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Abstract—Genetic algorithms are widely used metaheuristic 

algorithms to solve combinatorial optimization problems that are 

constructed on the survival of the fittest theory. They obtain near 

optimal solution in a reasonable computational time, but do not 

guarantee the optimality of the solution. They start with random 

initial population of chromosomes, and operate three different 

operators, namely, selection, crossover and mutation, to produce 

new and hopefully better populations in consecutive generations. 

Out of the three operators, crossover operator is the most 

important operator. There are many existing crossover operators 

in the literature. In this paper, we propose a new crossover 

operator, named adaptive sequential constructive crossover, to 

solve the benchmark travelling salesman problem. We then 

compare the efficiency of the proposed crossover operator with 

some existing crossover operators like greedy crossover, 

sequential constructive crossover, partially mapped crossover 

operators, etc., under same genetic settings, for solving the 

problem on some benchmark TSPLIB instances. The 

experimental study shows the effectiveness of our proposed 

crossover operator for the problem and it is found to be the best 
crossover operator. 
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I. INTRODUCTION 

The usual travelling salesman problem (TSP) is very 
famous combinatorial optimization problem that finds a least 
cost Hamiltonian cycle in a network. The RAND Corporation 
introduced the TSP in 1948. The Corporation‘s reputation 
helped to make the TSP well-known and popular problem. 
The TSP also became popular at that time due to the new 
subject of linear programming and attempts to solve 
combinatorial optimization problems. It can be stated as. 

A network with ‗n‘ nodes, with 'node 1' as ‗depot‘ and a 
travel cost (or distance, or travel time etc.,) matrix C= [cij] of 
order n associated with ordered pairs (i, j) of nodes is given. 
The problem is to find a least cost Hamiltonian cycle. Based 
on the structure of the cost matrix, the TSPs are classified into 

two types as symmetric and asymmetric. If cij = cji,  i, j, the 
TSP is symmetric, otherwise, it is asymmetric. For 

asymmetric TSP with n nodes, there are )!1( n  possible 

solutions with at least one of them provide the minimum cost. 

For symmetric TSP, there are 
2

)!1( n possible solutions along 

with same valued reverse cyclic permutations. If there are only 
10 nodes, then there are 362,880 and 181,440 tours for 
asymmetric TSP and symmetric TSP, respectively. The 
number of possible solutions in both types is very large for 
any size, n; so, a complete search is very difficult, if it is not 
impossible. That means, the problem is very difficult to solve. 
The TSP has been researched by several researchers for 
mainly three reasons. First, it can model many real-life 
problems. Second, it is NP-Hard [1]. Third, NP-Hard 
problems are so difficult that no one has found any efficient 
algorithm to solve them for large sized problem instances. 
Also, NP-hard problems are equivalent to each other; so, if 
one can develop efficient algorithm for solving one of them, 
then one could develop efficient algorithm for others. 

The TSP has application in several situations such as 
automatic drilling of printed circuit boards and threading of 
scan cells in a testable very-large-scale-integrated (VLSI) 
circuit, automatic drilling of printed circuit boards and 
circuits, computer wiring, X-ray crystallography, movement 
of people [2]. 

Several exact and heuristic/metaheuristic algorithms have 
been reported for solving the TSP. Branch and bound [3], 
branch and cut [4], and lexisearch algorithm [5] are some 
exact algorithms. These algorithms provide the exact optimal 
solution to the problem, but as the problem size increases 
computational time increases exponentially. As reported by 
Deng et al. [6] only small sized TSP instances can be solved to 
exact optimality. Since some practically large problem 
instances must be solved, hence it is important to obtain 
heuristically optimal solution by ensuring the quality of the 
solution in reasonable time, rather to obtain exact optimal 
solution in hell of time. Heuristic/metaheuristics algorithms 
give near optimal solution in a reasonable computational time, 
but do not guarantee the optimality of the solution. Example 
of metaheuristic algorithms are ant colony optimization [7], 
genetic algorithm [8], simulated annealing [9], state transition 
algorithm [10], tabu search [11], artificial neural network [12], 
artificial bee colony [13], black hole [14], and particle swarm 
optimization [7]. Out of these metaheuristic algorithms, 
genetic algorithm (GA) is one of the best and widely used 
algorithm to solve the TSP as well as other combinatorial 
optimization problems in computer science and operations 
research. 
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GAs are proposed by John Holland in 1970s which are 
based on imitating Darwin‘s theory of ‗the survival of the 
fittest‘ in natural biology [8]. To solve a real-world problem 
using GAs, two most important conditions are to be fulfilled: 
(i) a chromosome representing a solution, and (ii) an 
objective/fitness function can be defined. Any simple GA 
begins with random initial population, called gene pool of 
chromosomes, and operates three different operators to 
produce new, usually better, populations in consecutive 
iterations/generations. Selection is the 1st operator in which 
chromosomes are duplicated to next generation 
probabilistically. Crossover is the 2nd operator in which 
couples of chromosomes are selected randomly and mated to 
produce new and better chromosomes. Mutation is the 3rd 
operator which alters occasionally a chromosome position 
value. Crossover along with selection operator is the main 
leading procedure in GAs. Mutation expands search space and 
defends from loss of any genetic substance due to selection 
and crossover operators. 

