
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

680 | P a g e

www.ijacsa.thesai.org

An Iterative, Self-Assessing Entity Resolution

System: First Steps toward a Data Washing Machine

John R.Talburt
1
, Awaad K. Al Sarkhi

2

College of Science, Technology, Engineering, and

Mathematics, The University of Arkansas at Little Rock

Little Rock, USA

Daniel Pullen
3

Noetic Partners,

New York, NY

Leon Claassens
4

PiLog Group

Centurion,

South Africa

Richard Wang
5

Sloan Management School, MIT

Boston, MA

Abstract—Data curation is the process of acquiring multiple

sources of data, assessing and improving data quality,

standardizing, and integrating the data into a usable information

product, and eventually disposing of the data. The research

describes the building of a proof-of-concept for an unsupervised

data curation process addressing a basic form of data cleansing

in the form of identifying redundant records through entity

resolution and spelling corrections. The novelty of the approach

is to use ER as the first step using an unsupervised blocking and

stop word scheme based on token frequency. A scoring matrix is

used for linking unstandardized references, and an unsupervised

process for evaluating linking results based on cluster entropy.

The ER process is iterative, and in each iteration, the match

threshold is increased. The prototype was tested on 18 fully-

annotated test samples of primarily synthetic person data varied

in two different ways, good data quality versus poor data quality,

and a single record layout versus two different record layouts. In

samples with good data quality and using both single and mixed

layouts, the final clusters had an average F-measure of 0.91,

precision of 0.96, and recall of 0.87 outcomes comparable to

results from a supervised ER process. In samples with poor data

quality whether mixed or single layout, the average F-measure

was 0.78, precision 0.74, and recall 0.83 showing that data quality

assessment and improvement is still a critical component of

successful data curation. The results demonstrate the feasibility

of building an unsupervised ER engine to support data

integration for good quality references while avoiding the time

and effort to standardize reference sources to a common layout,

design, and test matching rules, design blocking keys, or test

blocking alignment. Also, the paper proposes how unsupervised

data quality improvement processes could also be incorporated

into the design allowing the model to address an even broader

range of data curation applications.

Keywords—Unsupervised entity resolution; data curation;

frequency blocking; entropy regulated; data washing machine

I. INTRODUCTION

As organizations ingest and process larger amounts of data,
the time and effort it takes to prepare and integrate data into
useful products are also increasing, and many researchers are
working to alleviate this bottleneck using several different
approaches [1], [2], [3]. The root cause of the time delay is
human supervision of the curation steps including data quality

analysis, data cleansing and standardization, entity resolution
(ER), and data integration [4]. The goal of ER is to link two
references if, and only if, the references are equivalent [5], [6].
The problem is only exacerbated by Big Data [7], [8]. Because
of the time delay between receiving data and its availability for
use, data analysts often face the choice of waiting for the
preparation to be complete, or to by-pass the curation process
and engage in their attempts at data preparation which may or
may not follow the best practices.

Many organizations are beginning to recognize this time
and effort gap between data ingestion and final information
product, and are moving to remedy this situation by increasing
the level of automation in data curation processes [9]. These
organizations along with software vendors and university
researchers are trying to understand how to apply the same AI
and ML techniques used for the data analytics at the end to the
automation to the preceding data preparation processes [10],
[11]. While many of these employ AI and ML [12], [3], [13],
they still largely rely on some level of standardization in the
source data. The ultimate goal is to develop systems for
unsupervised data curation (UDC) which are metadata agnostic
and can directly ingest and process raw data. The objective of
UDC is to develop methods and techniques to process data at
scale and successfully produce information products without
manual intervention. Key components of the data curation
process and prime targets for automation are the largely
manual processes of data quality analysis, building
transformation for data cleansing and standardization, and
developing and testing rules for entity resolution and data
integration (fusion).

UDC has been likened to a “data washing machine” [14].
When using a household washing machine for laundry, the user
first loads the dirty laundry, and detergent then selects the
cycles. The washing machine automatically executes the
cycles, and in the end, produces clean laundry. Similarly, the
user of the data washing machine loads dirty data with
appropriate reference data, then selects the data cycles (control
parameters). The data washing machine then executes the
cycles to produce clean data (an information product)
appropriate for use in a particular application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

681 | P a g e

www.ijacsa.thesai.org

The focus of this research is to describe a proof-of-concept
(POC) prototype to serve as both a starting point and a
foundation upon which a more complete UDC can be built
[15]. The primary goal is to develop unsupervised methods and
techniques for both data cleaning and data integration (ER)
capable of operating at scale. The current code for the POC
described in this paper can be found at https://bitbucket.
org/Awaad_Al_Sarkhi/dwm-datawashingmachine/src/master/

II. A PROOF-OF-CONCEPT (POC) FOR UNSUPERVISED

DATA CURATION (UDC)

The purpose of the POC is to demonstrate the feasibility of
cleaning and integrating entity references in an automated
fashion for certain types of data and certain phases of the
curation process. The primary use case addressed by the POC
is “multiple sources of the same information” as described in
[16] as one of ten root causes of data quality problems. The
novelty of the POC is it attempts to perform unsupervised
entity resolution (ER) first rather than data cleaning, the
opposite of most supervised processes. The objective of the
POC is to minimize human intervention to analyze and
transform the data and still obtain usable results as measured
by the accuracy of clustering, i.e. a working data washing
machine for data deduplication.

The POC for the data washing machine was written in
Python and Java and uses frequency-based blocking, a multi-
token scoring matrix as its ER matching process, and entropy-
based quality evaluation of clustering [17] , [18] , [19], [20]
The assumptions of the POC are

 The input to the process is a text file in a comma-
separated values (CSV) format.

 Each text line is a reference to the same type of entity
such as person entities (patients, customers, students),
business entities, or materials (product listings,
machine parts).

 The references are not assumed to be standardized with
a uniform metadata tagging. No metadata is used in the
POC process. Any metadata in the form of a header
record is discarded.

 The first string value in each text line is a unique
reference identifier.

