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Abstract—Human action recognition has transformed from
a video processing problem into multi modal machine learning
problem. The objective of this work is to perform multi modal
human action recognition on an ensemble hybrid network of
CNN and LSTM layers. The proposed CNN - LSTM ensemble
network is a 2 - stream framework with one ensemble stream
learning RGB sequences and the other depth. This proposed
framework can learn both temporal and spatial dynamics in both
RGB and depth modal action data. The hybrid network is found
to be receptive towards both spatial and temporal fields because
of the hierarchical structure of CNNs and LSTMs. Finally, to
test our proposed model, we used our own BVCAction3D and
three RGB D benchmark action datasets. The experiments were
conducted on all the datasets using the proposed framework and
was found to be effective when compared to similar deep learning
architectures.
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I. INTRODUCTION

Human action recognition is basically considered as a
computer vision problem where a set of video processing
algorithms were proposed to extract features that became input
to a classification algorithm. However, these video processing
algorithms depended heavily on the orientations of pixels
in the video frames which affected the performance of the
classifier as whole. Despite their instabilities in generalizing
the classifiers performance the human action recognition are
applied in surveillance networks, industrial automation, med-
ical and sports analysis to name a few. In contrast to RGB
video sensors, we now have low cost multi modal sensors
such as Microsoft Kinect, that can enhance RGB sequences
with depth and skeletal information. On the other hand the
progress of deep learning algorithms like Convolutional Neural
Networks (CNNs) and Recurrent models (RNNs) has been
instrumental in enhancing the performance of multi modal
action recognition systems.

In the recent years deep learning architectures have been
shown to learn and complement the unique features in RGB,
depth and skeletal data for performance improvements in
action recognition tasks [1], [2]. Specifically, the work in [3]
shows the effectiveness of using auxiliary datasets in the form
of skeleton and depth has enhanced the accuracy of action
recognition system using RGB videos. Multiple Kernel based
learning framework was applied effectively on RGB D action
data for extracting multi modal features and further fusing
them, which improved their accuracy positively [4]. Further, a
few of these models explored the sparse modelling of dense
RGB and depth features that were translated into weighted bag

of words (BOW) [5] representation for classification. Most of
the works experimented with full action sequences ignoring
the temporal information accompanying the action.

Initially, the idea was to extract motion information from
RGB and depth sequences using optical flow, Kalman tracking
and sometimes packing motion into a single image called as
motion history images (MHI) [6]. Even though these methods
offered an improvement in performance of the classifiers,
they showed difficulty in learning spatio temporal features
for generalizing an action. The fundamental difficulty in multi
modal sequences is the formation of a multi-dimensional tensor
indexing modalities, their spatial and temporal knowledge
in one field. Subsequently, learning and temporal pooling
operations on this multi-dimensional tensor is a challenging
task. Moreover, time varying modalities will always induce
constraints due to variable length effects. Despite the above
gaps in data acquisition and processing, the time varying multi
modal features can enhance the performance of the learning
algorithms. However, the question posed at this instance is how
to teach a classifier the spatio temporal modalities for RGB D
action recognition tasks.

Previously, we approached the above problem by dividing
multiple modalities to fixed length action sequences which are
then arranged as a multi layered multi modal tensor. These
multi-dimensional tensors are processed through deep convo-
lutional neural networks (CNN) for learning spatial representa-
tions thereby completely ignoring the temporal structures [7].

In this paper, we propose to develop a hybrid recurrent
CNN based deep learning framework for multi modal action
recognition from RGB and depth data. Our proposed CNN
LSTM network has been an inception of recurrent CNNs for
action recognition in [8]. However, it is different from models
proposed previously on multi modal action sequences [9], [10],
[11], [12] in two aspects. One, the multi modelled data used in
our work is RGB and depth sequences and two, our proposed
CNN-LSTM Action Network (CLANet) is an ensemble of
streams of layers.

