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Abstract—Advancement in artificial intelligence, internet of
things and information technology have enabled the delegation
of execution of autonomous services to autonomous systems for
civil applications. It is envisioned, that with an increase in the
demand for autonomous systems, the decision making associated
in the execution of the autonomous services will be distributed,
with some of the responsibility in decision making, shifted to
the autonomous systems. Thus, it is of utmost importance that
we assure the correctness of distributed protocols, that multiple
autonomous systems will follow, as they interact with each other
in providing the service. Towards this end, we discuss our pro-
posed framework to model, analyze and assure the correctness of
distributed protocols executed by autonomous systems to provide
a service. We demonstrate our approach by formally modeling the
behavior of autonomous systems that will be involved in providing
services in the Urban Air Mobility framework that enables air
taxis to transport passengers.
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I. INTRODUCTION

Advancement in technologies associated with autonomous
systems have significantly increased the use of autonomous
systems in day to day activities. Additionally, communication
capabilities have enabled the use of multiple autonomous
systems to be used for executing autonomous missions. Un-
manned Aerial Systems (UAS) are used across diverse appli-
cations, such as structural health monitoring [1], data driven
path planning [2], and object classification [3]. Research by
Cesare and Hollinger presented in [4] explores execution
of multi-UAS missions under unreliable communication and
limited battery life, for search and rescue applications that
include urban search and rescue, military reconnaissance, and
underground mine rescue operations.

With the increase in UAS applications several research
efforts have started focusing on handling contingency scenarios
such as investigating emergency landing for UAS by evaluating
data available from population census and occupancy estimates
from mobile phone activity [5]. Additionally, Automatic Super-
visory Adaptive Control (ASAC) method enables the UAS to
fly with a damaged wing [6]. As the applications start focusing
on safety critical operations it becomes evident that we need

to develop and deploy methods and frameworks for assuring
multiple autonomous systems working together can complete
the operations successfully.

One of the essential elements of an intelligent system
design is in the formulation of the logic to intelligently respond
to the environment. We in this research effort, focus on
representing the logic as in artificial intelligence that enables
automated reasoning to verify the correctness of the design.
The automated reasoning involves the utilization of theories
in formal methods, which is a branch of artificial intelligence
that allows the design of logic as models on which we can
execute queries, that prove through automated searches if the
design satisfies the required properties.

This paper describes work on the verification and assurance
of agreement among UASs by designing and implementing a
distributed protocol with a case study for Urban Air Mobility
(UAM) [7]. The implementation of the logic involved in
distributed reasoning and its verification is done using Uppaal
[8], a real time model checking tool. In order to accomplish
the goal we present a mapping of requirements as identified
from UAM model, that is implemented as queries in Uppaal
[8].

The rest of this paper is organized as follows. Section II of
this paper talks about the previous work that has been done in
the area of formal methods and distributed protocols. Section
III specifically discusses the framework for the formal mod-
eling and analysis of the behavior of autonomous systems for
UAM. It also discusses the expected architecture of distributed
autonomous agents providing service in UAM. In Section
IV, formal modeling paradigm is discussed in detail. This
section elaborates upon the mathematical representation within
the modeling paradigm and formal modeling tool Uppaal [8],
which is used to build the formal model for the logic involved
in distributed protocol for multiple autonomous systems to
cooperatively provide a service. This section also states the
behavioral model of autonomous systems in Uppaal [8] and
the various verification properties used to verify the model.
Experimental results are presented in Section V and finally
the conclusion along with future work is inferred in Section
VI.
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II. LITERATURE SURVEY

A. Formal Methods or Assurance Methods

There has been considerable previous work done in the
area of formal methods for assurance [9], [10], [11]. In [9] the
research discusses a method to perform run-time assurance
for learning systems with an assurance architecture designed
in Architecture Analysis and Design Language (AADL) and
formal contracts for each of the components modeled and
verified in Assume Guarantee (AGREE) annex. In [12] Davis
discusses an approach to use architectural analysis to prove that
the protocol designed for multi-agents satisfies the specified
properties. This effort also emphasized the use of AADL and
AGREE for formal assurance. For formal assurance of cooper-
ative agents [10], discusses the development of a framework to
represent cognitive architecture which is then translated into
a formal environment Uppaal to verify that the autonomous
agent along with interaction with the human achieves the
objective. These studies emphasizes on the fact that how the
use of formal methods can greatly increase our understanding
of a system by revealing inconsistencies, ambiguities, and
incompleteness that might otherwise go undetected.

Further, Kern and Greenstreet utilize the emergence of
formal methods as an alternative approach to ensuring the
quality and correctness of hardware designs [13]. Also, they
emphasize the two main aspects to the application of formal
methods in a design process which are modeling a formal
framework that specifies the desired properties of a design.
The second and more important aspect is the verification
process and tools that are used to reason about the relationship
between a specification and a corresponding relationship. In
[14], Devillers et al. present a formal modeling and verification
approach for a leader election algorithm. It describes how
formal methods is used to formally model the leader election
algorithm as an I/O automaton, and then it describes the
verification process to prove that the implementation matches
the specification. The authors emphasize the importance and
use of formal methods to increase confidence in the correctness
of protocols, hardware and software systems [14].