To facilitate experimentation with various unsupervised
techniques, the POC was developed as a series of sub-
processes or phases to facilitate experimentation. Currently,
phases have been implemented, and the fourth phase for token
correction is under development. The organization of this paper
is as follows:

 Phase I: Punctuation removal, upper casing, and
tokenization.

 Phase II: Global standardization (replacement) of non-
numeric tokens at the file level.

 Phase III: Removal of stop words, blocking, and
clustering of equivalent references (entity resolution).

A. Phase I - Tokenization

The first Phase reads each reference as a line of text and
performs a series of operations. The first is to separate the
reference identifier, convert all letters to uppercase, and replace
the field delimiters (typically a comma) with a blank character.
Next, all non-word characters (\W) are replaced. For
experimentation, two methods of replacement for non-word
characters were tried. In the first method called "Compress,"
the non-word characters are replaced by a null character. For
example, if a field has the value "123-456", then after replacing
the hyphen character with a null character is becomes the
single string "123456". In the second method called "Splitter,"
each non-word character is replaced by a blank character. The
same example "123-456" becomes two strings (tokens), "123"
and "345".

The motivation for the Compress method was to transform
characteristic values with punctuation such as telephone
numbers and dates into a single string. Interestingly, for the
data used for the initial validation of the POC, the Splitter
method generally gave better results than the Compress
method.

In addition to non-word character replacement, upper
casing, and tokenization, the first Phase also has an option to
de-duplicate tokens. If the duplicate token option is employed,
any duplicates of tokens within the same reference are
removed, otherwise, duplicates are left in the reference. In the
end, the cleaned tokens from each reference are reassembled
into a blank delimited string and written to the tokenized
reference file.

B. Phase II – Global Token Replacement

Phase II attempts an unsupervised correction of misspelled
tokens based on the token frequency and string similarity. The
replacement uses the assumption, if a high frequency, the non-
numeric token is very similar to a low-frequency, non-numeric
token, the low-frequency token is likely to be a misspelling of
the high-frequency token and can be replaced by the high-
frequency token. The validity of this assumption is dependent
upon several factors. These include, what is a high frequency,
what is a low frequency, and what is very similar.

The process is controlled by four parameters:

 MinFreqStdToken – The minimum frequency of a
token that can be used to replace another token, i.e. can
function as a "standard" token.

 MinLenStdToken – The minimum string length of a
standard token.

 MaxFreqErrToken – The maximum frequency of a
token that can be replaced by a standard token, i.e. can
be treated as an “error” token.

 MaxStringDist – The maximum string (character)
distance between a standard token and an error token
before the error token can be replaced (usually 1 as
measured by Levenshtein edit distance).

The replacement table has a one-to-many relationship
between standard tokens and error tokens. One standard token
could replace many different error tokens, but an error token

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

682 | P a g e

www.ijacsa.thesai.org

can only be replaced by one standard token. Some actual
examples of rows from the Replacement Table for Sample S8
are shown in Table I where

 MinFreqStdToken =10

 MaxFreqErrToken = 3

 MinLenStdToken = 4

 MaxStringDiff = 1

Table I shows some examples of token replacements
generated in Phase II. It is important to note the token changes
made in Phase II are not permanent changes to the source data.
The token changes in Phase II are intended to improve the
cluster (ER) results in Phase III.

TABLE I. EXAMPLE ROWS FROM REPLACEMENT

 Std Token Freq Error Token Freq

1 APT 82 APTZ 1

2 APT 82 APLT 1

3 APT 82 APTR 1

4 CALIFORNIA 58 CALFORNIA 3

5 CALIFORNIA 58 CALIFORANIA 1

6 TEXAS 48 TEAS 3

7 TEXAS 48 TEXAYS 1

8 APARTMENT 32 PARTMENT 2

9 APARTMENT 32 APARTMENTS 1

Research is continuing on the development of Phase IV to
make more accurate token corrections (standardization) at the
cluster level. If it can be demonstrated the clusters produced by
Phase III are reasonably accurate, then the criteria for
identifying misspellings described for Phase II can be more
aggressive when applied at the cluster level than at the file
level. For example, while the replacements shown in Table I at
the file level risks overwriting valid tokens, the same
replacement is more likely to be valid within a cluster of
references believed to be for the same person. Changes at the
cluster level could also be applied to numeric tokens. For
example, if five out of six references in a cluster have the token
"413", and the sixth reference has “431”, and all six instances
are preceded and followed by the same token, then it is not
unreasonable to assume “431" is a mistyped version of “413”.

C. Phase III – Clustering (ER)

The purpose of Phase III is to cluster records for the same
entity in support of data deduplication and data integration.
This phase is more complex than Phases II and III and involves
iterating over the tokenized source records coming out of
Phase II. The clustering phase is a series of 13 processes
labeled P1 through P13.

1) Process P1: Tokenize and compute token frequencies:

Because the references have already been tokenized in Phase

I, the re-tokenization here is simply a matter of separating the

reference identifier and splitting the remaining substring by

blank (white) space. While computing token frequencies is

redundant with the same process in Phase II, for experimental

purposes this was done to make Phase II an optional process

allowing the evaluation of data integration results with and

without token replacement.

2) Process P2: Tokenizing references and appending

blocking tokens: Process P2 is the start of an iterative process

on the “reprocess file”. Initially, the reprocess file is a copy of

the original input file from which the frequency dictionary

was created in Process P1. However, as the POC progresses,

the reprocess file becomes a smaller and smaller subset of the

original input source until there are there no more references

to the process ending the iterations.

Process P2 repeats the tokenization process described in
Process P1 in which each reference is split into a list of tokens.
However, Process P2 has access to the token frequency
dictionary previously build in P1. Process P2 has two primary
functions:

 To rebuild each input reference as a string of blank-
separated tokens, omitting all tokens found to have a
frequency above the stop word frequency threshold (σ)
creating “skinny references.”

 To output a copy of the skinny reference for each
blocking token found in the reference.

Again, a blocking token is simply any token with a

frequency below the blocking frequency threshold . This
means the output from P2 will have more records than the
input assuming almost all references have at least one blocking
token, and many have more than one.