The CLANet extracts the spatial features from RGB and
depth sequences using CNN and infuses the extracted features
into the LSTM network which is bidirectional in structure. The
LSTM streams learn the temporal patterns in both the RGB and
depth sequences during training. The last layer of the CLANet
is a dense layer with SoftMax activation the outputs of which
are score fused to decide on the input class. We opted for RGB
and depth sequences for this experimentation and no skeletal
action inputs due to the data dimensionality representation
between them. Skeletal data has a higher dimensionality over
the RGB and depth which share a common representation.
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In order to validate our proposed framework, we have our
own BVC3DA RGB D action dataset with 40 actions from
10 different actors with 10 repetitions per action. However,
we evaluated the proposed framework on benchmark RGB D
datasets, NTU RGB D, MSRAction and UTKINECT to test
the learning strategies of the proposed CNN LSTM network.

The rest of the paper is organized as follows. The second
section presents the previous works on RGB D multi modal
action recognition with an insight into gaps and the achieved
breakthroughs. Section three discusses the methods applied in
this study to achieve higher performances across datasets for
multimodal action recognition. Results are presented in section
four and conclusions drawn on the obtained results in section
five.

II. BACKGROUND

Multi modal or RGB D based action recognition models
has been studied extensively which led to the development
of the proposed CLANet. The previous methods have shown
to have used data with RGB frames, depth and skeletal
information for recognition of human actions across multiple
identification platforms such as machine learning [1] to deep
learning [13]. The machine learning models apply segmen-
tation and feature extraction algorithms on RGB or depth
or both frames for extracting meaningful representations of
actions [14]. On the other hand, deep learning models extract
features and segments based on the training algorithms on the
RGB D data sequences [9]. The most formidable of these
deep learning models are grouped into spatial and temporal
domains. In spatial domain the models extract features with
respect to the pixel location in image space using models
such as Convolutional Neural Networks (CNNs) [2], [7].
For temporal or time series modelling of the RGB D data,
Recurrent neural networks (RNNs) and their upgrades such as
Long Short-Term Memory (LSTM) nets [15], [16].

However, the spatial and temporal models have their share
of advantages and disadvantages. The spatial models cannot ef-
fectively learn the time series information which is necessary to
represent action sequences that dependent on continuous data
variations. Contrastingly, using exclusive time series modelling
on video frames will not capture the spatial representations of
action movements in image spaces. Hence, a hybrid combi-
nation involving both spatial and temporal models in found
to be necessary to represent actions in video sequences for
recognition [17], [18]. The early models applied optical flow
to extract the temporal features on RGB video frames which
are further fused with the spatial features during the training
of CNNs. A few state-of-the-art models used multiple streams
of independent CNNs with inputs from RGB and optical flow
based RGB giving satisfactory results [19], [20]. One stream
of CNN used RGB spatial features and the other uses motion
information during training the networks simultaneously. All
these networks are accompanied with feature fusion layer
before or after the dense layers for decision making on the
inputted action sequence. However, these models require ad-
ditional computation time in the form of motion vectors which
makes them computationally inefficient due to data alignment
problems. Moreover, few also tried 4 streams by adding motion
information from depth sequences producing better recognition
accuracies than the previous 2 stream model [7].

Similar to the above models, properties of the RGB and
depth modalities have produced efficient action recognition
algorithms such as depth rank pooling with CNNs [21], scene
flow based RGB D channels on CNN [22] and sequence
based methods with RNNs [23]. However, the most successful
are models that combine the advantages of both spatial and
temporal networks. These models are named as spatio temporal
recurrent convolutional neural networks (rCNNs) [24]. These
models operate in twofold: one, the primary network extracts
the spatial features using CNNs and the secondary network
encodes that spatial features into temporal data using recurrent
models. The most frequently applied recurrent model was
Long short-term memory (LSTM) for representing tempo-
ral information in the action video sequences due to their
ability handle long term dependencies by avoiding gradient
vanishing problems [25]. Consequently, it was found that the
operating the feature pooling model with LSTM can influence
the temporal learning capabilities of the hybrid CNN LSTM
architectures. Through feature sharing mechanism between
the two networks, they were able to produce higher level
representations of actions in a video sequence [26]. Moreover,
bidirectional LSTM based methods have shown to handle
multiple length video sequences when compared to RNNs.
Therefore, the hybrid combination of CNN and LSTMs is
the most widely applied model for human action recognition
because of their abilities to decode spatial and temporal
information simultaneously [27].