The above-cited works depict the evolution of formal
methods as a formal modeling technique over the years and
why it is of utmost importance to model any hardware or
software specification before deploying them in a real-world
environment. Formal methods have been used over the years
not only for modeling designs and software but also for
verification and validation of these complex designs that help
in identifying subtle errors during the design process which
can be later eliminated during the implementation stage.

In formal methods, model checking or theorem proving
are two of the prominent methods, that are used to verify
satisfaction of properties within a designed system, where
model checking is automated. Model checking is a method for
checking whether a model of a system meets a given specifica-
tion (correctness). This is mainly associated with hardware or
software systems, where we want to check liveliness require-
ments, as well as safety requirements. To algorithmically solve
this, both the model as well as its specifications are formulated
in a precise mathematical language. A model, is generally
a graph such as a state machine diagram, representing the
behavior of a system. The state machine diagram includes,

states, transitions, condition checks and actions associated with
the transitions.

The main purpose of model checking is to examine whether
the evolving traces of a model, generated as an execution tree
satisfies the user-given property specification. Model checking
for formal verification has been used as a successfully adjunct
to simulation-based verification and testing.

B. Distributed Protocols and Analysis

Phillips in [15] describes the characteristics of distributed
systems and their protocols. It specifically focuses on the
client-server model which is used to develop a set of re-
quirements for a distributed system along with a description
of the architecture [15]. With the advancement of networking
technologies such distributed systems have significantly grown
in numbers so, it has become really important to apply formal
methods to the field of distributed protocols [16] to prove
that the distributed systems correctly operate to achieve the
required functionality.

In [17], Bhattacharyya et al. discuss the formal modeling
and verification of distributed systems modeled with quasi-
synchrony. It mainly provides an intuitive modeling environ-
ment that allows specification of high-level architecture and
synchronization logic of quasi-synchronous systems [17]. As
an example a leader selection problem is discussed where
the objective had been to verify a leader is elected among
a set of autonomous systems. A more elaborate explanation
of verification of quasi synchronous systems is described by
Miller et al. in [18] where they discuss the importance of
distributing critical systems to make them redundant and fault-
tolerant so that they can meet the reliability requirements. The
authors specifically describe the integration and enhancement
of distributed systems with innovative formal verification tools
such as Satisfiability Modulo Theories (SMT) based model
checkers for timed automata to provide system engineers with
immediate feedback on the correctness of their designs. This
work mainly focuses on the design of distributed complex
systems using formal method techniques, but our approach
proposes the modeling and verification of the distributed
logic required for successfully executing distributed operations
autonomously. Also, [18] uses examples of quasi-synchronous
systems to model and verify the Pilot Flying System, the
Leader Selection Case, the Active-Standby System, and the
Wheel Breaking System (WBS). In a presentation [19] by
Thomas Ball from Microsoft at the NUS university recently, he
explains the importance of formal methods as model checking
tool for distributed systems. The presentation mainly focuses
on automated checking of the complex design implementation
using formal methods for infinite-state systems. It also shows
the importance of automatically verifying distributed systems
before they can be deployed so that they are provably correct.
It also talks about how formal methods find bugs in system
designs that cannot be found through any other known tech-
nique.

The work in [20] exhibits a methodology to develop math-
ematically checkable parameterized proofs of the correctness
of fault-tolerant round-based distributed algorithms. It focuses
on how to replace informal and incomplete pseudo code by
syntax-free formal and complete definitions of a global-state
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transition system. In [21], Fakhfakh et al. discuss various
formal verification approaches for distributed algorithms. The
study shows how there has been a rapid increase in the field
of distributed algorithms due to the advances in networking
technologies. It also provides information for researchers and
developers to understand the contributions and challenges of
the existing formal verification technologies for distributed
algorithms and paves the way to enhance the reliability of
these distributed algorithms [21]. In [22], the work focuses on
how formal methods can be used to analyze, design, and verify
security protocols over open networks and distributed systems.

As we can see that there has been considerable work done
in the field of distributed protocols and formal methods [16].
But none of the work specifically focuses on modeling the
logic of distributed autonomous systems using formal methods
for UAM. Our contribution has been in the design of a
framework that can be applied to the formal modeling and
verification of logic designed for distributed autonomous sys-
tems to successfully execute services. We have also formally
mapped the requirements for autonomous services to prove that
the distributed autonomous systems have a consensus among
themselves. We also propose an architectural representation of
how autonomous services can be designed and verified before
deployment.