Example: Suppose an input reference has the form

R13, John Doe, Oak St, Anyville AL, 793-1234

The tokenization of this reference would produce 9 tokens
“R13”, “JOHN”, “DOE”, “OAK”, “ST”, “ANYVILLE”,
“AL”, “793”, and “1234” (using Splitter tokenization). Also,
suppose the tokens “JOHN”. “DOE”, and “OAK” have a

frequency below , and the tokens “AL”, “ST”, and “793”
have a frequency above σ. Then P2 will generate three outputs.

R13: JOHN: JOHN DOE OAK ANYVILLE 1234

R13: DOE: JOHN DOE OAK ANYVILLE 1234

R13: OAK: JOHN DOE OAK ANYVILLE 1234

Because the input reference R13 contains three blocking
tokens, P2 will output three skinny references, one for each
blocking token. To simplify parsing, the output reference is
divided into three segments using the colon (:) character. The
first segment is the reference identifier, the second the blocking
token, and the third the body of the reference.

3) Process P3: Sorting by blocking tokens to create

blocks: The purpose of Process P3 is to sort the output of the

reference from process P2 into ascending order by blocking

token (Segment 2 of the rebuilt references). Each sequence of

consecutive references with the same blocking token will form

a block for input to the ER process for record linking.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

683 | P a g e

www.ijacsa.thesai.org

4) Process P4: Iterate blocks: Process P4 is the start of an

iterative process (P5) to be performed on each block. P4’s

primary function is to detect the sequences of consecutive

records having the same blocking token, then pass this block

of references on to P5.

5) Process P5: Link reference pairs in blocks: In Process

P5, each block undergoes a process to generate pairs of linked

references. The technique implemented in the POC is to use a

multi-token comparator. Every pair of references in the block

is compared. For a block of N references, there will Nx(N-1)/2

pairs.

Any pairwise matching process can be inserted at this point
including machine learning (ML) algorithms for linking.
Because the entity references are text, this approach usually
requires an additional process to convert references from the
text to numeric vectors, a process called text embedding. Some
results from using the DBScan clustering algorithm with
doc2vec text embedding are shown in this paper (Table III).

Most of the work described here used the scoring matrix. In
this case, a variation of the Monge-Elkan method [21] for
comparing multi-token values, but with the removal of stop
words. When the scoring matrix processes a pair of references,
each reference is first transformed into a list of tokens (words),
then the stop word tokens are removed from the list. The
remaining tokens from the first reference are used to label the
rows of the matrix, and the remaining tokens from the second
string label the columns of the matrix. The cell value of the
matrix is a normalized similarity measure, i.e., a value in the
interval [0,1], between the two tokens. In the POC, the
normalized Damerau-Levenshtein Edit Distance (nLED)
function was used.

To illustrate the operation of the scoring matrix, consider
the following two references:

A045, Smith, John, Apt 21, 345 Oak St, Anytown, NY

B167, Jon Smith, 345 Oak Street #21, Anytown, NY

Furthermore, suppose the threshold for the comparator has
been set to 0.80, and the list of stop words contains the token
“NY.” The resulting token matrix would then appear. The
process begins by finding the largest similarity value in the
matrix. This value is the initial value of a total running value.
After the largest similarity value is used to initialize the total
value, all of the values in the same row and column are
removed (set to zero). In the next iteration, the largest
similarity value from the remaining values in the matrix is
identified and added to the overall total.

Again, all of the nLED values in the same row and column
as the largest value are removed. The process continues in
subsequent iterations until all of the similarity values have been
removed from the matrix. In Fig. 1, the cells with underlined
and bold font are the surviving similarity scores from this
process. After the last iteration, the running total is divided by
the number of iterations. If the calculated average value is
greater than or equal to a threshold value provided by the user,
then references are linked. At the end of the algorithm, the final
matrix score for a pair of references in Fig. 1 is 0.83.

 JON SMITH 345 OAK STREET 21 ANYTONW

SMITH 1.00 0.17 0.14

JOHN 0.75 0.25 0.14

APT 0.20 0.17 0.29

21 1.00

345 1.00

OAK 1.00 0.14

ST 0.40 0.33 0.14

ANYTOWN 0.29 0.14 0.14 0.71

Fig. 1. Example Scoring Matrix (Zero Similarity Values Omitted).

6) Process P6: Linked pair generation: The purpose of

Process P6 is to form the graph edges between pairs of

references in the same cluster. Because the clusters are all

formed from references in the single token block, they only

represent the connections found between references sharing

the token forming the block.

7) Process P7: Post-resolution transitive closure: Unlike

traditional match key blocking, frequency-based blocking

does not produce a true partition of the input references where

each input reference is in one, and only one, block. In

frequency-based blocking, each reference is replicated by the

number of blocking tokens it contains as in the example for

Process P3. To create the final set of clusters, in which each

reference occurs in one, and only one, cluster, the clusters

created from the blocks must be merged and undergo a

transitive closure process.

The POC implements a very efficient sorting closure
process described by Kolb et al [22]. While the sorting
transitive closure is implemented in the POC as an in-memory,
Java application, the algorithm is a highly-scalable, map/reduce
process for execution in the Hadoop Distributed File System
(HDFS) environment.

8) Process P8: Iterate clusters: Process P8 transforms the

transitive closure output into clusters of linked references.

Because the output of the sorting closure process is already in

sorted order by cluster identifiers, the clusters are simply

groups of consecutive references with the same cluster

identifier.

9) Process P9: Entropy Calculation: Process P9 uses a

variation of the Shannon entropy calculation [23] to assess the

level of organization in each cluster of two or more references.

The formula for the calculation of the entropy of a cluster is

 ∑ ()

 () (1)

Where tj is the j-th vertical token group in the cluster, and
p(tj) is the probability of tj.

For the POC, a vertical token group is defined to be the
same token counted only once in each reference of a cluster.
Thinking of the cluster as a matrix where the references are the
rows and the columns are the tokens, then a vertical token
group is a vertical grouping of the same token across different
references. However, each token is counted only once in each
reference. This means the maximum size of a vertical token

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

684 | P a g e

www.ijacsa.thesai.org

group is equal to the number of references in the cluster. The
probability of a vertical token group is the size of the token
group divided by the number of references in the cluster. For
example, consider the following cluster of 3 references.