Literature is filled with CNN LSTM models for action
recognition using skeletal actions as inputs [28], [29], [30].
These models use 3D skeletal joints as time series data along
with RGB video frames for training and testing. However,
depth-based models were rarely used along with these hybrid
models [31]. In this work, we try to learn through a hybrid
model which uses both RGB and depth data to draw inferences
on the input action sequences. Both CNNs and LSTMs allow
end to end trainable models that eliminates the need for
tracking variations through time series data. The advantages
of using RGB inputs along with depth instead of skeletal data
are threefold. First, the depth features are more profound in
assisting the spatial information in RGB data when compared
to skeletal data. Second, the depth data is analogous to RGB
data, which allows for complex processing mechanisms in
transforming the skeletal data to image data. Finally, the
skeletal data at times is found to be noisy with missing joints
or overlapping joints making it difficult to process.

Eventually, in this work we describe a hybrid framework
by combining LSTMs with CNNs for action recognition called
as CLANet to construct an end-to-end trainable architecture
that has capabilities in handling visual action recognition and
sequence prediction tasks.

III. METHODOLOGY

This section provides a detailed description of the proposed
CLANet hybrid CNN - LSTM architecture for action recogni-
tion. First, we design a deep CNN model to extract RGB and
depth features of multiple frames to generate spatial features
in the considered RGB and depth modals respectively. Then
we will build an end-to-end pipeline architecture by combining
multi modal CNNs with bi-directional LSTMs, followed by a

www.ijacsa.thesai.org 739 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 12, 2020

Fig. 1. Proposed CLANet Architecture for RGB D action recognition.

multiply score fusion to estimate the actions. The proposed
architecture is shown in Fig. 1.

A. The Spatial CNN Network

This subsection describes in detail the architecture for
extracting spatial information from RGB and depth video
frames. To accomplish this, we employed convolutional neural
networks in multiple streams that take input as RGB and
depth video frames. Based on the GPU memory, we found
that the maximum number of streams that can be applied in
a batch is 16. Hence, the first hyperparameter selected was
batch size which is set to 16. Hence each ensemble of CNNs
will feed into 16 frames of RGB and depth frames. Lets name
the two ensembles are CRGBe and CDe. The CRGBe and
CDe are multi stream ensembles of CNNs for RGB inputs and
depth inputs, respectively. Fig. 2 shows the CNN architecture
developed for extracting spatial features from RGB video
frames. Consequently, we have a similar network, CDe for
processing depth frames.

Given an RGB action video frame Vrgb (vr, vg, vb) with a
pixel position of (x, y), the output of 2D convolutional kernels
are feature maps. Eventually, the jth feature map from the ith
convolutional layer is extracted using the expression

Fij (x, y) = f

(∑
p

N−1∑
n=0

M−1∑
m=0

(
Wnm

ijp ∗ V(i−1)p (x+ n, y +m)
)
+ bij

)
(1)

Where, N × M is the size of the video frame V and f is
the activation function. Wnm

ijp is the weight vector at position
(n,m) associated with pth feature map in the (i− 1)

th layer

of the CNN network. The parameter bij is the bias associated
with each of the neurons. Eq’n(1) depicts the convolutional
operation between the video frames and the weight matrix,
which is updated sequentially during training of the network.
There are 16 streams in CRGBe ensemble network to extract
spatial features of 16 consecutive frames per action video. To
maintain uniformity, we divided each action class video into
128 frames. That is there will 8 batches of RGB video frames
per class for training on the CRGBe network. Subsequently,
the depth network, CDe will also have the same configuration
as CRGBe. The CDe extracts the depth spatial features from
the depth sequences of actions.

As shown in Fig. 2, the architecture for RGB spatial feature
extraction module with RGB input video frames. The CRGBe
is an ensemble of 16 streams with a depth of 10 layers
each. The 10 layers depth across each stream consists of 6
convolutional plus ReLu layers, 3 max pooling layers and a
flatten layer. The filter kernels are selected as 7× 7, 5× 5 and
3×3 framework. This kernel selection framework has ensured a
hierarchical feature extraction model that has ensured maximal
spatial preservation of pixels towards the end of the network.
Similar functionality is achieved on depth frames using CDe
network. The spatial maps from CRGBe and CDe are now
used for modelling temporal information in the features by
passing them through LSTM module. The LSTM module is
presented in the following section.