III. FRAMEWORK

Fig. 1 shows the process flow diagram for formal verifica-
tion of distributed protocol for multiple distributed autonomous
systems. The process starts with stating the requirements
i.e. the goal that needs to be satisfied by the distributed
autonomous systems. The requirements in our research flow
from the emerging services provided by autonomous systems
such as, Last Mile Delivery [23], Air Taxi and Air Metro [7].
Among these services Urban Air Mobility [7] is a futuristic
concept that is being researched and developed all around the
world. As a result, there is an immediate need for research
thoroughly investigating possible scenarios for such emerging
technologies which are agnostic to the actual implementation,
but helps the process of identifying the infrastructure and
correctly specifying the logic involved in the successfully
deploying distributed autonomous operations. Our framework
describes such an approach to design and implement behav-
ioral models for autonomous systems, that can be formally
verified and is independent of the technology to implement it.
The formally verified models will help to deploy trusted, secure
and reliable autonomous systems in real-world environment.

These requirements led to the generation of a Formal
Model designed as automata and formal properties defined
or stated in temporal logic. The formal model is developed
using a formal verification tool called Uppaal [8]. Uppaal
has an inbuilt simulator and verifier to simulate and verify
the behavior of models (in our case autonomous system).
Verifier aids the process of identifying errors in the model
by executing properties that generate a counterexample along
with a simulation trace if the property is violated, which helps
to rectify the generated errors. This process is repeated until
all the errors along are identified and corrections made. The
verifier also helps to list and model many path properties
that help in verifying various behavioral characteristics of the
stated model, which otherwise is hard to identify and verify.

Once the final verification is done and all the errors have been
removed, we have a model that is formally verified and the
logic of which can be trusted based on the formal verification.
It is envisioned that this model can then be translated into
a graphical simulation environment in order to see the exact
behavior of autonomous system and also to generate real-time
data. The simulation environment can be any environment
that supports the integration of multiple autonomous agents,
multiple drones or VTOL Planes such as X-Plane [24], AirSim
[25] or Robot Operating System (ROS) [26]. This translation
from formal model to simulation environment is not realized
in this research.

Fig. 2 below graphically shows a hypothesized distributed
architecture to support services as expected in UAM. Fig. 2(a)
shows how a city can be decomposed into zones supported
by multi agent environments and it’s various components.
Each zone is further composed of several drones that are
distributed in nature, managed by a server. There is constant
interaction between the drone modules and the server within
a zone. Each zone interacts with other zones present within
the city with the help of servers present inside each zone.
There can be multiple servers based on the requirements but,
for simplicity we have defined only one in the model. This
constant interaction between various zones makes it a multi
agent distributed environment.

Fig. 2(b) elaborates upon each zone and describes the
various components and their respective functionality in detail.
The Distributed Autonomous Agent Environment (DAAE,
Zone) consists of various components such as buildings or
nodes from where service requests are generated, drones or
agents that serve requests that are generated and server. Each
individual drone also comprises of it’s internal server and
a module that can interact with the simulation environment.
The building or the nodes are responsible for generating a
service request which is then passed on to the server. Along
with the request, the X and Y coordinates of the building are
also sent to the server, which will later be passed on to each
individual drone to compute the linear distance. The server is
responsible for validating the request which is then broadcasted
to all the drones in the zone. Once the request is received
by all the drones, they go through various checks such as
verification of sensor values, battery level, authenticity of the
request etc. After successful validation of the checks, all the
available drones calculate their linear distance from the node
that generates a request. After calculation the drones exchange
their distance to the requested node, with all other drones. All
drones mutually agree upon the drone that is closest to the
requesting Node. This mutual agreement without the interfer-
ence or involvement of any kind of central observer makes the
whole model distributed and de-centralised where the decisions
are taken by drones present in the distributed system. The
drone module is responsible for all the communication with
the server and is also responsible to carry out various checks
and the linear distance calculation. After a drone has been
mutually selected to serve the request, the other drones go to
the start location and are available to serve any other request in
the network. The described architecture of a zone is modeled in
Uppaal, where each of the components are a template/process.
The behavior of each component is modeled in the formal
verification tool Uppaal [8] and the verification of the logic
is carried out using Uppaal verifier. The tool also helps to
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generate simulation traces that help to identify the errors in
logic which are then rectified.

This verified logic can be then translated and used to
simulate this model in any real simulation environment such
as AirSim [25], X-Plane [24] or ROS [26] that supports
interaction of multiple autonomous agents. This real time
simulation will help to generate real time data of the scenarios
for a targeted service, which can be stored and later processed
to improve the efficiency of the whole system. This data
can also be used to develop distributed learning models for
autonomous systems that will be more robust in nature and will
be much more efficient. This discussed simulation is part of
the future work while, this paper mainly focuses on proposing
the architecture, generating formal models for the embedded
components and finally, verification of the same using temporal
logic to represent the requirements.

IV. FORMAL MODELING PARADIGM

The modeling paradigm was selected after looking at several
possible techniques of modeling, including Markov chains
and architectural representations. We decided that the most
appropriate method of representing user behavior is through
the use of a Finite-State Automata (FSA) because it allows us
to visualize the graphical diagram of the user’s behavior easily.
It enables the use of well-defined tools to perform automated
analysis early in the design phase, which would empower us to
reason about the logical representations of the user’s behavior
at the time and to evaluate alternative design options in case
there were profound implications. We developed the models
that are representing our knowledge base by following the
principles of Finite-State automata (FSA) [27].