R1: JOHN GRANT 123 GRANT ST

R2: MARY GRANT 21 OAK STREET

R3: MARY GRANT 21 OAK ST

The first vertical token group is for the token “JOHN”
which only occurs once in R1 forming a vertical token group of
size 1 with a group probability of 1/3. The second vertical
token group is for "GRANT" which has 3 tokens, one token
each from R1, R2, and R3 giving this group a probability of 1.0
(3/3). The second "GRANT" in R1 is not part of this token
group because each token is only counted once in each
reference. The token group for "123" has a probability of 1/3,
the second "GRANT" group has a probability of 1/3, and the
"ST" group a probability of 2/3.

After exhausting all of the tokens in R1, there are still four
uncounted tokens in R2 forming the “MARY” group with
probability 2/3, “21” group probability 2/3, the “OAK” group
probability 2/3, and the “STREET” group probability 1/3.
Finally, there are no remaining uncounted tokens in R3. In
total, there are 9 vertical token groups in the example cluster.
The total entropy of the cluster is calculated from Formula (2)
by:

 (

))

 (

)

 (

)

 (

)

 (

)

 (

)

 (

)

 (

))

Entropy is a measure of the organization of a cluster in
terms of having similar tokens [24]. The entropy of a cluster
decreases as references in a cluster have more and more similar
tokens. By this measure, a cluster will have an entropy of 0 if,
and only if, all of the references have the same tokens.

10) Process P10: Assessment of clusters based on entropy:

In Process P10, the entropy of each cluster as calculated in

Process P9 is assessed against the user-defined entropy

threshold . If a cluster has an entropy less than , it is judged

as an acceptable cluster, and the reference identifier and

cluster identifiers from the clusters are written to the Saved

Clusters output file. Otherwise, the cluster identifiers are

discarded, and the references are written to the Reprocess file.

References written to the Reprocess file will go through the

entire blocking and ER process again but at a higher match

threshold. By definition, all clusters of size one (singleton

clusters) have an entropy of 0 and are written directly the

Saved Clusters file.

For each cycle of the POC, the size of the Saved Clusters
file increases while the size of the Reprocess file decreases.
The Reprocess file will eventually become empty as the match

threshold  approaches 1.0. At very high match thresholds, the
references in a block can only form clusters if they are highly
similar and generate clusters of very-low entropy, otherwise,
they break down into singleton clusters. In either case, they

will eventually pass to the Saved Clusters file and the
Reprocess file will be empty. An example of this process is
shown in Table I. The statistics are produced as part of the
statistics report when running a sample. In this case, the
statistics are for Sample S4 of 1,912 references. As shown in

Table IV, the parameters for this run were β=12, σ=22, =4.2,

and the starting value of =0.5.

The volume of work continually decreases with each
iteration. Note that some references written to the reprocess file
will not be used in the next iteration. This is because, at the
beginning of the next iteration, the reprocess file is re-blocked
and re-clustered. During the clustering process, reference-to-
reference links are only produced for references linked to at
least one other reference. For example, 27 references were

written to the reprocess file at the end of the =0.8 iterations,
but only 14 of these references survived to form 6 clusters of

two or more references when the match threshold  was
increased to 0.90.

11) Process P11: Reprocess decision: As described in

Process P10, at some point the Reprocess file will be empty.

When this happens, the reprocessing cycle stops, and the final

join (Process P13) is performed.

12) Process P12: Increasing Match Threshold: If there are

references to be reprocessed, then the match threshold is

increased before the reprocess is started. Increasing the match

threshold will require references to be more similar before

they are linked into the same cluster. In all of the results

reported here, the increment value was 0.1 (10%).

13) Process P13: Final join to original source: Although

no further iterations are necessary when the Reprocess file is

empty, there are still two tasks to complete. The first task is to

ensure every reference in the source is represented in the final

set of clusters. Some references in the source may not be

transferred to the Saved Clusters file. Depending upon the

value of blocking frequency threshold , some references may

not contain blocking tokens and are not output from Process

P2.

The second task is to append the final cluster identifier to
each reference in the source. The goal is to create a Final
output comprising every reference in the source along with its
proper cluster identifier. Both of these tasks can be completed
by performing an outer join by reference identifiers between
the original Reference Source file and the Saved Clusters file.

D. Cluster Cleaning

While this process has not been implemented in the POC,
work is currently underway to develop unsupervised
techniques for cleaning and standardizing tokens within the
same cluster. The current approach is very much the same as
the Global Token Replacement described in the Second Phase.
However, replacements can be more aggressive at the cluster-
level versus the file level. Across an entire reference file, there
could easily be an entire sequence of house numbers, such as
123, 124, 125, and so on. For this reason, numeric tokens are
specifically excluded from replacement globally. However, at
the cluster level, it is much more probable that if 5 of 6

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

685 | P a g e

www.ijacsa.thesai.org

references have the token 123 and the sixth reference has 124,
the replacement of 124 by 123 would be a correction.

III. POC TEST SAMPLES AND RESULTS

To test the POC, 18 samples were taken from four fully
annotated reference sources. Aside from having equivalent
references to match, the samples also exhibited combinations
of two other characteristics – high data quality (DQ=Good)
versus low data quality (DQ=Poor) and uniform record layout
(Mixed=No) versus mixed (Mixed=Yes) record layout. In all
cases, the Splitter Tokenization Method with token de-
duplication was used in Phase I. To gauge the effect of Phase II
(Global Token Replacement) each sample was run with, and
without, the global token replacement. In the cases where token
replacement was run, the settings described in Section on the
Second Phase the parameters were fixed at

 MinFreqStdToken =5

 MaxFreqErrToken =3

 MinLenStdToken = 5

 MaxStringDiff = 1

To establish a baseline, all samples were run with 0.50 as

the initial value of  and 0.10 as the increment value for. The
initial values for β and σ were set using the linear regression
prediction formulas (3) and (4) for the non-iterative model

[25]. However, the actual values for β, σ, and  were set
manually by observing the correlation between the F-measure
of each cluster and the computed entropy as logged by the
system (Table IV). Then exploring a range of values around
these estimates using a grid search automated with a robotic
Python process to run each range of settings and collect the
precision, recall, and F-measure results. The results for all 18
samples using the best parameter settings are given in
Table IV.

