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Abstract—This paper addresses a production and distribution 

problem in a supply chain.  The supply chain consists of a plant 

with no storage capacity that produces only one type of product.  

The manufactured products are then transported to a depot for 

storage. Customers demand is met by a homogeneous fleet of 

vehicles that begins and ends their trips at the depot. The 

objective of the study is to minimize the overall cost of 

production, inventory and transport throughout the supply 

chain. A Branch-and-Cut and a hybrid Two Phases 

Decomposition Heuristic using a Mixed Integer Programming 

and a Genetic Algorithm have been developed to solve the 
problem. 
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I. INTRODUCTION 

In a supply chain, several activities are involved in 
meeting consumer needs. Producing, storing and distributing 
products are the main activities of the actors or companies that 
make up a supply chain. The problem of production or Lot 
Sizing (LSP) consists in determining the production schedule, 
the quantities to be produced when there is production and the 
quantities stored on the planning horizon. Planning production 
therefore means finding the best compromise between the 
production schedule and the quantities stored on the planning 
horizon. For a better visibility on production planning, readers 
are invited to see [1] . Another very important problem in the 
area of supply chain planning is the Vehicle Routing Problem 
(VRP). This is a NP-Hard problem as a particular case of the 
Travelling Salesman Problems (TSP) which is itself a NP-
Hard problem [2]. It does not consider inventory and 
production decisions. It is mainly interested in the 
organization of the routes of each vehicle, knowing that the 
schedule for each customer's visit is known in advance. It 
therefore makes it possible to answer questions such as "Who 
to visit? "and "In which order should the visits be made? The 
objective of a VRP is to minimize the total cost of transport to 
meet customer needs over the planning horizon. The Inventory 
Routing Problem (IRP) is a supply chain planning problem 
based on the integration and coordination of inventory 
decisions and the determination of the best vehicle trips over a 
given planning horizon. The IRP is a generalization of the 
VRP which allows in addition, answer questions such as 
"When to deliver or collect products?" and "how much to 
collect or deliver for a given period of the planning horizon?". 
This is the place to implement a good replenishment policy 

and management practice such as the Vendor Managed 
Inventory (VMI). Among the replenishment policies [3] , the 
Order-up-to-level (OU) and Maximum level (ML) policies are 
the most used. In the OU replenishment policy, all customers 
have a maximum storage capacity and the quantity delivered 
is such that the maximum level of storage is reached at each 
delivery. While in the ML policy all customers have a 
maximum storage capacity and the quantity delivered is such 
that the maximum level of storage is not exceeded at each 
delivery  [4] . Regarding the VMI, it is a practice in which the 
supplier decides when and how much to deliver to the 
customer based on customers' inventory information. He must 
also ensure that there is no stock shortage at the customers. 
This practice contrasts with the Retailer Managed Inventory 
(RMI) or Costumer Managed Inventory (CMI) practice in 
which customers decide the time and amount of 
replenishment, regardless of decisions made by other 
customers and the supplier. The CMI or RMI is therefore an 
appropriate practice for VRP. For a comparative study 
between the CMI and the VMI see [4]. In a supply chain, the 
production problem is solved independently of the decisions 
that characterize the VRP or the IRP. Similarly, the VRP or 
IRP problem is analysed without considering production 
decisions. However ,in a comparative study to analyse  the 
importance of coordination of production and distribution [5] , 
it has been shown that savings of 3% to 20% on the total cost 
of production and distribution can be achieved by considering 
the supply chain as an integrated and coordinated system. As a 
result, integrating and coordinating production and 
distribution decisions has become a major concern for 
researchers in recent decades. The integrated and coordinated 
planning of the production and distribution functions of the 
supply chain is known as the Production Routing Problem 
(PRP). In order to facilitate the understanding of this work, the 
following organization is adopted. In Section II, a review of 
the PRP literature and these methods of solving are presented. 
Section III provides a description of the problem and its 
mathematical formulation. Sections IV and V propose a 
Branch-and-Cut algorithm and a Two-Phases Decomposition 
Heuristic, respectively. Test results can be found in 
Section VI. The conclusion of the work is presented in 
Section VII. 