B. The LSTM Temporal Coding

The extracted spatial features from the two ensemble nets,
CRGBe and CDe, are then temporally coded for recognition
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Fig. 2. The CRGBe ensemble for extracting spatial features from RGB
action video frames.

of actions at the highest level. LSTM blocks provide temporal
dynamics for the extracted spatial features across both the input
modalities. Fig. 3 illustrates the single LSTM block used in
this work. The following expressions are implemented during
the operation of an LSTM block. It consists of an input unit
It, forget gate Ft, output gate Ot, momentum factor G and
the LSTM cell outputs (Ct, ht).

It = σ ((xt + ht−1)WI + bI) (2)

Ft = σ ((xt + ht−1)WF + bF ) (3)

Ot = σ ((xt + ht−1)WO + bO) (4)

G = tanh ((xt + ht−1)WG + bG) (5)

Ct = Ct−1 ∗ Ft +G ∗ It (6)

ht = Ot ∗ tanh (Ct) (7)

Where, W and b are weights and bias. xt are the feature inputs
extracted using the spatial CNN network.Ct andht are LSTM’s
cell state at time step t. The sigmoid σ acts as control gates for
transfer of inputs to the outputs. The forget gate initiates the
progress of inputs to the next LSTM block. Based on the state
of forget gate, the LSTM cell either forgets or memorizes the
features in a sequence. However, the flow is unidirectional in
a single stream LSTM model. In general, a sequence labelling
problem such as video-based action recognition we need access
to the past and future inputs at a single time step during the
training sequence. This is found to be achievable in the past
using bidirectional LSTM networks as shown in Fig. 1. This is

performed by two LSTM streams with one moving past data
forward and the other moving the future data backwards for a
specific time step. This biLSTM network is also trained using
the same backpropagation through time algorithm. In our work,
we performed the backward and forward passes for each action
sequence. Subsequently, the hidden states of LSTMs were reset
after each action class. Our work uses a bidirectional LSTM
architecture from [25]. The following subsection describes
the complete multi modal action recognition framework with
bidirectional LSTM network on top of CNN networks.

Fig. 3. A Single LSTM Cell Architecture

C. The Hybrid CLANet Training

The hybrid CLANet is designed by stacking bidirectional
LSTM cells on top of spatial CNNs to create an end-to-end
trainable model. The CNNs are capable of extracting global
and highly discriminating spatial features from the RGB and
depth video frames. On the other, LSTM capture the local
and time representations in the extracted features. Finally, the
outputs of LSTM network is passed through a dense layers
and a SoftMax layer to compute the probabilistic distribution
of the class labels as

Yclass = SoftMax (ht) (8)

In the proposed bidirectional LSTM, the hidden states from
forward pass and backward pass are combined in the output
dense layer. We used 2 dense layers of sizes 1024 each
along with a SoftMax to compute the recognition scores. The
validation losses are calculated after the first dense layer to
update the weights and biases through backpropagation. The
validation data is 15% of the total training data and cross
entropy loss is used for error calculation. The hyper parameters
such as weights and biases are selected randomly with zero
mean random gaussian generator. Stochastic gradient descent
algorithm is used calculating the losses during training with an
initial learning rate of 0.001 across all datasets. However, the
learning rate is readjusted, whenever the loss became constant
during training. The entire CLANet is end-to-end trainable.

D. The CLANet Testing

The action datasets are divided into 65% training, 15%
validation and 20% testing. The outputs of the network give a
probability distribution across classes for a particular test input
sample. We used multiple machines for training and testing
at different frame rates to understand the characteristics of
the CLANet in processing multi model spatio temporal data.
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Finally, we perform multiple test mechanisms on our own
BVRCAction3D dataset and other benchmark datasets such
as MSRDailyActivity3D, UTKinect and NTU RGB D.

IV. RESULTS AND ANALYSIS

This section presents results of experimentation with analy-
sis of various components that were instrumental in generating
the results on various datasets. We start by describing the
datasets for training, validation and testing. Next, we initiate
the training and testing of the proposed CLANet across differ-
ent actions in our dataset. Subsequently, we apply benchmark
datasets on CLANet for inspecting its rationale against our
dataset. Finally, we compare our CLANet with other state-of-
the-art multi stream CNN LSTM models for cross data action
recognition.