A. Samples with Good Data Quality

Stratified samples S1, S2, S4, S5, S7, S13, S14, and S15
were drawn from a corpus of approximately 800K references
created using the R-package “generator”, and degraded with
data quality errors using the R-package “relErrorGeneratoR”
from GitHub.com. While some reference-level errors such as
misspelling, truncation, mixed formatting, and missing values
were injected into the data during generation, the individual
references in the 800K corpus are of relatively high quality.

The majority of the data quality errors introduced into the
800K corpus were data redundancy (duplicate record) errors to
make the corpus more useful for entity resolution research.
Shown here are two references from Sample S4 with Record
Layout A. The only variations between the two references are
the name truncation (initial) and different formats for telephone
numbers and identification numbers.

A926344: ANDREW, AARON, STEPHEN, 2475
SPICEWOOD DR, WINSTON SALEM, NC, 27106, 601-70-
6106, (159)-928-5341

A930444: A, AARON, STEPHEN, 2475 SPICEWOOD
DR, WINSTON SALEM, NC, 27106, 601706106,
(159)9285341

Sample S6 was produced by the GeCo synthetic data
generator [26], and Sample S3 is a file of 866 references to
restaurants (businesses) from two public sources, Zagat’s and
Fodor’s restaurant guides. The references contain restaurant
names, addresses, city, phone, and type of cuisine. The file has
been manually annotated and is known to have 112 pairs of
equivalent references [27]. Examples of references from S3 are
shown here.

A001: Arnie Morton's of Chicago 435 S. La Cienega Blvd.
Los Angeles 310-246-1501 Steakhouses

A002: Arnie Morton's of Chicago 435 S. La Cienega Blvd.
Los Angeles 310/246-1501 American

B. Low Data Quality Samples

Samples S9, S10, S11, S12, S16, S17, and S18 were taken
from the SOG (Synthetic Occupancy Generator) project [28].
The SOG corpus has approximately 270K references with three
different record layouts A, B, and C. The SOG corpus has a
much higher level of data quality errors than the 800K corpus.
Most records exhibit at least one error such as missing value,
misspelling, truncation, inconsistent formatting, nicknames,
and name and address changes. Shown here are three
equivalent references from Sample S8 exhibiting a number of
these data quality issues.

A960175,lucia,r,oster,t20672,southwood,oaks,dr,porter,,tx,
77365,,,10896980,,

A966807,lucia,r,wilson,12006,MOUNTAIN,RIDGE,RD,H
OUSTON,,TEXAS,77043,PO,BOX,280034,
houston,,tx,77228,10896980,1917

A971069,LUCIA,R,WILSON,20672,SOUTHWOOD,OA
KS,DR,PORTE,,TEXAS,77365,,,001-89-6980,,

C. Mixed Layout Samples

In addition to variations in quality, Sample S7 and Samples
S10 through S18 were selected with mixed (heterogeneous)
record layouts. For example, in Sample S7 about half of the
references were in Record Layout A and the other half in
Record Layout B. The two layouts used a different order for
names and have different identity attributes, e.g. social security
number in Layout A and date-of-birth in Layout B. An
example of a pair of references from S7 is shown here.

A944353,VICTOR,AGWU,KINGSLEY,1608 W
NORTHWEST BLVD # O,WINSTON
SALEM,NC,27104.0,730-69-2869

B867674,VICTOR K AGWU,1608,W NORTHWEST
BLVD # O,WINSTON SALEM,NC,27104,12/14/37,

For samples selected from the SOG corpus, the difference
in layouts was much greater. Here is an example of a pair of
references from Sample S10.

A993286,chavez,4149 WALSH LN,GRAQND PRAIRIE,
TEXAS 75052,OFFICE BOX 54331,grand prairie, tx
75054,10525947,,,

A994281,barbie chavze,11R881 GULF POINTE DR APT
E38,HOUSTON, TX 77089,,,,,,,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

686 | P a g e

www.ijacsa.thesai.org

B904140,Barby ,CHAVEZ ,11881,GULF POINTE DR
,Apt E38,HOUSTON,TX,77089,(713)165.7474,,

As noted, the values for β, σ, , and the starting value of 
were found by a grid search. Prior research in using the scoring
matrix for ER on samples from these same corpora [25] [29],
[30], [31] provided some guidance of the best values for the
blocking threshold frequency threshold β and the stop word
frequency threshold σ based on the size of the sample and the
standard deviation of its token frequency distribution. These
formulas are

β = (7.8864) + (0.0023)*Std_Dev + (0.0005)*Size (3)

σ = (-83.3106) + (2.9647)*Std_Dev + (0.0037)*Size (4)

However, the previous research did not involve the
entropy-based, self-evaluation, or iteration with incrementally
increasing match thresholds use in this research, thus it did not
provide any guidance about the best setting for the entropy

threshold . Instead, the estimated value for  was found by
observing the entropy measure of each cluster and comparing it
to the actual F-measure of the cluster. This was possible
because all of the test samples were fully annotated. The F-
measure assessment of each cluster was an augmentation to
Processes P5. As the entropy of each cluster is calculated, the
cluster was also sent to an ER metrics program to determine
the actual F-measure of the cluster as compared to the
annotated truth set.

The entropy and the actual F-measure of each cluster were
captured in a Cluster Analysis text file. Table II shows a
segment of the report produced when running Sample S2. The
table shows the results of three iterations. Row 1 of Table II

shows the last cluster produced by the initial value  at 0.5,
Rows 2 through 6 show the entire second reprocess iteration of

four clusters where the value  was 0.6. Row 7 is the first

cluster of the last iteration where  was 0.7. As each cluster is
formed, its entropy is calculated as shown in the column
labeled "Entropy.” If the cluster’s entropy is above the value of

 (set at 4.3 for this run) the cluster is judged to be “bad” and is
written to the reprocess file for re-linking at the next higher

value of the match threshold .