II. LITERATURE REVIEWS 

PRP is a NP-Hard problem considering that it contains the 
VRP. Then, several heuristics have been developed for its 
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resolution. Without being exhaustive, there are the Greedy 
Randomized Adaptive Search Procedure (GRASP) [6], [7], 
the Adaptive Large Neighborhood Search (ALNS) procedure 
[8], [9], the Tabu research (TS) [10], the Variable 
Neighborhood Search (VNS) [11], the Memetic Algorithm 
[12] ,the heuristic based on Mixed Integer Programming 
(MIP) and iterative MIP [13], [14] .Decomposition heuristics 
are resolution approaches that consist in dividing the problem 
into several subproblems. the subproblems are then solved 
sequentially. An improvement procedure can be used to 
improve the final solution obtained. Several authors have 
developed a decomposition approach to solve the PRP 
problem. The first decomposition method for PRP problems 
was proposed by [5], [15] to solve a PRP problem with several 
products. The authors cut the problem into Capacitated LSP 
solved to the optimal and a distribution planning problem. In 
the work of  [16], the PRP problem is solved in two phases. 
The first phase consists in solving the LSP in which 
distribution is considered through direct shipment. Once the 
decisions of LSP have been made and the customers to be 
visited have been determined, the second phase aims to 
determine the route of each vehicle over the planning horizon. 
The authors developed a VRP heuristic to solve the second 
phase of the problem. An improved version of the 
decomposition method has been proposed by [17]. The 
authors used the economic algorithm of Wagner and Whitin 
[18] to solve  LSP and the algorithm of Clarke and Wright 
[19] for the construction of distribution plans for each period 
.They also used a local search procedure to improve the 
solution. Since the introduction of the Branch-and-cut 
algorithm (B&C) as an exact method to solve the integrated 
IRP [20], more and more researchers have been interested in 
the exact resolution of the PRP . the B & C is the most widely 
used of the exact methods of resolution of the PRP. It has been 
used to solve a PRP problem in which vehicle capacity and 
plant production capacity have not been considered [21]. For 
the model with the consideration of the capacity of a single 
vehicle used to transport a single type of product and in which 
production capacity is not considered, see [14]. The single-
vehicle model has been extended to the multi-vehicle model in 
[8]. Qiu and al. have recently introduced three B&C 
algorithms to deal with various PRP. The first is a PRP in 

which reverse logistics and remanufacturing are considered 
[22] , the second is a problem of production and distribution of 
perishable products [23] and the third is a problem of 
production of several types of products with the use of several 
homogeneous vehicles and taking into account the  setting 
cost when there is production or when moving from the 
production of one product to another [24]. For the exact 
method using Bender's decomposition see [25]. The difficulty 
in the exact resolution of the PRP lies in eliminating subtours 
in a vehicle's route. This difficulty is the same for any tour 
problem such as TSP, VRP or IRP.  Two subtour elimination 
constraints (SECs) are increasingly used in PRP. On the one 
hand, there are the SECs resulting from the formulation of 
Boudia and al. [6], [17] and on the other hand, the SECs 
developed for selective TPS in [26] . Three methods or 
callable libraries have been proposed for the exact or heuristic 
separation of these SECs. Among these methods, there are 
four heuristics developed at the base for solving the 
Capacitated VRP (CVRP) with consideration of vehicle 
capacity [27] . An exact and heuristic separation by using the 
minimum S-T cut algorithm of the Concorde callable library 
have been developed by [28], [29] and a polyhedral approach 
to SECs separation has also been proposed in [30] . The exact 
algorithms used for PRP resolution in most cases use one of 
these SECs separations approaches. Table I presents the works 
on the use of exact resolution methods as well as the type of 
mathematical formulation of the model and the separation 
method used. The notation F|k refers to the formulation with 
vehicle index and the formulation F|nk refers to the 
formulation without vehicle index. These notations can be 
enriched by the precision of the type of procurement policy 
used in the mathematical formulation of the model. Thus, with 
the OR replenishment policy, one can obtain the notation of 
type F(OU)|k and F(OU)|nk and the notation of type F(ML)|k 
and F(ML)|nk for the ML replenishment policies. See [8] for 
details on the notation of mathematical formulations. Readers 
are also invited to see a very detailed literature review 
proposed in [31]. In this literature review, the authors 
presented the different types of integration problems such as 
the integrated problem of LSP and direct delivery, IRP, and 
the PRP. 

TABLE. I. SUBTOUR ELIMINATION  PROCEDURES 

Works Model Method of resolution Separation method used 

Adulyasak and al.[25] F|k  Bender’s decomposition Applegate and al.[28] 

Ruokokoski and al .[21] F|nk B&C Applegate and  al.[32] ,  [29] 

Archetti and al.[14] F|nk B&C Padberg and Rinaldi .[30] 

Adulyasak and al.[8] F|k and F|nk B&C Applegate and  al.[28] 

Qiu and al.[22] F|k B&C Lysgaard and  al.[27] 

Qiu and al.[23] F|nk B&C Lysgaard and  al.[27] 

Qiu and al.[24] F|nk B&C Lysgaard and  al.[27] 
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They also highlighted the different mathematical formulations 

of the PRP with resolution methods. A classification based on 

four criteria and covering 77 research studies from 1993 to 

2016 was presented in a literature review [33] . The authors 

categorized the work according to the level of decision, the 

typology of the problem in the supply chain, the type of 

objective sought and the problem optimization model 

(resolution method). The problem studied in this work is to 

plan and optimize an integrated supply chain in which 

production decisions for a single type of product in a plant 

with no storage capacity and those for inventories in an off-
plant depot are integrated and coordinated to meet the 

deterministic demands of several customers. We denote this 

problem by the “External Depot Production Routing Problem” 

(EDPRP), To the best of our knowledge, the PRP with 

External Depot has not been addressed before. In this EDPRP, 

a fleet of homogeneous vehicles leaves the depot for the 

distribution of products to customers or the collection of 

products at the plant. In the following section, more detailed 

description of the model and its mathematical formulation will 

be presented. 