A. Datasets and Performance Measures

The NTU RGB D [32] is the largest dataset with 60 action
classes in 80 views recorded with 40 subjects with a total
sample size of 56880 videos of skeleton, depth and RGB.
We selected 60 action classes with 40 subjects for training
and testing the proposed CLANet. The NTU RGB D dataset
used in our work has 2400 video samples with 40 subjects
in 60 action classes. MSRDailyActivity3D [33] is another
standard benchmark dataset using Microsoft Kinect with 16
activity types. It consists of 320 video samples in both RGB
and depth modes with actions performed in both sitting and
standing positions. The other most widely used RGB D action
dataset for benchmarking is UTKinect [34] which has 10
actions from 10 subjects each performing the action twice.
It has 10 classes with 10× 10× 2 = 200 videos of both RGB
and depth data. Inspired from the above benchmark datasets,
we collected our own BVRCAction3D action dataset with 40
single human and 10 two human actions using 5 subjects. The
complete list of actions is available at [7]. Fig. 4 presents some
action sequences in RGB and depth from our BVRCAction3D
dataset.

Fig. 4. BVRCAction3D Dataset. Sample RGB and Depth Video Frames of
(a)-(b): Clapping, (c)-(d): Mopping the Floor and (e)-(f): Eating.

Our BVRCAction3D dataset consists of 50× 5× 2 = 500
video sequences with 50 classes from 5 subjects each per-

forming the action twice. We used Kinect 1.0 for capturing
the actions. Each action was recorded for 60 seconds at 30fps.
Consequently, each action video has 1800 frames with a
resolution of 640 × 480 for RGB and 320 × 240 for depth.
In order to maintain uniformity across datasets, we resized the
frame sizes to 256×256 in both RGB and depth modal videos.
Moreover, we found the number of frames in each video clip
to have a high degree of similarity among themselves. To
increase the redundancy in the action videos, we selected 120
Key frames per action by applying correlation based key frame
extractor [35].

The performance of the proposed deep network is measured
using two standard parameters: mean Recognition Accuracy
(nRA) and mean f1 score (mf1). Apart from the two, we
also obtained confusion matrices and region of convergence
(ROC) plots across all datasets. In the following subsection, we
apply various datasets to our proposed CLANet and evaluate
its performance.

B. CLANet Performance

The proposed multi modal CLANet is trained with RGB D
action sequences from our BVRCAction3D and other bench-
mark datasets. The training parameters were kept constant
across dataset to understand the implications of data on the
network. The hyperparameters of the network were selected as
discussed in the previous section. Fig. 5 shows the confusion
matrices on the datasets used in this work. The performance
of CLANet on our dataset is high when compared to other
datasets due to less noisy backgrounds in BVRCAction3D as
shown in the Fig. 4. The scores from CLANet are found to
be better than our previous work in [7], where we used multi
stream CNN with motion information. The reason for higher
accuracies is because of the LSTM network which models the
time series information in a more accurately. The testing in
this case in preformed with 10 test samples only.

Fig. 5. Confusion Matrices for CLANet on (a) BVRCAction3D, (b)
MSRDailyActivity3D, (c) UTKinect and (d) NTU RGB D Datasets for 10

Test Samples.

Eventually, we tested the trained CLANet with the entire
testing dataset from each dataset and projected the results
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in Table I. The results in Table I indicate two performance
parameters mRA and mF1 for the proposed CLANet across
multiple datasets used in this work. The testing is conducted in
cross subject mode, means that the network is shown samples
with subjects that are previously unseen by the network during
training. The average recognition rate achieved is around
93.32% on our BVRCAction3D dataset, which is found to be
better than our previous work in [7].

The above comparison with our work in [7] is important in
the context of understanding the need for time series modelling
against motion modelling using optical flow. Contrastingly,
optical flow-based motion estimation and processing it with
regular spatial network has limitations in characterizing the
changes across multiple frames. Additionally, the flow-based
models fail to capture the long-term dependencies in the action
video sequences. Interestingly, hybrid CNN LSTM networks
have performed exceptionally well by modelling spatio tem-
poral contents in the action video sequences. Meanwhile, the
depth data has come in to assist this process by increasing the
performance of the network.

