
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

497 | P a g e

www.ijacsa.thesai.org

A Framework for Producing Effective and Efficient

Secure Code through Malware Analysis

Abhishek Kumar Pandey
1
, Ashutosh Tripathi

2

Alka Agrawal
4
, Rajeev Kumar

5*
, Raees Ahmad Khan

6

Department of Information Technology

BBA University, Lucknow-UP, India

Mamdouh Alenezi
3

College of Computer and Information Sciences

Prince Sultan University

KSA

Abstract—Malware attacks are creating huge inconveniences

for organizations and security experts. Due to insecure web

applications, small businesses and personal systems are the most

vulnerable targets of malware attacks. In the wake of this

burgeoning cyber security breach, this article propositions a

framework for a complete malware analysis process including

dynamic analysis, static analysis, and reverse engineering

process. Further, the article provides an approach of malicious

code identification, mitigation, and management through a

hybrid process of malware analysis, priority-based vulnerability

mitigation process and various source code management

approaches. The framework delivers a combined package of

identification, mitigation and management that simplifies the

process of malicious code handling. The proposed framework

also gives a solution for reused codes in software industry.

Successful implementation of the framework will make the code

more robust in the face of unexpected behavior and deliver a

revolutionary stage wise process for malicious code handling in

software industry.

Keywords—Malware analysis; reuse code; framework; static

analysis; dynamic analysis; reverse engineering; manual analysis

I. INTRODUCTION

The present cyberspace is imploding with attacks and
breaches. Easy access to internet and quality less security
mechanism has created much unusual and dangerous
vulnerability in the current digital world. Malware is the
biggest threat to the cyber world in a current situation [1].
Malware is the software that has some malicious or harmful
set of operation or instructions in their source code for
performing a malicious activity in a system or network [2].
Malicious software‟s have hidden malicious features. With
name or structure, they are like normal useful software but
after execution they perform harmful activities on the system.
Millions of computer users are targeted by more than
thousands of different malware daily. According to a study
[3], in every 39 seconds, a malware attack is executed in the
world.

The personal and professional tasks of today‟s digital
generation are now software based and any software is made
with source codes. Instructions and operations written by a
coder into a particular language for execution on the computer
are called source code [4]. Enormously growing speed of
software industry is daily producing more than a hundred of
new software for the users. Unfortunately, the malware
creators take advantage of this huge population of software.

Malware creators facilitate their malicious software with
genuine software for more user accessibility. Every malicious
code has some harmful features but they also have some good
codes and the purpose of this framework is to provide good
codes from malicious code for reuse in the industry with
malware analysis. The growing and expansive rate of software
industry creates the need to reuse codes for coders with some
improvements instead of writing a new one.

The culture of reuse code is growing very fast in the
software industry because reusing the codes reduces the
efforts and, more essentially, saves on the time invested in the
project. The time that a coder spends on a project is very
valuable and if reusing of code reduces that valuable time, it is
a great option for programmers. While working on malicious
codes, it is very important to understand the harmful malicious
activity of code for effective mitigation and that is the reason
behind using malware analysis in the identification process.

The first segment of this article discusses the significance
of reuse code in the business; the second segment
characterizes the need of malware investigation. In third
segment, the authors characterize the system for extricating
secure great codes with malware examination and besides this
portray the need and criticalness of the structure. After this
clarification, in the last segment, the authors posit the
conclusion and enunciate efforts directed towards future work.

II. PREVIOUS RESEARCH INITIATIVES

Authors of the proposed study find that many researchers
provides the research article on malware analysis and portray
various different type of frameworks for enhancing the
malware analysis approach. In order to deliver the proposed
framework authors find the following previous research
initiatives.

Belal Amro provides a malware analysis technique for
mobile devices that gives an analysis study of various
malware analysis approaches on operating systems like
android and IoS [13]. The paper focuses on frequently used
phone set vulnerabilities and tries to assess their possible
solution through malware analysis.

S. Chuprat et al. provides a framework and its
implementation in big data environment. The proposed
framework in this paper delivers an approach that analyzes
and predicts the future threat of malware attack in big data

*Corresponding Author.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

498 | P a g e

www.ijacsa.thesai.org

platform [14]. Authors of this study also provide some data in
order to validate their results and framework workflow.

G. Hamsa et al. provides an analysis of various malware
identification techniques and assess their pros and cons on
different standards [15]. The exhausting review of paper on
malware techniques provides a path for future researchers of
malware and malware analysis.