III. DESCRIPTION OF THE PROBLEM AND MATHEMATICAL 

FORMULATION 

G= (N, A) is a complete graph in which N represents all 
the nodes formed by the plant, the depot and the customers 
with the index i ∈ {0...n+1} and A(N) = {(i, j) : i, j ∈ N, i ≠ j} 
all the arcs in N. The plant is represented by n+1, the depot is 
indexed by 0 and all customers are represented by {1, ..., n}. 
the graph of Fig. 1 represents the collection and distribution 
network for one plant, one depot and seven customers. 

The sets 

Let denote    = {1, …, n} the set of customers, 

   = {0, …, n} the set consisting of the depot and customers, 

   = {1, …, n+1} the set consisting of the customers and the 

plant, 

 = {0, …, n+1} the set for depot, customers and plant, 

T= {1, …, l} the set of periods (days) of the planning horizon, 

K= {1, …, m} the set of homogeneous fleet of vehicles. 

 

Fig. 1. Collection and Distribution Network. 

The index: 

i and j represent the index for the nodes of N, 

t is the index of the different periods of the planning horizon, 

k is the index for the homogeneous fleet of vehicles. 

The parameters: 

   Unit Production Cost (UPC), 

f: fixed cost of production, 

    Unit Inventory Cost (UIC) at node i, 

      Unit Transportation Cost (UTC) from the node i to the 

node j, 

     the demand of the customer i in the period t, 

C: plant production capacity, 

Q: Maximum vehicle capacity, 

       Maximum or targeted storage capacity at node I, 

        Initial stock available at node I, 

        = min {  C,  ∑ ∑          
 
    ∈  

}     Ɐ t∈ T, 

       =min         ∑    
 
        ∈          ∈    , 

Decision variables 

  : quantity produced during the period t 

   : level of stocks at the node i during the period t 

       quantity delivered to the node i by vehicle k during the 

period t 

    binary variable equal to 1 if there is production at the 

plant or 0 if not 

    : binary variable, equal to 1 if the i node is visited by 

vehicle k during period t or 0 if not 

      : binary variable, equal to 1 if vehicle k travels directly 

from the node i to the node j during period t or 0 if not. 

Mathematical formulation 

Z= min ∑            ∈ +∑ ∑    ∈     ∈ + 

∑ ∑ ∑          ∈      ∈  ∈              (1) 

S.t             Ɐ t∈ T             (2) 

         ∑      ∈  Ɐ t∈ T             (3) 

∑         ∈     m    Ɐ t∈ T            (4) 

      +            ∑ ∑      ∈  ∈  
      Ɐ t∈ T          (5) 

        ∑      ∈          Ɐ i∈     , Ɐ t∈           (6) 

∑ ∑      ∈  ∈  
          Ɐ t∈ T            (7) 

        Ɐ i∈    , Ɐ t∈ T             (8) 

∑      ∈  
     Q      Ɐ k ∈ K, Ɐ t ∈ T           (9) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 2, 2020 

324 | P a g e  
www.ijacsa.thesai.org 

       Q          Ɐ k ∈ K, Ɐ t ∈ T          (10) 

      ≤        Ɐ i ∈    , Ɐ k ∈ K, Ɐ t∈ T         (11) 

           Ɐ k∈ K, Ɐ t∈ T          (12) 

∑       ∈          Ɐ i ∈ N, Ɐ k ∈ K, Ɐ t ∈ T         (13) 

∑       ∈   + ∑       ∈  =2     Ɐ i ∈ N, Ɐ k ∈ K, Ɐ t ∈ T  (14) 

∑      ∈    1 Ɐ i∈    , Ɐ t∈ T          (15) 

        = 0 Ɐ j ∈   , Ɐ k ∈ K, Ɐ t∈ T         (16) 

∑ ∑       ∈  ∈    |S|-1 Ɐ S C   , |S|≥ 2, Ɐ k∈ K, Ɐ t∈ T   (17) 

              Ɐ i∈  , Ɐ k∈ K, Ɐ t∈ T         (18) 

  ,           ∈       Ɐ i, j ∈  , Ɐ k ∈ K, Ɐ t ∈ T        (19) 