Though GA is one of the best algorithms, however, its 
performance depends on initial population, selection, 
crossover and mutation operators, and some parameters such 
as population size, crossover probability, mutation probability 
and stopping condition (Goldberg, 1989). Among different 
operators, crossover plays very important role in GAs, and 
accordingly many crossover operators have been developed 
and reported in the literature for solving the TSP [15]. This 
paper aims to propose a modified version of sequential 
constructive crossover (SCX) [16] named adaptive sequential 
constructive crossover (ASCX) and then compare with eight 
crossover operators including SCX to assess suitability for the 
TSP. 

This paper is organized as follows: Section II discusses 
GAs using some existing crossover operators and our 
proposed crossover operator, named adaptive crossover 
sequential constructive crossover operator, for the TSP, while 
design of variant GAs is discussed in Section III. Section IV 
describes computational experiences for sixteen variant GAs 
using eight crossover operators with two possibilities of 
mutation operator and discussions. Finally, Section V presents 
concluding remarks and future works. 

II. GENETIC ALGORITHMS FOR THE TSP 

For applying GA to any optimization problem, one must 
find a way for representing solutions as legal chromosomes 
such that crossovers of legal chromosomes result in legal 
chromosomes. The methods for representing solutions differ 
by problem and, contain a certain art. There are many 
representation methods for solving the TSP using GAs. Some 
of them are binary, adjacency, ordinal, matrix and path 
representations. We consider only the path representation that 
simply lists the node labels such that no node can appear twice 
in the same chromosome. For example, let {1, 2, 3, 4, 5, 6, 7, 

8, 9} be the node labels in a 9-node instance, then a tour {1→ 

9→6→ 2→7 → 4→3→8→ 5 →1} may be represented as (1, 
9, 6, 2, 7, 4, 3, 8, 5). The objective function is the sum of the 
costs of all edges in the tour. 

A. Initial Population and Selection Operator 

In GAs, after generating the random population of 
chromosomes, selection operator is applied. In selection 
operator, chromosomes are copied into mating pool with a 
probability related to their fitness value. By transferring highly 
fit chromosomes to next generation mating pool, selection 
mimics the Darwinian theory of survival-of-the-fittest in the 
natural biology. In natural biology, fitness is determined by an 
individual‘s capability to survive predators, epidemic, and 
other difficulties to maturity and following selection. In this 
stage no new chromosome is created. The commonly used 
selection operator is the proportionate selection operator, 
where an individual is selected for the mating pool according 
to a probability related to its fitness value. We have 
considered the stochastic remainder selection process [17] for 
our GAs. 

B. Existing Crossover Operators 

Since the crossover operator plays a vital role in GA, so 
many crossover operators have been proposed for the TSP. 
However, the traditional crossover operators such as one-point, 
two-point, and uniform crossover operators are not suitable for 
the TSP. Two kinds of crossover operators have been 
developed for the TSP – distance-based and blind crossover 
operators [18]. We consider some of them from both kinds and 
compare our proposed crossover operator with them. 

1). Partially mapped crossover operator: Goldberg and 

Lingle [19] developed the partially mapped crossover (PMX) 

that used two crossover points. It defines an interchange 

mapping in the section between these points. PMX was the 

first crossover for the GA to solve the TSP. Consider, for 

example, the two parent chromosomes P1: (1, 2, 3, 4, 6, 9, 5, 7, 

8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6). We shall consider same pair 

of chromosomes for illustrating all the crossover operators 

considered here. Also, we fix headquarters (first gene) as 

‗node 1‘. Suppose the randomly selected cut points are 

between 3rd and 4th genes and between 7th and 8th genes as 

follows (these cut points are marked with ―|‖): 

P1: (1, 2, 3 | 4, 6, 9, 5 | 7, 8) and 

P2: (1, 3, 5 | 7, 8, 9, 4 | 2, 6) 

We always fix first gene as ‗node 1‘. The mapping 
sections are between the cut points. In this example, the 
mapping systems are 4↔7, 6↔8, 9↔9, and 5↔4. Now these 
mapping sections are copied with each other to build 
offsprings as follows: 

O1: (1, *, * | 7, 8, 9, 4 | *, *),  

O2: (1, *, * | 4, 6, 9, 5 | *, *) 

Then we can add more genes from the original parents 
which do not result any conflict as follows: 

O1: (1, 2, 3 | 7, 8, 9, 4 | *, *),  

O2: (1, 3, * | 4, 6, 9, 5 | 2, *) 

The first * in the first offspring should be 7 that comes 
from first parent, but it is already present in this offspring, so 
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we check mapping 4↔ 7, but 4 is also present in this 
offspring, again check mapping 5↔4, so 5 is added. Similarly, 
the second * in first offspring should be 8 that comes from 
first parent, but it is present in this offspring, so we check 
mapping 6↔8 and hence, we add 6 at second *. Thus, the first 
offspring becomes 