The authors of this proposed study finds that there is lack
of literature which is discussing the whole malicious handling
approach under one roof. Many researchers provide various
effective and novel approaches in order to enhance the
identification and detection of malwares through malware
analysis. But it is also evident that there is very less amount of
literature is available that is discussing about the malicious
code vulnerability identification, mitigation and management.
Proposed framework will help the industry and future
researchers in order to produce some useful codes through a
hybrid approach associating malware analysis.

III. IMPORTANCE OF REUSED CODES

Software industry is growing voluminously. Coders code
new logics and functions every day but a new code takes too
much time and efforts to be coded. Every coder faces some
challenges like understanding user requirements, time of
completing a project and so on [5]. Reuse of existing code
eases the coders‟ tasks in multiple ways. Reuse of code gives a
key to the coder for easily understanding the needs of client.
Thus, the time of completing the project is much less when
compared to the time invested in writing new codes.
Embedded system development has secured an important
place in the software industry in the last decades and average
time duration of completing an embedded system project is a
minimum of 12-14 months [6]. The phrase „time is money‟, is
indeed most apt for the software industry. Any product line is
worthwhile only if satiates the end user‟s needs in a given
timeframe. The immensely competitive pace at which the
companies churn out products in the software arena must meet
the time targets. This necessitates the reuse of code in
software development. Automated Program Repair (APR)
approaches also open a door and create the demand of
reusable codes for creating patches and findings bugs. The
basic work process of APR‟s are totally depends on reusable
codes [16]. This type of scenario also refers to the need of
effective framework that produces some useful codes from
malicious vulnerable codes.

IV. WHY MALWARE ANALYSIS?

Malware are increasing at an alarming rate for several
reasons. These reasons create many challenges and issues for
the cyber expert. According to the study of Forbs Magazine,
25% of Malware target the financial information of users [9].
The study also shows that the number of hacked account a
hacker has, this makes it easy for hackers to exploit. Malware
analysis helps in objective identification of malware or
malicious code. There are three main techniques of malware
analysis (i) Static Analysis (ii) Dynamic Analysis (iii) Reverse
Engineering.

Many researchers have proposed their ideas on malware
analysis methodologies. Yuhei Kawakoya et al. shows the
methodology of malware analysis with the help of sandboxing
and API calls analysis. The paper tells the process of taint
assisted malware analysis and enhances the malware
identification steps [7]. Kamla Kant Sethi et al. gives a
framework of malware analysis for classifying the malware
with identification of the malware by using Sandboxing Tools
and Machine level learning tools for extracting exact
information about malicious software [8]. Li Li et al. portray a
systematic review on the need for static analysis in malware
detection but the methodology that is described in the paper
uses the automated tools for static code analysis of malware.
The methodology uses the call graph analysis technique to
examine the calls, variables, and classes of code and other
significant attributes of a source code [11]. Christian Camilo
et al. shows the significance of machine level approach in
their paper and focuses the whole analysis process of malware
on machine learning for better results [12].

These research studies are based on enhancing the
malware analysis process for better results. However, there is
a need for mitigation of malicious codes also and further
research initiatives must pivot on this. Every researcher needs
to focus on the useful codes written with malicious codes for
helping the software industry by providing codes for reuse as
well as identifying malware and mitigating them.

V. FRAMEWORK

Malware analysis deals with the study of how malware
functions and about the possible outcomes of infection given
by a specific malware. When an attacker writes a malicious
application code, he also uses or writes some good code for
hiding the malicious activity of that application and also for
increasing the user acceptability of application. This is akin to
steganography. The objective of this framework is to extract
or retrieve the good code from malicious code for reuse. The
Framework is a full package of identification, mitigation and
managing the code by combining malware analysis for
extracting useful codes. The authors have classified this
framework into three phases (1) Monitoring (2) Mitigating and
(3) Managing. A brief explanation of these three phases is
enumerated below:

A. Phase 1: Monitoring Phase

Objective of this phase is to understand the purpose,
functionality and structure as well as the vulnerabilities of the
malware for extracting good codes and easy mitigation and
management. Monitoring phase is a combination of all three
methodologies of malware analysis (static analysis, dynamic
analysis and reverse engineering). The developer uses
automated analyzers in the monitoring phase for detecting and
examining the malware easily and this is done in considerably
less time. The authors categorize the monitoring phase into
three sub-phases that are shown in Fig. 1 and described as
follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

499 | P a g e

www.ijacsa.thesai.org

Fig. 1. Monitoring Phase.

1) Environment setup: First sub-phase of the monitoring

phase is environment setup. In this sub- phase, the authors set

up an environment for executing the analysis process. Dynamic

analysis of malware is always done under some restricted

environment for a better and secure outcome. The dynamic

analysis deals with malware at motion. The following are the

processes that an examiner takes while setting the analysis

environment.