The function (1) is the objective function. This function 
minimizes the total cost of production, inventory and 
transportation. Constraints (2) determine whether there is 
production at a given time in the planning horizon while 
determining the maximum amount to be produced for that 
same period. The constraints (3) indicate that all quantities 
produced at the plant must be transported to the depot to be 
stored. The constraints (4) limit the number of vehicles 
assigned to collect products at the plant when production 
occurs. Constraints (5) and (6) are the constraints of product 
flow conservation respectively at the plant and among 
customers. The constraints (7) indicate that customer 
deliveries in each period must be made from the depot stock 
of the previous period.  Constraints (8) limit the stocks of each 
period by a maximum storage capacity both at the depot and at 
customers. Constraints (9) indicate that the amount of product 
delivered by each vehicle may not exceed the maximum 
capacity of the vehicle. The constraints (10) indicate that the 
amount collected by a vehicle over a period cannot exceed the 
maximum capacity of the vehicle. The constraints (11) limits 
the quantities delivered to each customer by each vehicle over 
each period. Constraints (12) indicate that each vehicle 
passing through the plant must be empty before entering the 
plant. (13) and (14) are vehicles flow conservation constraints. 
The constraints (15) indicate that each customer is visited no 
more than once by a vehicle during a given period. Constraints 
(16) indicate that no visit from a customer is allowed when 
leaving the plant. Constraints (17) are Subtour Elimination 
Constraints. The constraints (18) are non-negativity 
constraints. Two resolution approaches are used to solve the 
problem. At first, a B&C algorithm is developed to solve 
small instances and then a Tow Phases Decomposition 
Heuristic (TPDH) is developed for solving all instances of the 
problem. 

IV. A B AND C ALGORITHM FOR EDPRP RESOLUTION 

For this first resolution of the model, a B&C algorithm is 
used and following valid inequalities and steps are adopted: 

A. Valid Inequalities 

1) ∑ ∑      ∈  ∈                 Ɐ  ∈     (20). these 

constraints indicate that each customer must be visited at least 

once on the planning horizon. 

2)                            Ɐ i∈     , Ɐ k ∈ K, Ɐ t∈ T (21). 

these constraints indicate that if a vehicle k does not leave 

depot 0 in period t, then it will not visit any customers or the 

plant in the same period. 

3)                      and                              Ɐ (i, j) 

∈A( ) , Ɐ k ∈ K, Ɐ t∈ T (22). these constraints indicate that 

no path will enter or leave a customer if the customer is not 

visited for a given period. 

4)                        and                         Ɐ i∈     ,  
Ɐ j∈     , Ɐ k ∈ K, Ɐ t∈ T (23). These constraints make it 

possible to avoid unladen visits of vehicles. 

5)        +           1     Ɐ (i, j) ∈A(   ), Ɐ k ∈ K, Ɐ , t∈ T 

(24) . with these constraints, each arc is crossed only once and 

in one direction by a vehicle. 

6)                       Ɐ k ∈ 1, …, m-1, Ɐ t ∈ T (25) are 

the Symmetry-Breaking Constraints (SBC : valid for a 

homogeneous vehicles) [34], [35] . These inequities ensure 

that the k-1 vehicle cannot leave the depot if the k vehicle is 

not used. 

7)           ∑       
 
   (  ∑ ∑         

 
    ∈ )  

   ∈       ∈      ∈               (26) [14], [20]. 

B. B and C Algorithm 

To solve the problem, constraints (20), (21), (22), (23), 
(24), (24), (25), (26) are added to the initial model defined by 
the objective function (1) and constraints (2) - (19) and let the 
SECs (17) drop .The relaxation of the linear program (LP) is 
then resolved. the approach to eliminate subtours is divided 
into two stages. At each node of the B&C tree, a check in the 
first step whether the tour of a vehicle k at a date t contains a 
subtour is done. Then, in the second step the corresponding 
SECs and Relinking Constraints (RCs) for this vehicle k at 
date t are added when a subtour is detected. In the remainder 
of this section, the use of "*" refers to a component of the LP 
solution at a node of the B&C search tree. 

C. Subtour Detection 

The subtour detection algorithm takes as input the vectors 
   and    and produces as output the sets     

  of customers 
involved in a subtour for vehicle k at period t (if this set 
exists). The method for determining     

  is described as 
follows. For any vector    and     of the LP solution at period 
t and for vehicle k ,the corresponding graph    

 (   
  ,   ) is 

defined with     
  = { i ∈   :     

    } and ,        
   = { (i 

,j) ∈      
   :      

    }. Let       
  be the set of vertexes 

whose arcs form the Hamiltonian cycle of    
   passing 

through i= 0. Note       
   = {i ∈     

  : 0 ∈     
  }  such a set. 

Building the sets     
  and      

  are described by the Fig. 2 
and Fig. 3. 

Then, let define     
 = {i ∈     

  : i ∉      
   } =     

 /      
  

with      
  Ո S    

   ={Ø} and      
         

  ꓴ     
  . Two 

cycles have thus been defined. The main cycle      
  and the 

    
   subtour to be eliminated. Detecting a subtour in the route 

of a vehicle k during period t is therefore equivalent to 
building     

 . if |     
  |    then a subtour is detected in the 

route of vehicle k during period t. To eliminate this subtour, 
the following procedure will be adopted. 
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  ←∅ 

   If      
     then 

  foreach (i in N) 

   If      
     then 

       
  ←i 

   endif 

  endfor 

 endif 

 end 

Fig. 2. The Procedure to Build     
 . 