In order to choose the correct platform for the purpose of
designing and verifying the formal model of user’s behavior,
several formalism such as NuSMV [28], Uppaal [8], PVS
[29], and Z3 [30] were considered carefully. We chose Uppaal
[8][31], due to its ability to model timing aspects that are
critical for cybersecurity, as well as its ability to generate

and visualize counterexamples. Uppaal represents models as
timed automata, and Uppaal formalism enables composition-
ality supports model checking over networked timed automata
using temporal logic. This modeling paradigm allows the
execution of requirements as temporal logic queries to check
the satisfaction of relevant safety properties exhaustively. We
next describe the timed automata formalism used by Uppaal.

A. Modeling Paradigm for Timed Automata

The modeling paradigm is an extension of finite automaton
with clocks, more popularly known as Timed Automata [32].
One of the tools implementing this formalism is Uppaal [8],
which allows the modeling of network of Timed Automata.
Clock or other relevant variable values used in guards on
the transitions within the automaton. Based on the results of
the guard evaluation, a transition may be enabled or disabled.
Variables can be reset and implemented as invariants at a state.
Modeling timed systems using a timed-automata approach is
symbolic rather than explicit. It allows for the consideration of
a finite subset of the infinite state space on-demand (i.e., using
an equivalence relation that depends on the safety property
and the timed automaton), which is referred to as the region
automaton. There also exists a variety of tools to input and
analyze timed automata and extensions, including the model
checker Uppaal and Kronos.

• Timed Automaton (TA)
A timed automaton is a tuple (L, l0, C,A,E, I),
where: L is a set of locations; l0 ∈ L is the ini-
tial location; C is the set of clocks; A is a set of
actions, co-actions, and unobservable internal actions;
E ⊆ L×A×B(C)×2C×L is a set of edges between
locations with an action, a guard and a set of clocks
to be reset; and I : L → B(C) assigns invariants to
locations.
We define a clock valuation as a function u : C →
R≥0 from the set of clocks to the non-negative reals.
Let RC be the set of all clock valuations. Let u0(x) =
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0 for all x ∈ C. If we consider guards and invariants
as the sets of clock valuations (with a slight relaxation
of formalism), we can say u ∈ I(l) means u satisfies
I(l).

• Timed Automaton Semantics
Let (L, l0, C,A,E, I) be a timed automaton TA. The
semantics of the TA is defined as a labelled transition
system 〈S, s0,→〉, where S ⊆ L × RC is the set of
states, s0 = (l0, u0) is the initial state, and →⊆ S ×
{R≥0 ∪A} × S is the transition relation such that:

1) (l, u) d−→ (l, u+d) if ∀ d′ : 0 ≤ d′ ≤ d ⇒ u
+ d′ ∈ I(l)

2) (l, u) a−→ (l′, u′) if ∃ e = (l, a, g, r, l′) ∈ E
such that u ∈ g, u = [r 7→ 0] u and u′ ∈ I(l)

where for d ∈ R≥0, u + d maps each clock x in C
to the value u(s)+ d, and [r 7→ 0]u denotes the clock
valuation which maps each clock in r to 0 and agrees
with u over C \ r.
Note that a guard g of a TA is a simple condition
on the clocks that enable the transition (or, edge e)
from one location to another; the enabled transition is
not taken unless the corresponding action a occurs.
Similarly, the set of reset clocks r for the edge e
specifies the clocks whose values are set to zero
when the transition on edge executes. Thus, a timed
automaton is a finite directed graph annotated with
resets of and conditions over, non-negative real-valued
clocks. Timed automata can then be composed into
a network of timed automata over a common set of
clocks and actions, consisting of n timed automata
TAi = (Li, li0, C,A,Ei, Ii), 1 ≤ i ≤ n. This
enables us to check reachability, safety, and liveness
properties, which are expressed in temporal logic
expressions, over this network of timed automata. An
execution of the TA, denoted by exec(TA) is the
sequence of consecutive transitions, while the set of

execution traces of the TA is denoted by traces(TA).

B. Uppaal

Uppaal [8], an acronym based on a combination of UPPsala
and AALborg universities, is an integrated tool environment
for modeling, simulation and verification of real-time systems
as networks of timed automata, extended with data types
(bounded integers, arrays, etc.). It is used to model the logic
of real time systems. For our work we have used to model
the behavioral of the components for an UAM architecture
[7]. We further use Uppaal [8] to verify our modeled logic
in timed automata and then propose meaningful insights and
results. The tool consists of three main features. First is the
editor window where we model the behavioral logic for each
of the modules described in detail below. Next is the simulator
window, where we run a step by step simulation of the modeled
logic. This helps to understand the real time functioning of
the behavior of each module and further helps to refine our
logic. The last and the most important part is the verifier.
The verifier, utilizes a model-checker to perform an exhaustive
exploration of the dynamic behavior of the system for proving
safety and bounded liveliness properties. Properties are written
in temporal logic to verify the logic developed. The verifier
helps verify important aspects of the model and gives a deep
understanding of the functioning of the model in real time
scenario. It also helps to find flaws in the model that can
rectified in the editor window. As a result, we are able to
model a logic that has been verified and can be deployed in
real time scenarios. The implemented model for UAM services
as case study is described in detail in the next subsection along
with detailed description and functionality of each module.