 Find Malware Dependencies: It is very important in
dynamic analysis to run all features and services of
malware for understanding the objective and finding the
vulnerabilities clearly. So it is important to find

malware dependencies and install them in the lab to
perform dynamic analysis process.

 Setup Hybrid Lab (Static + Dynamic): After finding
dependencies, set up a hybrid lab which is a mixture of
the static and dynamic lab for further analysis. The
static analysis deals with malware at rest, it means in
this process malware is not executed on the system.
Static analysis is fully secure and harmless examination
process of malware, but dynamic analysis deals with
malware at motion. In dynamic analysis, malware is
executed on the system under a controlled environment.
Reverse engineering is complementary for dynamic
analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

500 | P a g e

www.ijacsa.thesai.org

2) First node identification: Second sub-phase of the

monitoring phase is first node identification. This phase deals

with some common methods to find out malware

vulnerabilities. This phase uses signature-based identification

methods for recognizing old malware classes. Steps that are

taken in this sub-phase are enlisted below:

 Scan the Code through Tools (Vulnerability Databases):
In this step we scan the code through various old
vulnerability database (by tools) for finding the match.
If the vulnerability is found then we verify the warning
manually and if manual verification is also found to be
yes, then we save that vulnerability into Data
Repository (DR1) and, if not, then we go for the next
step which is scanning the portable executable file
extension.

 Scan Portable Executable File Extension: In this step,
we scan portable executable file extension by various
tools for finding the infected extension and if the
infected extension is found by a tool, we verify the
warning manually. If a warning is yes, then we save the
vulnerability into DR1 otherwise we go to the next sub-
phase which is Deep Identification.

3) Deep identification: Third sub-phase of monitoring

phase is deep identification. In this phase, the examiner

analyzes the malware by various industry level professional

methods and finds the vulnerabilities. Steps that are taken in

this sub-phase are:

 Analyze Memory/Operating System Artifacts: In this
step, experts analyze memory/operating system artifacts
both manually and by the tools. If something is
detected, the examiner verifies the warning first. If the
warning is yes, he saves that vulnerability into DR1 and
if it is no, then the expert proceeds to the next step
which is API Calls Analysis with Sandboxing.

 API Calls Analysis with Sandboxing: In this step, the
expert uses sandboxing tools and with the help of that
tool the examiner analyzes API calls for malicious
API‟s. If the tool finds any malicious API then it blinks
the warning and after that the expert verifies the
warning. If the warning is true then the expert saves it
to DR1. If false, then the next step begins which is
Machine Level/Binary Analysis.

 Machine Level/Binary Analysis: After using all static
and dynamic method in the last automated analysis,
examiner uses reverse engineering method for finding
vulnerabilities in the code. In this step, the expert uses
reverse engineering malware analysis tools for finding
the malicious binary calls. If the tool shows the
warning, the developer verifies that warning with an
expert. If a warning is yes then the expert saves that
vulnerability into DR1 repository. If not, then he goes
for next step which is the Manual Code analysis.

 Manual Code Analysis: In this step, the examiner
analyzes the malware code and finds vulnerabilities and
malicious piece of code manually. If the analyst finds
malicious code or vulnerability, he calls for superior
checking (verify warning) and if the senior coding
expert will verify the warning to be true, then the
analyst saves that vulnerability in DR1. Should it be
false, then he saves this code into a new repository
called the Data Repository DR2 as a vulnerability-free
code.

B. Phase 2: Mitigation Phase

This phase is to mitigate the detected/identified
vulnerabilities in the codes. The step-by-step process of
mitigation of vulnerabilities is depicted and elucidated in
Fig. 2:

1) Vulnerability classification: In this step, the analyst

classifies the vulnerabilities that are discovered in previous

phase. Afterwards, the analyzer goes for the next step which is

measuring the Priority of vulnerabilities (Quantitatively).

2) Measuring the priority of vulnerabilities: In this step,

the examiner evaluates the priority of vulnerability,

quantitatively and mitigates these vulnerabilities according to

their severity level. If severity level of the vulnerability is high

then the analyst removes it. If the severity level of the

vulnerability is medium, then the analyst repairs the codes. If

the severity level of the vulnerability is low, then the analyst

tries to fix the issue. After mitigating the vulnerability issues in

the codes, the examiner saves the code in Data Repository

(DR3) and calls for the managing phase.