     
   ←∅      ←   

 If      
     then 

 repeat 

        
   ←   

  foreach (j in    
  and i≠ j) 

   If       
      then 

      ← j 

   endif 

  endfor 

 until (i = 0) 

 endif 

end 

Fig. 3. The Procedure to Build Built      
 . 

D. Adding  SECs 

if |    
 |     then the constraints ∑           ∈       

     
|    

 |       ∈      ∈   (27) are added. 

E. Adding  RCs 

if |    
 |     then add the constraints ∑       ∈     

     + 

∑       ∈   
      =2      Ɐ k ∈ K, Ɐ t ∈ T, and i the first 

element of     
   (28) . Thanks to the constraints (28), the first 

element of     
   is connected to an element of the main tour 

(      
 ) and an element of    

   until     
  be empty. the 

constraints (27) and (28) are used simultaneously according to 
|    

 |  for the total elimination of subtours and isolated 
vertexes. 

F. Priority Order on Binary Variable 

Tests on six branching orders allowed us to choose the 
following order: connection is made on the      variables first  

then to    variables and finally to the       variables as in [24], 

[34].The B&C algorithm developed here can therefore be 
summarized in Fig. 4 as follows: 

Initialize the upper bound U* and the incumbent solution. 

Initialize the node pool N with the root node. 

Generate and insert all known valid inequalities into 

        the program at root node of the search tree. 

 repeat 

 Selection: Select the next node in N  

                 to evaluate and remove it from N 

 Lower bound: Solve the LP relaxation  

                             at the current node,  

       let    be the obtained lower bound  

                          of the current node: 

      if current solution is feasible then 

    if     > 
  then 

   go to the termination check. 

  else 

    U*←    . 

   Update the incumbent solution. 

   Prune nodes with lower bound U >    

  end 

   end  

 Cut generation: 

 foreach k in K 

    foreach t in T 

    if the current solution of 

                      the LP relaxation 

          contains |    
 |     , then 

    If   |    
 |     , then 

     Add corresponding SECs (27)  

    endif 

    Add corresponding RCs (28)        

   endif 

  endfor 

 endfor 

 Branching: if     >   , go to 

                            the termination check. 

  until N=∅ or time limit is met (termination check) 

 Stop with the optimal solution and the corresponding 

              cost     

Fig. 4. The Procedure of Branch-and-Cut. 

V. TWO PHASES DECOMPOSITION HEURISTIC (TPDH) FOR 

EDPRP RESOLUTION 

The decomposition method used in this work to solve the 
EDPRP follows the same approach as in [16]. the problem is 
solved in two phases. In the first phase, a LP of the LSP with 
direct shipment and direct collection (LSP_DS&DC) is 
resolved. At the end of this phase, production decisions 
(production and stored quantities) are set. Similarly, the 
quantities recovered at the plant or delivered by each vehicle 
to each customer over each period of the planning horizon are 
determined. The second phase is therefore to solve a TSP 
problem for each vehicle over each period of the planning 
horizon. So, a Genetic Algorithm (GA) is developed for the 
resolution of this second phase. 
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A. Phase I: Resolution of the LSP_DS&DC Model 

Z= min 
∑       ∈ 

      +∑ ∑    ∈     ∈       +∑ ∑ ∑          ∈       ∈     ∈   (29) 

S.t             Ɐ t∈ T           (30) 

        ∑      ∈  Ɐ t∈ T           (31) 

∑         ∈     m   Ɐ t∈ T          (32) 

      +             ∑ ∑      ∈  ∈  
 Ɐ t∈ T         (33) 

        ∑      ∈          Ɐ i∈    , Ɐ t∈ T        (34) 

∑ ∑      ∈  ∈  
          Ɐ t∈ T          (35) 

       Ɐ i∈    , Ɐ t∈ T           (36) 

∑      ∈  
     Q      Ɐ k ∈ K, Ɐ t ∈ T         (37) 

       Q         Ɐ k ∈ K, Ɐ t ∈ T          (38) 

      ≤           Ɐ i ∈    , Ɐ k ∈ K, Ɐ t∈ T         (39) 

           Ɐ k∈ K, Ɐ t∈ T          (40) 

∑      ∈    1 Ɐ i∈    , Ɐ t∈ T          (41) 

              = 2      Ɐ i ∈    , Ɐ k ∈ K, Ɐ t ∈         (42) 

      = 0 Ɐ (i, j) ∈       , Ɐ k ∈ K, Ɐ t∈ T         (43) 

              Ɐ i∈  , Ɐ k∈ K, Ɐ t∈ T         (44) 

  ,           ∈      Ɐ i, j ∈  , Ɐ k ∈ K, Ɐ t ∈ T        (45) 

To the mathematical model above, constraints (20), (21), 

(25), (26),               and                  , Ɐ j∈    , Ɐ k ∈ 

K, Ɐ t∈ T (46) (to avoid unladen visits of vehicles.) are added. 