C. Model in Uppaal

In this subsection we elaborate on our approach to address
distributed modeling and analysis for DAAE in UAM. For now,
we consider that, there are three drones represented by a Drone
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module (Section 3) serving in a zone which is inside a city
that has many such similar zones along with a Server module
(Section 2), Sensor module (Section 4) and an Input module
(Section 1). All these specific modules have specific roles and
functions in the UAM architecture whose behavioral logic has
been modeled in Uppaal. Three instances have been created for
the drones in the system declaration since, all the three drones
are assumed to have similar behavior for now. Algorithm 1,
maps the step by step behavioral logic for drone module in
Uppaal. The request is generated by a random function by the
input module. The request is sent as a synchronisation event
by the input module to the server module. Along with the
synchronisation action, coordinates of the requesting node or
building are also sent to the server module. The server module
then processes the request and broadcasts it to all the individual
drones available to server a request. The drone before receiving
a request, checks for all sensor values using the help of sensor
module (Section 4). After all checks have been performed, they
then process the request received and mutually elect a drone
that will serve the request without the interference of the Server
module. This process of mutual selection makes the whole
UAM architecture distributed and decentralised in nature. The
design and functionality of each individual module along with
their role in the whole behavioral model is described below:

1) Input Module
The instances of request are generated by the Input

module. It is the one responsible for generating a
random request which then goes as a synchronisa-
tion event to the server where it is processed and
broadcasted to all the drones in the environment. As
seen in Figure 3, the Input module makes a random
transition from the Start state to Generate Request
state. This transition generates a random integer less
than 100 and based on the integer generated it further
makes a transition to one of the buildings in the
environment i.e Building A, B or C. Through this
process, we have tried to depict a random request
generator which sends a request for service syn-
chronisation command to the Server module. Along
with the request from building synchronisation,
the Input module also sends the coordinates of the
building from where the request is generated. These
coordinates are further sent to each individual drone
by the Server module. These coordinates are used in
distance calculation of each drone from the building.
After generating a random request, the Input module
makes a transition back to the start state to generate
a new request for service. This process continues and
random requests are generated which are then served
by the drone.

2) Server Module
The Server module describes the behavioral logic

for Server which is responsible for routing the
request generated by the Input module. As seen
in Fig. 4, the Server module transitions from
Start state to Wait For Request state when
it receives a request for service from the Input
module. It immediately sends a synchronisation
request to the Drone module. This request goes as a
synchronisation event and is received by each drone

Fig. 3. Behavioral Model in UPPAAL for Input Module

that is available to serve a request. The request is
broadcasted to all the available drones along with
the location coordinates of the building from where
the request is generated. Only after the drones
have received an authentic request from the Server
module, they proceed further to calculate linear
distance in-order to mutually elect the nearest drone
to serve the request. At this point, the server module
waits until it receives a synchronisation serve! event
from the drone that is chosen to serve the request.
The drone which is chosen to serve the request
sends a synchronisation action to the server module
indicating that, the request generated is being served
by one of the drones present in the environment.
Only after receiving the serve! synchronisation, it
transitions from Wait For Communication state
to Repeat Request state. During this transition, the
time taken from the moment a request is sent and
until it is accepted by the nearest drone is stored
in a variable called time server. After this state,
the server modules makes a transition back to the
Start state to process and send any other request
if available to the Drone module. This process
continues repeatedly until there are no more service
requests.

3) Drone Module
The Drone Module defines the behavioral logic

of drone architecture in the UAM model. There
are many instances of the drone module that can
be defined in the system declaration of UPPAAL
editor environment. Fig. 5 below graphically shows
the drone module in the UPPAAL editor window.
Initially every drone is in the Start state. Once the
drones are ready, they go to Ready state. While
making the transition from Start to Ready,certain
counters are initialized. The variable i in the module
represents the identification number of the drone
that is being referenced. Whilst in the Ready state,
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Fig. 4. Behavioral Model in UPPAAL for Server Module

each drone waits for every other available drone and
also waits for the Server to generate a request. Once
the request has been generated, it is decrypted by
each drone to check if the request is coming form
authentic server or not and if proved, the drones make
transition from Ready to Sensor Check state. The
Sensor Check state is where each individual drones
will check if the various parameters are working
normally and if the drone is in good condition to fly
and serve a request. If the sensors are normal and the
condition of the drone is healthy to fly it will make
a transition to Availability Check state. If any of
the instrument or parameter is not working properly
the drone will exit the loop by making a transition
to Report Error state. In the next state, each drone
performs a linear distance calculation to calculate it’s
distance from the Node where request is generated.
After calculating the distance, all drones will update
their respective distances to a global list along with
their specific identification number. After updating
the distance, all drones mutually agree upon the
drone which is closest to the requesting Node and
select the drone nearest to the Node, to serve the
request. Here the drones also perform a check for
principle of quasi-synchrony [15] [17] i.e no drone
should serve more than twice while others have not
served once. This way all the drones get a chance
to serve the requests if they are not the closest to
the requesting node. This process where the drones
mutually agree upon the one to serve the request
without the interference of the server module or
any other central module, makes the architecture
distributed [17] and de-centralized in nature. After
completing all these steps and mutually selecting
the drone to serve a request, all drones wait at the
state Make Decision where the decision is made
by each individual drone according to the mutual
agreement. The drone chosen to serve the request
makes a transition to the state Serving Request
while others make a transition to Ready To Serve.