On the other hand, if the entropy is less than or equal to , it
is written to the “good” file as a final cluster. Table II shows
for Rows 4 and 5 these were correct decisions. In both cases,
the F-Measure was less than 1.0 when the entropy was above
4.3. However, Row 2 is an exception. Even though the entropy
of 9.0446 is above 4.3, the cluster had an F-Measure of 1.0 and
was correctly linked. However, because the entropy was above
the threshold, the references were put back for reprocessing in
the third iteration. In the end, the F-Measure for S2 at the end
of the process was 0.8842 as shown in Table II.

TABLE II. SEGMENT OF ENTROPY VS. F-MEASURE REPORT FOR S2

Row   Size Entropy F-Meas Precision Recall

…

1 0.5 4.3 2 0.00 1.0 1.0 1.0

2 0.6 4.3 3 9.04 1.0 1.0 1.0

3 0.6 4.3 2 1.00 1.0 1.0 1.0

4 0.6 4.3 3 5.53 0.5 0.33 1.0

5 0.6 4.3 4 5.50 0.5 0.33 1.0

6 0.7 4.3 3 9.04 1.0 1.0 1.0

7 0.7 4.3 2 2.00 1.0 1.0 1.0

…

D. Example Results using Machine Learning for P5

In this example, Sample S4 was processed using DBScan
(Density-Based Spatial Clustering of Applications with Noise)
[32] as the ML clustering algorithm and using the doc2vec [33]
word embedding algorithm to create the numeric vectors as
input for DBScan. As implied by its name, the doc2vec
algorithm converts an entire document into a vector. For the
POC, each reference was considered a document so there is a
one-to-one correspondence between each input reference and
each vector clustered by DBScan.

The doc2vec algorithm was applied to each block using the
following parameters.

 vector size = 5

 min count = 2

 epoch = 20

 alpha = 0.25

 min_alpha=0.00025

DBScan algorithm was imported from the Python 3.7
library learn. cluster. This version has two control parameters
“eps” and “min_samples”. The eps parameter controls the
neighborhood reach (proximity) of vectors to be in the same
cluster, and the min_samples parameter defines the minimum
size of “core samples”, i.e. the minimum number of vectors
within eps distance of each other. The results from using this
configuration are shown in Table III.

TABLE III. ER RESULTS USING DOC2VEC FOLLOWED BY DBSCAN

Sample Size eps
min_

samples

Results

Precision Recall
F-

Measure

S1 50 0.6 0.9 0.8519 1.0000 0.9200

S2 100 0.4 1 0.9070 1.0000 0.9513

S4 1,912 0.01 1 0.9555 0.9111 0.9328

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

687 | P a g e

www.ijacsa.thesai.org

TABLE IV. SHOWS THE RESULTS FROM THE POC

ID Size Token DQ Mix Mu Mu+ Beta Sigma Epsilon Precision Recall F-Measure

S1 50 Split Good No 0.50 0.10 6 7 4.9 1.00 0.963 0.9811

S2 100 Split Good No 0.50 0.10 6 7 4.7 1.00 0.8958 0.9451

S3 868 Split Good No 0.50 0.10 9 95 4.0 0.8889 0.9286 0.9083

S4 1,912 Split Good No 0.50 0.10 12 22 3.1 0.9854 0.8869 0.9335

S5 3,004 Split Good No 0.50 0.10 12 53 3.0 0.9911 0.8729 0.9282

S6 19,998 Split Good No 0.50 0.10 35 403 15.1 0.9457 0.9737 0.9595

S7 3,000 Split Good Yes 0.50 0.10 14 24 3.0 0.9464 0.8665 0.9047

S8 1,000 Split Poor No 0.60 0.05 14 145 35 0.7880 0.8881 0.8350

S8 1,000 Comp Poor No 0.60 0.05 14 144 33 0.7877 0.8827 0.8324

S9 1,000 Split Poor No 0.50 0.05 15 135 28 0.6824 0.8453 0.7552

S9 1,000 Comp Poor No 0.62 0.02 23 150 28 0.7806 0.8116 0.7958

S10 2,000 Split Poor Yes 0.50 0.05 31 280 31.5 0.7235 0.8348 0.7752

S10 2,000 Comp Poor Yes 0.62 0.02 32 280 34 0.7455 0.9041 0.8172

S11 4,000 Split Poor Yes 0.55 0.02 38 280 31.5 0.7010 0.8386 0.7636

S11 4,000 Comp Poor Yes 0.62 0.02 43 258 26 0.7571 0.7764 0.7666

S12 6,000 Split Poor Yes 0.50 0.05 20 580 29 0.7699 0.7424 0.7560

S12 6,000 Comp Poor Yes 0.62 0.02 21 570 26.4 0.7825 0.7723 0.7774

S13 2,000 Split Good Yes 0.50 0.05 14 23 5.3 0.9478 0.8116 0.8745

S13 2,000 Comp Good Yes 0.01 0.02 14 110 2.4 0.9707 0.8003 0.8773

S14 5,000 Split Good Yes 0.48 0.02 24 118 5.2 0.9419 0.8464 0.8916

S14 5,000 Comp Good Yes 0.01 0.02 24 310 2.6 0.9579 0.8226 0.8851

S15 10,000 Split Good Yes 0.50 0.02 20 100 5 0.9543 0.8242 0.8845

S15 10,000 Comp Good Yes 0.1 0.03 27 108 2.8 0.9622 0.8247 0.8882

S16 2,000 Split Poor Yes 0.50 0.05 21 142 32.8 0.6908 0.8160 0.7666

S16 2,000 Comp Poor Yes 0.54 0.02 30 154 31.3 0.6500 0.9331 0.7663

S17 5,000 Split Poor Yes 0.50 0.05 35 480 32.8 0.6954 0.81578 0.7508

S17 5,000 Comp Poor Yes 0.60 0.02 26 466 26 0.7560 0.80716 0.7807

S18 10,000 Split Poor Yes 0.50 0.05 33 449 31.8 0.6995 0.7514 0.7245

S18 10,000 Comp Poor Yes 0.52 0.02 26 444 34 0.7511 0.7948 0.7724

IV. CONCLUSION AND FUTURE RESEARCH

The results are shown in Table IV suggest entropy can be
an effective way to regulate an unsupervised clustering
process. The POC using the scoring matrix performs extremely
well when processing good quality references such as Samples
S1 – S7 and S13 – S15. The average F-Measure for these
samples was 0.9124 with an average precision of 0.9609.