The LSP_DS&DC model is solved according to the 
conditions set out in the experimental section. In the second 
phase," **" refers to components of the LP solution from 
phase 1 of the decomposition method. The results concerning 
the visit of the factory or each customer by each vehicle over 
each period (     

    are reused to serve as an entry for phase II. 

B. Phase II: Resolution of the TSP 

The GA for each vehicle k at each period t (     ) is 
described in Fig. 5. A vector of customers is used to model 
each chromosome. However, the depot and the plant are only 
considered in the evaluation of the fitness of the 
chromosomes. A Roulette Wheel is used for the selection 
operation. An operator with one crossing point is used to carry 
out the crossing of the chromosomes. The      is applied 
when |    

   / {0, n+1} | > 2. And the total cost of transportation 
is equal to the sum of the transportation costs of each vehicle k 
for each period t. The cost of a direct collection to the plant or 
a trip for which 1≤ |    

   /{0, n+1}| ≤ 2 (one or two customers 
visited) remains  unchanged and therefore does not need an 
improvement by      . However, when |   

  /{0, n+1}| > 2, 
the transportation cost for the vehicle k in the period t is equal 
to the fitness of the best chromosome of the last generation of 
the population of the Procedure of     . 

Number_of_generation ← 0 

Max_generation: initialise Max_generation  

Termination criteria ← false  

Generate initial random population   

Repeat 

 Evaluate fitness of each chromosome  

 If Number_of_generation ≠Max_generation then  

  Selection of parents for next generation 

  Crossover of parents’ chromosome  

  Reparation of child’s chromosome 

  Mutation of chromosome  

  Number_of_generation ← 

                          Number_of_generation +1 

 Else 

  Termination criteria ← true  

 End if 

Until termination criteria = true  

Choose the best chromosome  

End  

Fig. 5. The Procedure of of Genetic Algorithm on the Route of Vehicle k at 

Period t (     ). 

VI. EXPERIMENTATIONS AND RESULTS 

A. Experiments 

The B&C algorithm described in Section 4 and the 
decomposition heuristic in Section 5 have been implemented 
in C++ with CPLEX 12.6 on a 64-bit Intel Pentium Dual Core 
1.60 GHz, 1.60 GHz PC with 4 GB RAM. Only one thread 
was used in the experiments and the duration of each test is 
limited to 7200 seconds for the B&C and 3600 seconds for the 
decomposition heuristic. The purpose of these experiments is 
to evaluate the effectiveness of the model. The instances used 
in this work are derived from an adaptation of the instances 
used for the Multivehicle Production and Inventory Routing 
Problems (MVPRP). For more details on the instances used in 
Table II, see [34] .Since all deliveries to customers are made 
basing on the quantities in stock at the previous period in 
depot, an initial stock at the depot greater than zero is defined, 
unlike the basic instances. Moreover, the depot does not have 
the same geographical location as the plant. Thus, the initial 
stock levels at the depot for all instances are set to         

 
∑ ∑     ∈   ∈ 

 
  and the plant's position is set to  (0.0 ). 

A total of 32 instances are applied to 4 classes of 
situations, i.e. a total of 32 x 4 = 128 instances. However, only 
the first 12 x 4=48 instances are used for the tests relating to 
the B&C algorithm. The first class consists of standard 
instances. The second and third class have the same 
characteristics as the first class. However, the second class has 
a high unit cost of production and the third class has a high 
transport cost. the fourth class is like the first and second class 
except for the unit inventory cost which is zero. The 
characteristics of the classes are summarized in Table III. 
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TABLE. II. CHARACTERISTICS OF THE INSTANCS FOR THE EPRP 