All the other drones are available again to serve any
new request generated by the server module. The
drone serving the request, updates certain variables
and makes itself unavailable for any new request.
It also sends a serve synchronisation command to
the server to indicate that the request generated by
the server is being served. After serving the request,
the drone calculates the total time taken to serve
the request and makes itself available again to serve
any new request. This process continues for each
and every request generated at the server side. Every
time a new request is generated all the available
drones perform sensor checks, authenticity check
and shortest distance calculation. Always, the drone
closest to the requesting node is chosen to serve
the request keeping in mind the principle of quasi
synchrony is satisfied [15] [17].

4) Sensor Module
The Sensor Module as shown in Figure 6 consists

of the Start and the Get Sensor states respectively.
Every time a drone transitions from Start state to
Ready state a synchronisation event start is sent to
the Sensor module. The sensor module then synchro-
nises and makes a transition from the Start state
to Get Sensor state. While transitioning, it gets the
latest real-time sensor values such as altitude, fuel,
temperature etc. of the respective drone that sends the
synchronisation and returns it to the Drone module.
These values are later used by the Drone to check if
it is healthy to serve the request and if all parameters
are above the safe threshold limit.

D. Formal Verification Requirements

Uppaal allows for verifying requirements modeled as
properties, that are useful for ensuring correctness, detecting
inconsistencies, as well as flaws in the design according to the
proposed modeling and analysis framework for UAM model.
For example, Uppaal is capable of detecting whether there is
a deadlock in the model, the results of which can further be
used to find out logical flaws in the behavior of the developed
model. In this subsection, we present various requirements
modeled as properties, that one may want to verify with respect
to UAM model, and also present meaningful insights into
them along with brief description of each. The verification
helps to check for any inconsistencies or flaws that may be
present in the behavioral logic. After identifying the flaws,
they are corrected and a consistent and a robust UAM model
is presented through this work.

Requirement 1 : The existence of deadlock within the
system should be verified

A[ ] Not deadlock

This requirement is stated to check if there exists any
deadlock in the system. The requirement is modeled as a
property in UPPAAL verifier, that proves and presents a
simulation trace of the state where a deadlock exists. After
examining the particular case and scenario we find out that
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Fig. 5. Behavioral Model in UPPAAL for Drone Module

Fig. 6. Behavioral Model in UPPAAL for Sensor Module

the deadlock does not indicate any flaw or inconsistency in
the logic. Similarly, for every specific system, this scenario
will have to be examined to figure out if the deadlock is
necessary or it is a reflection of faults and inconsistencies
in the system. For example, if the service provider does not
want to provide any service during night time, then a deadlock
at night will indicate correct and consistent logic. Therefore,
specific to the model, deadlocks have to be examined to see if
it’s needed or the logic has to be changed in order to remove
them. Requirement 2 : All the drones present in the system
shall be able to provide service at the same time

E <> Drone1.Calculate T ime &&
Drone2.Calculate Time && Drone3.Calculate Time

The requirement checks if all the drones present in the
model can be busy at the same time to provide service to
different requests i.e, all of them are servicing three individ-
ual requests simultaneously. For our model, this requirement
proves indicating, that there exists a path where eventually,
all three drones can be serving at the same time which shows
that each drone functions independent of the other drones, but
the decision are taken with mutual agreement. The following

requirement also helps to justify the distributed nature of
each autonomous agent in the environment that functions
independent of the other agents.

Requirement 3 : An available drone shall always
provide service to a generated service request

E <> Server1.Wait For Communication
&& (Drone1.Serving Request or Drone2.Serving Request or

Drone3.Serving Request)

The requirement checks if there exists a path where when
a request is sent by server, it is always served by the available
drones. This helps us to know that there are no neglected
requests and that whenever a request is sent, it is always served
and not ignored. This requirement helps to verify if any service
requested is left unattended in the environment.

Requirement 4 : All the drones shall mutually agree
upon who should be the service provider

A <> (selected drone[0] == selected drone[1]) &&
(selected drone[2] == selected drone [ 0 ]) &&
(selected drone[0] == selected drone[2])

This requirement modeled as a property proves indicat-
ing for all paths eventually, all the drones mutually agree
on the drone that will provide the service. The global list
selected drone contains same elements which tells us that the
service provider has been chosen with mutual consent without
the interference of any external or central server. This specific
requirement helps to verify that even though the proposed
framework is distributed in nature but the drones take certain
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decisions with mutual consent without the interference of any
central server or agent.

