering algorithm and using the doc2vec [33] 
word embedding algorithm to create the numeric vectors as 
input for DBScan. As implied by its name, the doc2vec 
algorithm converts an entire document into a vector. For the 
POC, each reference was considered a document so there is a 
one-to-one correspondence between each input reference and 
each vector clustered by DBScan. 

The doc2vec algorithm was applied to each block using the 
following parameters. 

 vector size = 5 

 min count = 2 

 epoch = 20 

 alpha = 0.25 

 min_alpha=0.00025 

DBScan algorithm was imported from the Python 3.7 
library learn. cluster. This version has two control parameters 
“eps” and “min_samples”. The eps parameter controls the 
neighborhood reach (proximity) of vectors to be in the same 
cluster, and the min_samples parameter defines the minimum 
size of “core samples”, i.e. the minimum number of vectors 
within eps distance of each other. The results from using this 
configuration are shown in Table III. 

TABLE III. ER RESULTS USING DOC2VEC FOLLOWED BY DBSCAN 

Sample Size eps 
min_ 

samples 

Results 

Precision Recall 
F-

Measure 

S1 50 0.6 0.9 0.8519 1.0000 0.9200 

S2 100 0.4 1 0.9070 1.0000 0.9513 

S4 1,912 0.01 1 0.9555 0.9111 0.9328 
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TABLE IV. SHOWS THE RESULTS FROM THE POC 

ID Size Token DQ Mix Mu Mu+ Beta Sigma Epsilon Precision Recall F-Measure 

S1 50 Split Good No 0.50 0.10 6 7 4.9 1.00 0.963 0.9811 

S2 100 Split Good No 0.50 0.10 6 7 4.7 1.00 0.8958 0.9451 

S3 868 Split Good No 0.50 0.10 9 95 4.0 0.8889 0.9286 0.9083 

S4 1,912 Split Good No 0.50 0.10 12 22 3.1 0.9854 0.8869 0.9335 

S5 3,004 Split Good No 0.50 0.10 12 53 3.0 0.9911 0.8729 0.9282 

S6 19,998 Split Good No 0.50 0.10 35 403 15.1 0.9457 0.9737 0.9595 

S7 3,000 Split Good Yes 0.50 0.10 14 24 3.0 0.9464 0.8665 0.9047 

S8 1,000 Split Poor No 0.60 0.05 14 145 35 0.7880 0.8881 0.8350 

S8 1,000 Comp Poor No 0.60 0.05 14 144 33 0.7877 0.8827 0.8324 

S9 1,000 Split Poor No 0.50 0.05 15 135 28 0.6824 0.8453 0.7552 

S9 1,000 Comp Poor No 0.62 0.02 23 150 28 0.7806 0.8116 0.7958 

S10 2,000 Split Poor Yes 0.50 0.05 31 280 31.5 0.7235 0.8348 0.7752 

S10 2,000 Comp Poor Yes 0.62 0.02 32 280 34 0.7455 0.9041 0.8172 

S11 4,000 Split Poor Yes 0.55 0.02 38 280 31.5 0.7010 0.8386 0.7636 

S11 4,000 Comp Poor Yes 0.62 0.02 43 258 26 0.7571 0.7764 0.7666 

S12 6,000 Split Poor Yes 0.50 0.05 20 580 29 0.7699 0.7424 0.7560 

S12 6,000 Comp Poor Yes 0.62 0.02 21 570 26.4 0.7825 0.7723 0.7774 

S13 2,000 Split Good Yes 0.50 0.05 14 23 5.3 0.9478 0.8116 0.8745 

S13 2,000 Comp Good Yes 0.01 0.02 14 110 2.4 0.9707 0.8003 0.8773 

S14 5,000 Split Good Yes 0.48 0.02 24 118 5.2 0.9419 0.8464 0.8916 

S14 5,000 Comp Good Yes 0.01 0.02 24 310 2.6 0.9579 0.8226 0.8851 

S15 10,000 Split Good Yes 0.50 0.02 20 100 5 0.9543 0.8242 0.8845 

S15 10,000 Comp Good Yes 0.1 0.03 27 108 2.8 0.9622 0.8247 0.8882 

S16 2,000 Split Poor Yes 0.50 0.05 21 142 32.8 0.6908 0.8160 0.7666 

S16 2,000 Comp Poor Yes 0.54 0.02 30 154 31.3 0.6500 0.9331 0.7663 

S17 5,000 Split Poor Yes 0.50 0.05 35 480 32.8 0.6954 0.81578 0.7508 

S17 5,000 Comp Poor Yes 0.60 0.02 26 466 26 0.7560 0.80716 0.7807 

S18 10,000 Split Poor Yes 0.50 0.05 33 449 31.8 0.6995 0.7514 0.7245 

S18 10,000 Comp Poor Yes 0.52 0.02 26 444 34 0.7511 0.7948 0.7724 

IV. CONCLUSION AND FUTURE RESEARCH 

The results are shown in Table IV suggest entropy can be 
an effective way to regulate an unsupervised clustering 
process. The POC using the scoring matrix performs extremely 
well when processing good quality references such as Samples 
S1 – S7 and S13 – S15. The average F-Measure for these 
samples was 0.9124 with an average precision of 0.9609. 