The average F-Measure for the poor quality samples S8 –
S12 and S16 – S18 was somewhat lower at with an average F-
Measure of 0.7772 and precision of 0.7351. The results also
indicate the POC is more sensitive to data quality issues than to
mixed record formats. The good-quality, mixed-format
Samples S7, S13, S14, and S15 had an average F-Measure of
0.8866 compared to an average F-Measure of 0.9426 for good-
quality, single format samples.

For the good quality samples where the clustering precision
was 96%, the hope is that applying a more comprehensive
cleaning and standardization at the cluster level will be able to
provide much better results. The goal for future research is, just
as linking results can be continually improved through iterative
reprocessing, the same reprocessing loop will also incorporate
processes to continually improve the quality of the references,
which in turn, would further improve the linking results. The
POC described in this paper shows the unsupervised ER
improvement part of this positive feedback loop is feasible.
The next step will be to integrate additional unsupervised data
quality improvement processes.

A. Industry Testing

As an experiment, a commercial company tested the POC
(data washing machine) approach using a real-world dataset of
70,500 business names and address references with mixed
record layouts. Because the dataset was not annotated, it was

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

688 | P a g e

www.ijacsa.thesai.org

not possible to calculate the exact F-measure of the overall
clustering results. However, the company did undertake an
extensive manual review of the POC results in comparison to
results from their standard process. The company determined
the POC results to be as good as, and in many cases better than,
the results from their standard process, but with the added
advantage of avoiding the time and effort to analyze and
prepare the data required by their standard process.

Besides, the company is experimenting with some
variations of the original POC design described in this paper.
In particular, they have been able to improve the clustering

accuracy for their datasets by using a computed value for , the
entropy threshold. In their approach, they consider five factors
when assessing the entropy of each cluster. These are

 The match threshold  used to form the cluster.

 The numbers of references in the cluster (size).

 The maximum number of tokens in any one reference
in the cluster (maxT).

 The minimum number of tokens in any one reference
in the cluster (minT).

 The average number of tokens for all references in the
cluster (avgT).

In Process P10, instead of comparing the entropy of the

cluster to a static value of  as in the original POC, they
compute a dynamic threshold based on the factors listed above.

In particular,  is computed as

) {))

)} (5)

In another change, they were able to improve the precision
of the clustering by modifying the scoring matrix used to link
references in Process P5. The comparator was modified to use
a Boolean similarity of the match (1.0) and no-match (0.0)
when comparing numeric tokens while still using the
normalized Damerau-Levenshtein edit distance when
comparing non-numeric tokens.

B. Predicting Parameters and Scalability

However, there are still two gaps that must be bridged to
make the POC a practical solution for most real-world use
cases. The first is a reliable method for setting the optimal

values of the key parameters β, σ, and . In a research
environment using fully annotated references, these values can
be found by simply observing where the best results were
obtained based on comparisons with the correct linking. When
working with real data, this is not generally possible. A
practical unsupervised ER system needs a way to predict these
parameters for a given set of input references. Creating such
predictive models is still research in progress.

The second consideration is scalability. The current POC is
implemented in a combination of Python and Java, and as
written, it is not very scalable. The blocking and the stop word
removal process can be combined with the token counting
process to avoid the need for storing an in-memory token
frequency table.

The POC can be converted to an HDFS Map/Reduce
process. The references can easily be tokenized in the mapping
process which then reduces on the token. The reducer can then
emit two kinds of key-value pairs for each token group. The
first is (RefID, Token) where the token has a frequency below
σ (not a stop word). The second is (Token, RefID) where the
token has a frequency below β (a blocking token). Sorting and
reducing the first pairs on the RefID as the key will create the
skinny references of Process P2 while sorting and reducing the
second pairs on Token as the key will create the blocks. The
join of these two outputs on RefID will be the equivalent of
creating and sorting the blocked file in Process P3. Next, the
blocks can be mapped to distributed nodes for pairwise linking

in parallel with the assurance no block will be larger than .
The outputs are the Process P6 Linked Pairs. The transitive
closure of the pairs in Process P7 using the algorithm of Kolb
et al [22] is already an efficient map/reduce process. Process
P8 then becomes a map of the clusters to parallel processing
work nodes performing the entropy calculation (Process P9)
and triage of clusters (Process P10) into “good” and “bad”
cluster outputs.

The POC described here was built uses the simplest of
approaches which could no doubt be dramatically improved
through additional research and experimentation including

investigating different starting values for, and exploring its
sensitivity to the increment value currently fixed at 0.1. Also,
building prediction models for these parameters. Another is
investigating whether the results are improved by modifying

the values of β, σ, or  for each reprocesses iteration, and if it
does, how should they be modified to produce the best linking
results.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Award No. OIA-1946391 and by the
PiLog Group. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
National Science Foundation or the PiLog Group.

REFERENCES

[1] A. Saeedi, E. Peukert and E. Rahm, "Incremental Multi-source Entity
Resolution for Knowledge Graph Completion," German Federal Ministry
of Education and Research, Leipzig, Germany, 2020.

[2] M. Stonebraker and I. F. Ilyas, "Data Integration: The Current Status and
the Way Forward," Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, pp. 3-9, 2018.

[3] R. Yuji, H. Geon and E. W. Steven, "A Survey of Data Collection for
Machine Learning: A Big Data – AI Integration Perspective," IEEE
Transactions on Knowledge and Data Engineering, 2019.

[4] F. Azzalini, S. Jin, M. Renzi and L. Tanca, "Blocking Techniques for
Entity Linkage: A Semantics-Based Approach," Data Science and
Engineering, pp. 1-19, 2020.