Requirement 5 : All the drones shall mutual agree
upon, who is the closest to the location of reqeust

A <> (shortest distance[0] == shortest distance[1]
&& shortest distance[1] == shortest distance[2]
&& shortest distance[0]== shortest distance[2])

The above stated requirement is modeled as a property in
the Uppaal verifier. We get a simulation trace indicating that
for all paths eventually, all drones are able to decide upon the
drone that is closest to the requesting node or building. All
drones individually update the global list shortest distance
indicating the distance of the drone that is closest to the
requesting building and is available to serve the request.

Requirement 6 : No drone shall provide services more
than two times while other drones are idle

E <> (number of time served counter[0] > 2 OR
number of time served counter[1]>2 OR

number of time served counter[2]>2)

Using the above stated requirement, we implemented the
principle of quasi synchrony. As a result, we try to check, if
there exists a path where either of the drones have served more
than two times, while others have not served even once. This
requirement modeled as a property keeps processing and does
not indicate a yes or no since it is an unbounded system. This
implies it is a liveliness property and hence it does not find
a state where the following condition holds true. We run the
execution for almost 11,700 states till we get server connection
lost error and until that time it does not hold true. In a way
this implies that there isn’t any path where this property holds
true (i.e principle of quasi synchrony holds till the time we
don’t lose connection with the server) but we cannot say that
for sure.

Requirement 7 : Authenticity of the incoming request
from the server shall be verified by all drones

A <> (Drone1.key == Server1.local key) &&
(Drone2.key==Server1.local key) &&

(Drone3.key==Server1.local key)

Yes, for all paths eventually, all drones check if the request
is coming from the authorised server or not. The server while
sending a synchronisation service request, sends an encrypted
key along with it. Each drone individually decrypts the key and
compares it with the existing shared key. Only if the request is
authentic, it will be served by the available drones otherwise
it will be ignored.

Requirement 8 : An unavailable drone shall not
process another request until it becomes available again.

E <> ((Drone1.availability[0] == false &&
Drone1.Make Decision) OR (Drone2.availability[1]==false &&

Drone2.Make Decision) OR (Drone3.availability[2]==false
&& Drone3.Make Decision))

The above requirement tries to find if there exists a path
eventually where a drone is already in the process of serving a
request, goes to serve a request again i.e an unavailable drones
serves a new incoming request. The requirement modeled as
property keeps on running for approximately 12,065 states
until connection to the server is lost. This indicates that till
12,065 states, there is no state where the above condition holds
true. To prove or disprove the property we need to consider a
bounded automata. Therefore, for now we cannot say for sure
if the above property is true since it keeps on running in search
for a simulation trace without generating a counterexample.

Property 9 : A drone with poor health shall not be
chosen to serve an incoming request
The above requirement tries to find if there exists a path
eventually where the battery of a drone is less than 50% and
it is chosen to serve the request.

E <> ((bat[0] < 50 && Drone1.Make Decision)
OR (bat[1]<50 && Drone2.Make Decision) OR (bat[2]<50 &&

Drone3.Make Decision))

We assume a threshold of 50% and do not want any drone
with a battery value of less than the threshold to serve a
request. This threshold value can be changed if needed. The
property keeps on running to find a path until the server
connection is lost. We need to make the model bounded in
order to prove the following liveliness property. We can say
that for at-least 12,458 states there doesn’t exist any such path,
but cannot guarantee for the whole model since it keeps on
running without generating a counterexample.

Property 10 : A drone with a malfunctioned sensor
should not be chosen to serve a request

E <> ((technical sensor[0] == false &&
Drone1.Make Decision) OR (technical sensor[1]

==false && Drone2.Make Decision) OR
(technical sensor[2]==false && Drone3.Make Decision))

Through this requirement we try to investigate if there
exists a path eventually, where a drone whose sensor has been
malfunctioned or is not working properly, is chosen to serve the
request. The requirement stated as property keeps on running
until server connection is lost indicating it is unable to find
such path for the number of states it runs. We need to make
the model bounded to accurately indicate if it holds true or
not. As of now, we cannot say for sure that the property holds
true for the whole model since it keeps on running infinitely
without generating a counterexample.

V. RESULTS

This section evaluates the results of the various properties
that are mentioned above. In general, we are able to verify
that the distributed drones in the autonomous environment
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mutually agree and take decisions without the interference
of any central server or module. Table 1 below evaluates
the experimental results for each property. The first two
columns of the Table 1 show the time taken (in seconds)
by each property to execute and the total run-time memory
(in megabytes) consumed. The next column indicates if the
property proves or not. As we can see, some of the properties
prove and some do not. Few properties keep running in loop
until we get a server connection error. For these properties,
we can’t say for sure if they hold true or not since it is an
unbounded system. The next column describes the number
of states each property iterates through. Some properties that
prove, iterate through all reachable states. If the verifier finds a
counterexample for a particular property, it gives a simulation
trace and indicates that the property does not hold true. These
properties also iterate through all possible reachable states to
look for a counterexample. The properties that keep on running
without proving, iterate through many states as listed in the
table until we get server connection error. The next column
indicates if a simulation trace is generated while verifying a
property. It is noteworthy that in Uppaal a simulation trace is
generated when a property does not hold true i.e. the model
checker finds a counterexample. Some properties which keep
on running, do not generate any simulation trace and we
get server connection error. An automated simulation trace
is also generated when the “There exists (E<>)” property
proves. Through this verification process, we are able to verify
the formal behavioral logic and develop a model which is
consistent and free of errors.