C. Phase 3: Managing Phase

Objective of this phase is to manage mitigated code (DR3)
and vulnerability-free code (DR2) for future reuse.
Management of extracted code is very necessary because
while a coder uses an old code in reuse, it is always a
challenge for the programmer to manage that code5. This
phase will help the coders in the industry by reducing their
work (Managing Code) slightly. The authors categorize the
monitoring phase into three sub-phases that are shown in
Fig. 3 and are described as follows:

1) Maintaining the codes (As per requirement

specification): In this step, examiner follows recent trending

process of software development industry which is also called

managing code. With the help of a good coder, an examiner

manages the codes from (DR2) & (DR3) and after successful

management of code, the expert saves the managed code into

Data Repository (DR4).

2) Verification of the functionality: After successful

management of code, the expert verifies the functionality of the

code. If the analyst finds any functionality issue, then the

analyst directly calls for maintenance of the coding process,

and if no issue is found then the examiner goes for next step

which is Measuring the Complexity of Design.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

501 | P a g e

www.ijacsa.thesai.org

Fig. 2. Mitigating Phase.

Fig. 3. Managing Phase.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

502 | P a g e

www.ijacsa.thesai.org

3) Measuring the complexity of design: In this step, the

analyst assesses the complexity of the design of code and if the

examiner finds any issue in the complexity of design, then the

examiner directly calls for maintaining the coding process.

Otherwise the next phase is followed which is measuring the

Line of Codes (LOC).

4) Measuring the size of Line of Codes (LOC): In this step,

the analyst measures the line of codes for assessing the size of

code. If the examiner finds any size issue in the code, the

expert directly calls for maintaining the coding process and if

no issue is found then the expert goes for next step.

5) Rule violation: In this step, the expert checks the rule

violation of code, if the result is yes, and rules are violated

more than acceptance, the expert reduces rule violation by

enforcing the Secure Coding Rules in interactive environment.

After this process, the examiner goes for Finalization &

Packaging step and if minimum rules are violated, they are

acceptable. So, the examiner goes for the next step called-

Finalization & Packaging.

6) Finalization and packaging: In this step, the expert

finalizes the code and prepares it for use by facilitating it with

software development life cycle. This process helps the

industry developers in their projects by providing ready to use

managed codes.

7) Refine coding guidelines: This step is for coders who

are interested in writing secure codes. In this step, the examiner

provides the guidelines for a coder for writing secure code after

analyzing the full malicious code.

8) Prioritize the guidelines: This step will help the coders

to understand the provided guidelines easily by arranging the

guidelines according to their priority or need in programming.

VI. SIGNIFICANCE OF THE FRAMEWORK

Signature-based identification of malware was very useful
and effective for last 10 years but in the current scenario,
Corrado Aaron Visaggio and his team from Italy developed an
engine that alters and modifies the malware code
automatically and misinforms the signature-based analyzers
[10]. The engine works on the shape of the malicious code,
not on the behavior of the code. This sort of improvement
creates the need for a full bundle with the blend of each of the
three investigation forms and furthermore needs to take a shot
at the code for malware analysis. The framework is providing
all the necessary requirements that are needed in the current
situation of malware analysis and software industries.

The framework is focusing on the clear and perfect
vulnerability identification mechanism with the help of
malware analysis techniques. For mitigating these
vulnerabilities, the framework uses prioritization and severity

assessment methods. After mitigation comes managing and for
this the secure code framework is produced which manages
the code. Thereafter, an expert programmer then assesses the
complexity, reliability and size of code for easy reusability.
After all these steps, the framework provides the guidelines
for future developers and facilitates the produced code into the
software development life cycle for further uses. If we look at
this framework deeply, it is a full bundle supply of ready to
use codes. The framework provides the following features for
developers and researchers.

 The framework provides ready to use, a maintained
code for developers for their existing projects, if the
code is compatible with their project.

 The framework gives well-structured and accurate
malware analysis procedure for finding code
vulnerabilities.

 The framework is able to identify the malicious codes
and mitigate these vulnerabilities. Furthermore, it
produces secure code for industry reuse.

 The framework provides the procedure for providing
secure reused codes with the help of three-phase
framework and creates an easy approach for the coder
to reuse code.

 The framework also provides the time feasible method
for identification, mitigation and managing the
malicious code.