[5] A. Alsarkhi and J. R. Talburt, "A method for implementing probabilistic
entity resolution," International Journal of Advanced Computer Science
and Applications, vol. 9, no. 11, pp. 7-15, 2018.

[6] P. G. Ipeirotis, V. S. Verykios and A. K. Elmagarmid, "Duplicate record
detection: A survey," IEEE Transactions on Knowledge and Data
Engineering, vol. 19, no. 1, pp. 1-16, 2007.

[7] Y. Roh, G. Heo and S. E. Whang, "A Survey on Data Collection for
Machine Learning: A Big Data - AI Integration Perspective," IEEE

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 12, 2020

689 | P a g e

www.ijacsa.thesai.org

Transactions on Knowledge and Data Engineering, vol. Early Access,
2019.

[8] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis and K.
Stefanidis, " An Overview of End-to-End Entity Resolution for Big
Data," ACM Computing Surveys (CSUR), vol. 53, no. 6, pp. 1-42, 2020.

[9] P. Neoklis, R. Sudip, E. W. Steven and Z. Martin, "Data Lifecycle
Challenges in Production Machine Learning," A Survey, ACM
SIGMOD, vol. 47, no. 2, 2018.

[10] B. J. Dooley, "How Robotic Process Automation Eases Data
Management, The Data Warehouse Institute (TDWI)," 18 June 2018.
[Online]. Available: https://tdwi.org/articles/2018/06/18/diq-all-how-
robotics-process-automation-eases-data-management.aspx.

[11] J. Adams, ", Automating Data Management and Governance through
Machine Learning, The Data Administration Newsletter (TDAN)," 7
November 2018 . [Online]. Available: https://tdan.com/automating-data-
management-and-governance-through-machine-learning/23972.

[12] R. Pita, L. Menezes and M. Barreto, "Applying Term Frequency-Based
Indexing to Improve Scalability and Accuracy of Probabilistic Data
Linkage," In LADaS@ VLDB, pp. 65-72, 2018.

[13] A. Moshyedi, T. Kramer, A. Gangopadhyay and S. Pal, "A combined
semantic search and machine learning approach for address entity
resolution," EasyChair, 2019.

[14] R. Y. Wang, J. R. Talburt and Y. W. Lee, "A framework for analysis of
data washing machines," http://mitiq.mit.edu, Cambridge, MA, 2020.

[15] A. Jurek-Loughrey and P. Deepak, ""Semi-supervised and unsupervised
approaches to record pairs classification in multi-source data linkage," In
Linking and Mining Heterogeneous and Multi-view Data, pp. 55-78,
2019.

[16] Y. Lee, L. Pipino, J. Funk and R. Wang, Journey to Data Quality, MIT
Press, 2006.

[17] U. Draisbach, P. Christen and F. Naumann, "Transforming pairwise
duplicates to entity clusters for high-quality duplicate detection," Journal
of Data and Information Quality (JDIQ), vol. 12, no. 1, pp. 1-30, 2019.

[18] P. Christen, "A survey of indexing techniques for scalable record linkage
and deduplication," IEEE transactions on knowledge and data
engineering, vol. 24, no. 9, pp. 1537-1555, 2011.

[19] A. Ardalan, A. Doan and A. Akella, "Smurf: Self-service string matching
using random forests," Proceedings of the VLDB Endowment, vol. 12,
no. 3, pp. 278-291, 2018.

[20] A. Mazeika, M. H. Böhlen, N. Koudas and D. Srivastava, "Estimating the
selectivity of approximate string queries," ACM Transactions on
Database Systems (TODS), vol. 32, no. 2, pp. 12-es., 2007.

[21] A. E. Monge and C. P. Elkan, "The Field Matching Problem: Algorithms
and Applications," in KDD-96 Proceedings, 1996.

[22] L. Kolb, S. E. and E. Rahm, "ITerative Computation of Connected Graph
Components with MapReduce," Datenbank-Spektrum, vol. 14, no. 2,
2014.

[23] C. E. Shannon, "A Note on the Concept of Entropy," Bell Systems
Technical Journal, 1948.

[24] D. Lee, L. C. Zhang and J. K. Kim, "Maximum Entropy classification for
record linkage," arXiv preprint arXiv:2009., p. 14797, 2020.

[25] A. Al-Sarkhi and J. R. Talburt, "Estimating the Parameters for Linking
Unstandardized References with the Matrix Comparator," Journal of
Information Technology Management, pp. 12-26, 2019.

[26] K. N. Tran, D. Vatsalan and P. Christen, "GeCo: an online personal data
generator and corruptor," the 22nd ACM International Conference on
Information & Knowledge Management, pp. 2473-2476, (2013, October).

[27] T. S, "Restaurant Benchmark Dataset," [Online]. Available:
http://www.cs.utexas.edu/users/ml/riddle/data.html].

[28] J. R. Talburt, Y. Zhou and S. Y. Shivaiah, "SOG: A Synthetic Occupancy
Generator to Support Entity Resolution Instruction and Research," MIT
International Conference on Informationi Quality, pp. 91-105, 2009.

[29] A. Alsarkhi and J. R. Talburt, "Optimizing Inverted Index Blocking for
the Matrix Comparator in Linking Unstandardized References," in ," in in
Proceedings of the 2019 International Conference on Scientific
Computing, Las Vegas, 2019.

[30] A. Al Sarkhi and J. Talburt, "An analysis of the effect of stop words on
the performance of the matrix comparator for entity resolution.," The
Journal of Computing Sciences in Colleges, vol. 34, no. 7, pp. 64-71,
2019.

[31] A. Al Sarkhi and J. Talburt, "A Scalable, Hybrid Entity Resolution
Process for Unstandardized Entity References," The Journal of
Computing Sciences in Colleges, pp. 19-29, 2020.

[32] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-based algorithm
for discovering clusters in large spatial databases with noise," in
Proceedings of Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR,, 1996.

[33] J. H. Lau and T. Baldwin, "An empirical evaluation of doc2vec with
practical insights into document embedding generation," arXiv preprint
arXiv:1607.05368, 2016.