During the verification process, a counterexample was
generated along with a simulation trace which showed that the
above stated property was not satisfied. As seen in Fig. 7 the
two available drones (Drone1 and Drone2) are not initialized
yet since they are at S0 Start state. The Server (Server1)
receives request from building! synchronisation event from
the Input Module (Input Request) indicating that a request
for service has been generated, which needs to be sent to all
the available drones.

The server module then broadcasts the request to all the
available drones available by sending a request! synchronisa-
tion. As observed, the broadcasted request! synchronisation
is not received by the drones since they are still at S0 Start
state and hence, the service request goes unattended. The
property verification process helped to identify the flaw in
the logic design that the request generated by the server
would sometimes go unattended and will never be served. This
identification of flaw led to redesign of the logic and later we
were able to rectify the logic and were able to verify the above
stated property.

This specific counterexample shows how formal verifi-
cation and formal model checking helps in identifying and
removing flaws and inconsistencies in proposed logic during
design time of complex automated systems. Fig. 7 depicts one
among several counterexamples which we encountered during
model checking process. The property stated during model
checking intends to verify if all available drones in the system
are ready to receive a request when a server is sending it.

TABLE 1. EXPERIMENTAL RESULTS OF PROPERTY VERIFICATION AND
MODEL CHECKING.

Property Time
(sec)

Virtual Memory
(mb) Does it Prove? No. of states iterated Simulation Trace

1 0.09 10.456 No All reachable states Yes

2 0.017 10.452 Yes All reachable states No

3 0.001 10.712 Yes All reachable states No

4 0.001 10.712 Yes All reachable states No

5 0.001 10.632 Yes All reachable states No

6 60 1202 No, keeps running 11700 No, server connection error

7 64 1161 No, keeps running 14543 No, server connection error

8 68 1162 No, keeps running 12065 No, server connection error

9 68 1167 No, keeps running 12458 No, server connection error

10 63 1177 No, keeps running 13230 No, server connection error

A. Discussion

Our method provides artifacts such as models, logic,
verification results as evidence that indicate satisfaction of
requirements for a system, that is being designed. The evidence
is obtained by, performing model checking at design time.
This design time analysis also helps in clearly identifying
the requirements that need to be implemented to achieve the
functionality, by the creation of the model or the system, while
abiding by the constraints provided by regulatory bodies.

Our approach, is agnostic to the technology that is finally
used for implementation, thereby focused on identifying and
representing the requirement for the problem to be solved,
without getting into the complexities of implementation. It
helps in generating and evaluating all the possible test cases
that need to be tested for actual drones/agents to successfully
execute the desired mission.

Once this is verified during design it can be implemented in
any simulation environment and finally deployed on drones or
autonomous agents. This method thus ensures through formal
verification, the correctness of the logic designed. In our
case, it verifies the logic developed in providing services by
autonomous agents in a distributed environment.

B. Limitations

There are a few limitations with the study that has been
conducted. Firstly, the Uppaal model built to represent the
distributed protocol environment, needs to be evaluated for
Scalability. Currently, it only represents three instances of the
Drone Module. We need to evaluate and verify the behavioral
logic for at-least more than ten drone modules since the
Urban Air Mobility environment will consist of numerous
drones. Secondly, the logic developed in the formal verification
environment has not been mapped to an actual simulation
environment. As part of next step of this research, we plan to
map it to a simulation environment such as ROS and evaluate
the performance of the distributed protocol architecture with
multiple agents carrying out a specialized task within the
environment. Lastly, some of the properties do not prove and
keep on running, trying to find out a counterexample. This is
because, currently, the model is unbounded. We need to bound
the model and also come up with a more abstract representation
in-order to figure out how the properties can be proved.
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Fig. 7. Counterexample Generated during Property Verification

VI. CONCLUSION

Through this study, we proposed a formally verifiable
framework to represent logically the behavioral that should be
satisfied by the components in the infrastructure, required for
distributed autonomous agents to successfully provide services.
Through the property verification, we were able to prove that
the distributed autonomous agents mutually agree without the
interference of any central server or module. The autonomous
agents are able to take decisions independently and also in
synchronisation when needed. The representation is formally
verified and is free of any flaws and inconsistencies.

We plan to further extend this work by incorporating
scalability and heterogeneity analysis to the present study
and see how heterogeneous autonomous systems behave in a
distributed environment. We also plan to model and formally
verify similar distributed models with other model checking
tools such as, nuXmv, PRISM and see how the results vary and
further try to generalise our model. Finally, we envision to map
the logic from the formal model to a simulation environment.
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