The average F-Measure for the poor quality samples S8 – 
S12 and S16 – S18 was somewhat lower at with an average F-
Measure of 0.7772 and precision of 0.7351. The results also 
indicate the POC is more sensitive to data quality issues than to 
mixed record formats. The good-quality, mixed-format 
Samples S7, S13, S14, and S15 had an average F-Measure of 
0.8866 compared to an average F-Measure of 0.9426 for good-
quality, single format samples. 

For the good quality samples where the clustering precision 
was 96%, the hope is that applying a more comprehensive 
cleaning and standardization at the cluster level will be able to 
provide much better results. The goal for future research is, just 
as linking results can be continually improved through iterative 
reprocessing, the same reprocessing loop will also incorporate 
processes to continually improve the quality of the references, 
which in turn, would further improve the linking results. The 
POC described in this paper shows the unsupervised ER 
improvement part of this positive feedback loop is feasible. 
The next step will be to integrate additional unsupervised data 
quality improvement processes. 

A. Industry Testing 

As an experiment, a commercial company tested the POC 
(data washing machine) approach using a real-world dataset of 
70,500 business names and address references with mixed 
record layouts. Because the dataset was not annotated, it was 
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not possible to calculate the exact F-measure of the overall 
clustering results. However, the company did undertake an 
extensive manual review of the POC results in comparison to 
results from their standard process. The company determined 
the POC results to be as good as, and in many cases better than, 
the results from their standard process, but with the added 
advantage of avoiding the time and effort to analyze and 
prepare the data required by their standard process. 

Besides, the company is experimenting with some 
variations of the original POC design described in this paper. 
In particular, they have been able to improve the clustering 

accuracy for their datasets by using a computed value for , the 
entropy threshold. In their approach, they consider five factors 
when assessing the entropy of each cluster. These are 

 The match threshold  used to form the cluster. 

 The numbers of references in the cluster (size). 

 The maximum number of tokens in any one reference 
in the cluster (maxT). 

 The minimum number of tokens in any one reference 
in the cluster (minT). 

 The average number of tokens for all references in the 
cluster (avgT). 

In Process P10, instead of comparing the entropy of the 

cluster to a static value of  as in the original POC, they 
compute a dynamic threshold based on the factors listed above. 

In particular,  is computed as 

             )    {        )                )       

         )}              (5) 

In another change, they were able to improve the precision 
of the clustering by modifying the scoring matrix used to link 
references in Process P5. The comparator was modified to use 
a Boolean similarity of the match (1.0) and no-match (0.0) 
when comparing numeric tokens while still using the 
normalized Damerau-Levenshtein edit distance when 
comparing non-numeric tokens. 

B. Predicting Parameters and Scalability 

However, there are still two gaps that must be bridged to 
make the POC a practical solution for most real-world use 
cases. The first is a reliable method for setting the optimal 

values of the key parameters β, σ, and . In a research 
environment using fully annotated references, these values can 
be found by simply observing where the best results were 
obtained based on comparisons with the correct linking. When 
working with real data, this is not generally possible. A 
practical unsupervised ER system needs a way to predict these 
parameters for a given set of input references. Creating such 
predictive models is still research in progress. 

The second consideration is scalability. The current POC is 
implemented in a combination of Python and Java, and as 
written, it is not very scalable. The blocking and the stop word 
removal process can be combined with the token counting 
process to avoid the need for storing an in-memory token 
frequency table. 

The POC can be converted to an HDFS Map/Reduce 
process. The references can easily be tokenized in the mapping 
process which then reduces on the token. The reducer can then 
emit two kinds of key-value pairs for each token group. The 
first is (RefID, Token) where the token has a frequency below 
σ (not a stop word). The second is (Token, RefID) where the 
token has a frequency below β (a blocking token). Sorting and 
reducing the first pairs on the RefID as the key will create the 
skinny references of Process P2 while sorting and reducing the 
second pairs on Token as the key will create the blocks. The 
join of these two outputs on RefID will be the equivalent of 
creating and sorting the blocked file in Process P3. Next, the 
blocks can be mapped to distributed nodes for pairwise linking 

in parallel with the assurance no block will be larger than . 
The outputs are the Process P6 Linked Pairs. The transitive 
closure of the pairs in Process P7 using the algorithm of Kolb 
et al [22] is already an efficient map/reduce process. Process 
P8 then becomes a map of the clusters to parallel processing 
work nodes performing the entropy calculation (Process P9) 
and triage of clusters (Process P10) into “good” and “bad” 
cluster outputs. 

The POC described here was built uses the simplest of 
approaches which could no doubt be dramatically improved 
through additional research and experimentation including 

investigating different starting values for, and exploring its 
sensitivity to the increment value currently fixed at 0.1. Also, 
building prediction models for these parameters. Another is 
investigating whether the results are improved by modifying 

the values of β, σ, or  for each reprocesses iteration, and if it 
does, how should they be modified to produce the best linking 
results. 
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