However, it is not possible to generate depth data in
real time and hence, we conducted a RGB only test on our
proposed CLANet to understand its usability as a real time
application. We supplied zero matrices in place of depth data
during testing for the depth stream. This test resulted in a
mean accuracy of 84.76% and a mean f1 score of 0.862 for
BVRCAction3D dataset. The second right half of table I shows
the results on all datasets. In spite of depth data absence during
testing, the proposed CLANet has performed better on our
BVRCAction3D dataset when compared to other benchmark

datasets. Consequently, the performance of the network has to
be gauged by comparing its performance against state-of-the-
art networks as presented in the next subsection.

C. Comparison with Recurrent Hybrid Networks

This subsection gives the comparison of hybrid CNN
LSTM networks with RGB and depth inputs as training data.
Surprisingly, there are very few works which used both RGB
and depth data with hybrids networks for action recognition
applications. However, there are a large contingent of networks
for skeleton based action recognition using CNN LSTM ar-
chitectures. Table II presents the comparison of our proposed
CLANet with the previously proposed methods for action
recognition using the benchmark datasets. We implemented all
these networks on the datasets and the mean average recog-
nition is calculated across the training data. The results show
that the proposed network outperforms the existing models.
All the hyper parameters of the networks were incepted from
the proposed CLANet. This is because of the spatio temporal
characteristics that are learned effectively by the network in
two modalities simultaneously. However, it would be interest-
ing to check the network performance against different action
recognition models. Hence, in the next subsection, we compare
our method with other state-of-the-art RGB D based action
recognition models.

D. Comparison with RGB D Action Recognition Deep Models

The parameters used for training and testing were as de-
scribed in Section III. In all experiments, the video resolutions
were fixed at 256×256×3 for both training and testing for both

TABLE I. PERFORMANCE OF CLANET ACROSS DATASETS AND COMPARISON WITH WORK FROM [7]

Dataset RGB and Depth Testing RGB only testing
mRA mf1 mRA [7] mf1 [7] mRA Mf1 mRA [7] Mf1 [7]

BVRCAction3D 93.32 0.965 92.05 0.942 84.76 0.862 72.26 0.687
MSRDailyActivity3D 88.42 0.924 84.86 0.876 74.89 0.784 62.24 0.638
UTKinect 90.25 0.937 87.63 0.894 75.33 0.795 63.85 0.643
NTU RGB D 91.42 0.948 90.27 0.912 78.96 0.812 66.11 0.672

TABLE II. COMPARISON OF AVERAGE RECOGNITION (MRA) OF HYBRID RECURRENT CNN MODELS WITH RGB AND DEPTH INPUTS.

Method Modality BVRCAction3D MSRDailyActtivity3D UTKinect NTU RGB D
Deep Bilinear CNN [1] RGB+Depth 82.36 74.8 76.24 79.2
Auxiliary Dataset Model [3] RGB+Depth+Skeletal maps 92.22 88.12 88.36 89.36
Optical Flow CNN [7] RGB+Depth 92.05 84.86 87.63 90.27
2 Stream CNN [4] RGB+Depth 80.23 94.53 95.23 96.32
CLANet Proposed RGB+Depth 93.32 88.42 90.25 91.42

TABLE III. COMPARISON OF VARIOUS DEEP LEARNING MODELS FOR RGB D ACTION RECOGNITION

Modality Methods mRA
BVRCAction3D MSRDailyActtivity3D UTKinect NTU RGB D

RGB

Two Stream CNN [36] 69.22 68.32 69.03 69.96
CNN LSTM 73.34 70.82 71.98 73.89
Spatio Temporal CNN [19] 71.89 69.33 71.12 72.02
3D CNN LSTM [29] 78.96 74.02 75.64 78.91

Depth

CNN [21] 71.84 68.96 69.98 70.52
CNN [22] 72.36 70.50 71.22 72.36
RNN [23] 74.71 72.44 73.58 74.55
CNN RNN [24] 78.83 74.99 76.12 77.18