n l m C     Q 

10 3/6 2 304 152 198 

10 3/6 3 304 152 132 

15 3/6 2 470 235 198 

15 3/6 3 470 235 132 

20 3/6 2 540 270 283 

20 3/6 3 540 270 189 

25 3/6 2 700 350 283 

25 3/6 3 700 350 189 

30 3/6 3 768 384 228 

30 3/6 4 768 384 171 

35 3/6 3 948 474 276 

35 3/6 4 948 474 207 

40 3/6 3 1256 628 360 

40 3/6 4 1256 628 216 

45 3 3 1438 719 360 

45 3 4 1438 719 207 

50 3 3 1348 674 360 

50 3 4 1348 674 270 

TABLE. III. INSTANCE CLASS CHARACTERISTICS 

Classes UPC UIC  UTC 

Class 1 Standard Standard Standard 

Class 2 High Standard Standard 

Class 3 Standard Standard High 

Class 4 Standard Null Standard 

B. Results 

Let %diff represents the percentage difference between the 
cost determined by the heuristic method and the B&C method. 
diff is equal to the difference between the sums of the average 
costs obtained by the heuristic method and the B&C method 
divided by the sum of the average costs of the B&C method. 
In Table IV, each line corresponds to an average of 4 instance 
classes results for each number of customers n over l periods 
with m vehicles. the TOTAL Cost column represents the sum 
of the costs of the production cost (fixed and variable), the 
cost of inventories and the total cost of transport over l periods 
with m vehicles. The TOTAL Cost column represents the sum 
of the costs of the production cost (fixed and variable), the 
cost of inventories and the total cost of transport. the gap only 
available for the B&C refers to the percentage difference 
between the upper bound and the lower bound. the CPU 
defines the time taken to resolve the instances. 9 out of 48 
instances have not been resolved and 19 out of 48 instances 
have not been resolved to the optimum. In the % Diff column, 
7 out of 12 average results from the results of the B&C are 
better than those of the TPDH. 

TABLE. IV. AVERAGE RESULTS OF B AND C VS TPDH 

 
B&C TPDH 

%diff 
n l m TOTAL Cost GAP CPU TOTAL Cost CPU MIP CPU AG T.CPU 

10 3 2 33581.75 10.06 4.19 34221.25 0.99 0.54 1.53 1.90 

15 3 2              13.57 18.27 20028 2.03 1.89 3.92 -13.53 

20 3 2              14.15 55.85 33463 1.15 2.18 3.32 -0.70 

10 6 2 83259.5 0.34          84116.5 9.97 0.91 10.88 1.03 

15 6 2 112744.5 1.36          111004.25 9.93 1.29 11.22 -1.54 

20 6 2           5.09            151044 20.8 1.89 22.69 0.20 

10 3 3 35600 3.18 12.9 35826.5 1.71 0.71 2.41 0.64 

15 3 3          0.59 126.18 47681 2.13 1.01 3.14 -1.15 

20 3 3            0.9 174.75 70477 1.51 1.52 3.03 -17.86 

10 6 3 81877.5 2.56          87065.25 13.03 0.76 13.79 6.34 

15 6 3 112395.75 8.9          115560.5 16.04 1.41 17.44 2.82 

20 6 3 128464 15.36          131567.5 2185.17 1.63 2186.8 2.42 

Total 929574.5 922054.75 -0.81 

a number of instances not resolved to the optimum 

{-} unresolved instance class 
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However, the negative differences in instances 15_3_2 and 
instances 20_3_3 give an overall advantage to the results of 
the TPDH. The total difference between the TPDH result and 
the B&C is calculated as follows: TOTAL %diff = 
100*((922054.75 - 929574. 5) / 929574.5) or TOTAL %diff = 
-0. 81. Based on the results of Table IV and TOTAL %diff it 
can be can said that the results of the resolved instances are 
globally close to 99.19% (100 -| TOTAL %diff |). Although 
the instances resolved with the B&C approach do not contain 
subtour, too many instances remain unresolved or unresolved 
to the optimum and the GAPs obtained are generally poor 
compared to the GAPs of the exact approaches described in 
Table I. However, it allows to make a comparison with the 
equivalent instances resolved by the TPDH. The Tables V, VI 
and VII describe respectively the averages results from the 
128 instances with the TPDH, the percentages of production, 
inventory and transportation cost in the total production cost 
and the percentages of computation times. In these tables, 
Columns n, l and m respectively refer to the number of 

customers, periods and vehicles, the PROD column designates 
the total cost of production. this total production cost consists 
of the fixed production cost and the variable cost of 
production. Then, the INV column refers to the cost of 
inventories, the TRANS column represents the total cost of 
transport. The TOTAL Cost column is the sum of the costs of 
production, inventories and transportation. The MIP CPU, GA 
CPU and TOTAL CPU columns refer respectively to the time 
taken for the resolution of the LSP_DS&DC, the optimization 
of the transport part by the GA, and the sum of these two 
times. An average of 459,51 seconds (7.66 minutes) for 
computation time in the Table V is acceptable because 
EDPRP is a tactic levels problem. however, 99.32% of this 
calculation time is globally dedicated to the MIP and only 
0.68% for the GA (Table VII). Thus, developing an GA or a 
memetic algorithm to solve the problem could considerably 
reduce the computation time of the different instances. The 
Table VI shows that a global percentage of 30.21% (8.59% + 
21.62%) of the total cost is allocated to storage and transport. 