VII. CONCLUSION AND FUTURE WORK

Malware coders are attempting to increase their area of
infection and impact of harm very massively. Evidently,
security mechanism of web is penetrated on a daily basis with
huge number of malware attacks occurring every day.
Advancement of malicious codes on a daily basis is creating
big gap in old identification and examination methodologies
for malware. Besides this, a large number of software is also
creating the challenge for coder in development of new logics
and functions every day. This kind of challenge has increased
the significance of reuse codes in the industry. The framework
is shown in Fig. 4. It maps the phase-wise steps to produce
secure codes from malicious code with the help of malware
analysis. The framework will help in identification of malware
and then mitigating the malicious vulnerabilities, moreover
managing, mitigating, securing, and producing no vulnerable
code for industry reuse. Successful implementation gives the
direction for future analysis and suggests the guidelines for
coders. The implementation of the intended framework will
help the researchers to develop a useful and reliable strategy
for producing or writing secure codes for future work on this
proposition.

https://it.linkedin.com/in/corrado-aaron-visaggio-629839/it

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 2, 2020

503 | P a g e

www.ijacsa.thesai.org

Fig. 4. Framework for Producing Secure Code through Malware Analysis.

ACKNOWLEDGMENT

Authors are thankful to the College of Computer and
Information Sciences, Prince Sultan University for funding
this research study.

REFERENCES

[1] Pandey, A. K., Tripathi, A. K., Kapil, G., Singh, V., Khan, M. W.,
Agrawal, A., Kumar, R., & Khan, R. A. Trends in Malware Attacks:
Identification and Mitigation Strategies. In M. Husain, & M. Khan
(Eds.), Critical Concepts, Standards, and Techniques in Cyber
Forensics (pp. 47-60). Hershey, PA: IGI Global, 2020.

[2] All about malware, Available at: https://www.malwarebytes.com/
malware/.

[3] CyberSecurity Statics and Facts For 2017- 2018, Available at:
https://privacy.net/cybersecurity-statistics/.

[4] Source Code, Available at: https://www.techopedia.com/definition/547
/source-code.

[5] The Challenges of Code Reuse (How to Reuse Code Effectively),
Available at: https://www.perforce.com/blog/qac/challenge-code-reuse-
and-how-reuse-code-effectively.

[6] Why Code Reuse Matters, Available at: https://www.apress.com/de/
blog/all-blog-posts/why-code-reuse-matters/15477476.

[7] YuheiKawakoya, EitaroShioji, Makoto Iwamura, Jun Miyoshi. Taint-
Assisted Sandboxing for Evasive Malware Analysis. Journal of
Information Processing; Vol.27 297-314, 2019

[8] Kamlakant Sethi, Shankar Kumar Chaudhary, Bata Krishna Tripathy,
Padmalochan Bera. A Novel Malware Analysis Framework for Malware
Detection and Classification using Machine Learning Approach. 19th

International Conference on Distributed Computing and Networking,
Varanasi. 2018.

[9] Cybercrime: 25% Of All Malware Targets Financial Services, Credit
Card Fraud Up 200%, Available at: https://www.forbes.com/sites/
zakdoffman/2019/04/29/new-cyber-report-25-of-all-malware-hits-
financial-services-card-fraud-up-200/#7f4932eb7a47.

[10] A Group of the researchers from the Iswatlab team at the University of
Sannio demonstrated how is easy to create new malware that eludes
antimalware, Available at: https://securityaffairs.co/wordpress/51714
/malware/evading-antimalware.html

[11] Li Li, Tegawende F. Bissyande, Mike Papadakis, Siegfried Rasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, Yves Le Traon. Static
Analysis of Android Apps: A Systematic Literature Review. Journal of
Information and Software Technology Elsevier; Vol. 88 pp 67-95, 2017.

[12] Christian CamiloUrcuqui Lopez, Andres Navarro. Framework for
Malware Analysis in Android, Sistemas&Telemática, 14(37), 45-56,
2016.

[13] Belal Amro. Malware Detection Techniques For Mobile Devices,
International Journal of Mobile Network Communications &
Telematics, Vol.7, No.4/5/6, 2017.

[14] Suriayati Chuprat, Aswami Ariffin, Shamsul Sahibuddin, Mohd Naz‟ri
Mahrin, Firham M. Senan, Noor Azurati Ahmad, Ganthan Narayana,
Pritheega Magalingam, Syahid Anuar, Mohd Zabri Talib. Malware
Forensic Analytics Framework Using Big Data Platform, Springer
Nature Switzerland, 881, pp. 261–274, 2019.

[15] G. Hamsa, Deepti Vidyarthi. Study And Analysis Of Various
Approaches For Malware Detection And Identification, Vol 1, Issue-10,
2013

[16] Qi Xin and Steven P Reiss. “Better Code Search and Reuse for Better
Program Repair”. In: Proceedings of the 6th IEEE/ACM International
Conference on Genetic Improvement. 2019.

https://www.perforce.com/blog/qac/challenge-code-reuse-and-how-reuse-code-effectively
https://www.perforce.com/blog/qac/challenge-code-reuse-and-how-reuse-code-effectively