Skeletal

Hierarchical RNN [8] 84.36 79.03 81.52 82.92
CNN LSTM [10] 87.11 82.37 85.05 86.03
Temporal Sliding LSTMs [15] 87.94 81.55 85.22 86.07
Visual Attention [18] 89.36 84.05 86.85 88.96

RGB + Depth CNN LSTM 93.32 88.42 90.25 91.42
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RGB and depth data across all subjects. The aim of this section
is to investigate the suitability of RGB and depth information
for action classification through deep learning networks. Given
that, we compare the mRA from multiple architectures on
three multi modal action data. Table III presents the results of
our investigation. The networks were borrowed from previous
methods and were trained from scratch on the datasets used in
this work. All the networks are trained and tested only once.
From Table III, we were able to generate two insights regarding
the performance of the action recognition models. One is
based on the use of input data and the other is on the deep
networks. We see that RGB based methods performed poorly
when compared to the other two modalities, depth and skeletal.
This is because of the background noise that exists in the RGB
video frame that are difficult to learn during training of spatial
networks. Contrastingly, this background noise is relatively
less in-depth frames, and it is completely absent in skeletal
data. Hence, skeletal action recognition is the popular choice
for producing higher accuracies with deep networks. Despite
their success the skeletal action data becomes noisy when
there is a joint overlap during the action sequence producing
ambiguous results.

Simultaneously, skeletal action data is represented as time
series data which is perfectly characterized and discriminated
using RNNs and LSTMs together. These networks have pro-
duced the highest recognition accuracies across all datasets.
However, modelling RGB and Depth as time series data by
extracting features and inputting those features to recurrent
networks has shown to improve performance. However, the
most obvious choice of combination is the skeletal data with
either depth or RGB. The fusion with skeletal data has
improved the discriminating confidence of the networks. The
most suitable network architecture is the hybrid CNN LSTM
which can extract spatial and temporal dynamics of the action
data. Contrasting to the regular phenomenon, we applied RGB
and depth modalities to CNN LSTM architecture to generate
a highly discriminating feature vector for action recognition.
Table III shows that our proposed method is on par with the
existing state of the art models and in fact better than some
of the existing models. All the models are tested with cross
subject data. Finally, the last subsection evaluates the networks
for cross data validation.

E. Cross Data Validation

This section shows the experimental evaluation of CLANet
across datasets. We found some of the common actions
across datasets and evaluated the performance of CLANet
with separate training and testing data from multiple datasets.
Incidentally, we trained the CLANet with our BVRCAction3D
dataset and tested with same actions from another dataset. We
used seven common actions across datasets. The results of
this experiment were presented as mean recognition accuracy
across these seven actions used for training and testing in Table
IV. Here, the network has to fine tuned multiple times and the
recognition rates obtained are averaged across multiple runs
of the algorithm. Table IV shows that the proposed network
has capabilities in evaluating cross data action recognition.
Interestingly, we found that training with less noisy data could
result in good recognition accuracies when compared to a noisy
data training. The average recognition was around 65% across

datasets with the proposed CLANet with RGB and depth input
data.

Despite better performance by the hybrid CNN LSTM ar-
chitecture across RGB D action datasets for recognition tasks,
there are many challenges such as view invariance, cross data
and occlusions that need attention. We found that it is difficult
to achieve high degree of robustness for some complex actions
from the existing deep learning frameworks. Moreover, deep
networks are data intensive models and require a wide variety
to provide actionable intelligence across action recognition
platforms. Finally, more hybrid models with multiple levels
of abstraction are required for designing deployable action
recognition models.

V. CONCLUSION

In this paper, we have proposed a novel approach for
recognizing RGB D action data. Specifically, our method
involves training of a hybrid CNN LSTM multi stream network
on multi modal data, RGB and depth videos. The CNN
network is designed to extract spatial features from both RGB
and depth action frames. Subsequently, bidirectional LSTM
network is used to model the sequential information in the
extracted multi modal features at the output of the CNN.
The hybrid CLANet is trained and tested using our generated
BVRCAction3D dataset and other benchmark datasets for
recognition. The results conclude that the proposed network is
capable of achieving higher average recognition rates of around
93.32% on our dataset and an average of 90.24% across all
benchmark datasets.
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[10] Juan C. Núñez, Raúl Cabido, Juan J. Pantrigo, Antonio S. Montemayor,
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