TABLE. V. DETAILS OF AVERAGES TESTS  RESULTS FOR TPDH 

n L m PROD INV TRANS  TOTAL Cost  CPU MIP CPU AG TOTAL CPU 

10 3 2 23107.5 1827.75 9286 34221.25 0.99 0.54 1.53 

10 3 3 23107.5 1827.75 10891.25 35826.5 1.71 0.71 2.41 

15 3 2 30712.5 2693.25 13162 46567.75 2.64 1.73 4.37 

15 3 3 30712.5 2693.25 15608.75 49014.5 2.02 1.03 3.05 

20 3 2 35685 3321.75 13362.75 52369.5 1.24 1.98 3.22 

20 3 3 35685 3321.75 15991.5 54998.25 1.38 1.44 2.82 

25 3 2 39292.5 4389.75 15547.25 59229.5 1.96 2.79 4.75 

25 3 3 39292.5 4389.75 16880.5 60562.75 1.69 2.60 4.28 

30 3 3 45240 4209 19411 68860 5.93 3.71 9.64 

30 3 4 45240 4209 22833 72282 10.85 3.35 14.19 

35 3 3 66592.5 4662.75 21205 92460.25 4.10 3.64 7.74 

35 3 4 66592.5 4604.25 26470.75 97667.5 4.68 3.68 8.35 

40 3 3 69030 7533.5 22267 98830.5 3.66 5.34 9.00 

40 3 4 69030 7533.5 26193.75 102757.25 4.34 4.69 9.02 

45 3 3 91942.5 7550 24608.25 124100.75 5.21 6.36 11.57 

45 3 4 91942.5 7874.75 31284.5 131101.75 7.07 5.05 12.12 

50 3 3 73027.5 7767.75 29310.75 110106 8.56 8.91 17.47 

50 3 4 73027.5 7767.75 33060 113855.25 9.69 5.82 15.52 

10 6 2 63082.5 7430 13604 84116.5 9.97 0.91 10.88 

10 6 3 63082.5 7451 16531.75 87065.25 13.03 0.76 13.79 

15 6 2 82192.5 10974.75 17837 111004.25 9.93 1.29 11.22 

15 6 3 82192.5 11055.75 22312.25 115560.5 16.04 1.41 17.44 

20 6 2 93502.5 12653.25 20722.5 126878.25 18.20 2.01 20.21 

20 6 3 94252.5 12502 24813 131567.5 2185.17 1.63 2186.80 

25 6 2 104422.5 16560.25 21631 142613.75 19.72 3.23 22.94 

25 6 3 104422.5 16281.25 26986.75 147690.5 41.22 3.01 44.23 

30 6 3 118267.5 16857.75 33729.75 168855 140.01 3.03 143.04 

30 6 4 118267.5 16728 40578 175573.5 1327.60 2.52 1330.12 

35 6 3 145567.5 21020.5 36776 203364 2835.51 4.30 2839.81 

35 6 4 145567.5 20479.5 45154.75 211201.75 3606.21 3.74 3609.94 

40 6 3 177937.5 29374.25 39935 247246.75 1556.74 4.89 1561.64 

40 6 4 177937.5 28849.25 44744.75 251531.5 2747.24 4.12 2751.36 

Total 78748,5938 9887,33594 24147,82813 112783,7578 456,38 3,13 459,51 
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TABLE. VI. PERCENTAGE OF PRODUCTION, IVENTORY AND TANSPOTATION COST FOR TPDH 

n PROD %PROD INV %INV TRANS %TRANS 

10 689520 71.46% 74146 7.68% 201252 20.86% 

15 903240 70.10% 109668 8.51% 275680 21.39% 

20 1036500 70.84% 127195 8.69% 299559 20.47% 

30 1308060 67.35% 168015 8.65% 466207 24.00% 

35 1697280 70.17% 203068 8.40% 518426 21.43% 

40 1975740 70.53% 293162 10.46% 532562 19.01% 

45 735540 72.05% 61699 6.04% 223571 21.90% 

50 584220 65.21% 62142 6.94% 249483 27.85% 

Total 8930100 69.79% 1099095 8.59% 2766740 21.62% 

TABLE. VII. PERCENTAGE OF CPU FOR TPDH 

n CPU MIP %CPU MIP CPU AG %CPU AG 

10 102.78 89.81% 11.661 10.19% 

15 122.497 84.86% 21.852 15.14% 

20 8823.906 99.68% 28.266 0.32% 

25 258.308 84.74% 46.499 15.26% 

30 5937.537 99.16% 50.422 0.84% 

35 25801.949 99.76% 61.458 0.24% 

40 17247.927 99.56% 76.156 0.44% 

45 49.103 51.84% 45.626 48.16% 

50 73.009 55.33% 58.942 44.67% 

Total 58417.016 99.32% 400,882 0.68% 

VII. CONCLUSION 

This work focuses primarily on modeling a production 
routing problem in which the plant's storage capacity (depot) 
is geographically dissociated from the plant's location. The 
results of 48 tests with a B & C approach were compared with 
those of a decomposition heuristic method. The average 
results of all 128 instances are also presented in Table V. In 
this study, a depot-based distribution policy is adopted. 
However, the lack of storage capacity at the plant does not 
exclude the possibility to supply customers from the plant 
during production days. In future work, we will improve the 
B&C algorithm used in this paper by adding an initial solution 
generation heuristic to overcome the infeasibility problem and 
if possible, an improvement phase to reinforce the results. A 
GA or memetic algorithm will also be developed as an overall 
means of solving the problem instead of using a 
decomposition method. 
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