O1: (1, 2, 3 | 7, 8, 9, 4 | 5, 6), 

Similarly, we build the second offspring as: 

O2: (1, 3, 7 | 4, 6, 9, 5 | 2, 8) 

2). Ordered crossover operator: Davis [20] developed the 

ordered crossover (OX) that builds offspring by choosing a 

subsequence of a tour from one parent and preserving the 

relative order of nodes from the other parent. Consider the 

same example parent chromosomes with randomly chosen two 

cut points marked by ―|‖: 

P1: (1, 2, 3 | 4, 6, 9, 5 | 7, 8) and 

P2: (1, 3, 5 | 7, 8, 9, 4 | 2, 6) 

We always fix first gene as ‗node 1‘. At first, the 
offsprings are built by copying the genes between the cuts 
with similar way into the offsprings that lead the offsprings as: 

O1: (1, *, * | 4, 6, 9, 5 | *, *), 

O2: (1, *, * | 7, 8, 9, 4 | *, *) 

Then beginning from the second cut point of one parent, 
the genes from the other parent are copied in the same order 
except the existing genes. The sequence of the genes in the 
second parent from the second cut point is ―2 
→6→3→5→7→8 →9 →4.‖ After omitting the genes 4, 6, 9 
and 5 that are already present in the first offspring, the 
sequence becomes ―2→3→7→8‖, which is placed in the first 
offspring beginning from the second cut point: 

O1: (1, 7, 8 | 4, 6, 9, 5 | 2, 3). 

Similarly, we build the second offspring as: 

O2: (1, 6, 5 | 7, 8, 9, 4 | 2, 3) 

3). Alternating edges crossover operator: Grefenstette et 

al. [21] proposed alternating edges crossover (AEX) operator 

that assumes a chromosome as a directed cycle of arcs. Only 

one offspring is built by selecting alternative arcs from both 

parents, with some additional random selections in case of 

infeasibility. Consider the same example parent chromosomes 

P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6). 

First, the arc (1, 2) is first selected from the first parent and 
copied to the offspring. Then the arcs (2, 6) from second 
parent, (6, 9) from first parent and (9, 4) from second parent 
are selected and copied to the offspring. Then, arc (4, 6) is 
selected from first parent, however, this arc produces a cycle 
and a new arc leaving the node 4 to a node not yet visited is 
selected randomly. Suppose the arc (4, 3) is chosen. Then, the 
arcs (3, 5) from second parent, (5, 7) from first parent and (7, 
8) from second parents are selected. This way the offspring is 
built as follows: 

O: (1, 2, 6, 9, 4, 3, 5, 7, 8) 

All arcs in the offspring are inherited from the parents, 
apart from the arc (4, 3). 

4). Cycle crossover operator: Oliver et al. [22] developed 

cycle crossover (CX) that builds an offspring where every 

node and its corresponding position originated from one of the 

parents. Consider the same example parent chromosomes P1: 

(1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6). 

As we fix first gene as node 1, for the next position, we 
select randomly between 2 and 3. Suppose we select node 2, 
then the offspring becomes: 

O1: (1, 2, *, *, *, *, *, *, *) 

Every gene in the offspring is taken from one of its parents 
with the same position, so the next gene to be considered must 
be bit 3, as this gene from the second parent is just below the 
selected gene 2. In the first parent this gene is at 3rd position; 
thus, the offspring becomes: 

O1: (1, 2, 3, *, *, *, *, *, *) 

Next gene will be 5 of second parent as it is just below the 
current gene 3, which is present at 7th position in first parent. 
Thus, the offspring becomes: 

O1: (1, 2, 3, *, *, *, 5, *, *) 

Next gene will be 4 of second parent as it is just below the 
current gene 5, which is present at 4th position in first parent. 
Thus, the offspring becomes: 

O1: (1, 2, 3, 4, *, *, 5, *, *) 

Next gene will be 7 of second parent as it is just below the 
current gene 4, which is present at 8th position in first parent. 
Thus, the offspring becomes: 

O1: (1, 2, 3, 4, *, *, 5, 7, *) 

Next, we have node 2, which is already present in the 
offspring; thus, we have completed a cycle and hence, we fill 
the remaining blank positions with the genes of those 
positions which are present in second parent. This way the 
offspring is built as follows: 

O1: (1, 2, 3, 4, 8, 9, 5, 7, 6) 

Similarly, we build the second offspring as (same as P2): 

O2: (1, 6, 5, 7, 8, 9, 4, 2, 3) 

5). Greedy crossover operator: Grefenstette et al. [21] also 

proposed greedy crossover (GX) for the TSP that selects a 

starting node randomly. Then in each step, four neighbor 

nodes of currently selected node in both parents are 

considered, and the cheapest one (not present in the offspring) 

is selected. If the cheapest node or all four neighbour nodes 

are present in the offspring, then any node from the remaining 

is selected randomly. This operator creates only one offspring 

from two parents. Let us illustrate the GX through the 9-node 

example given as cost matrix in Table I and the same parent 

chromosomes considered above. 
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TABLE. I. THE COST MATRIX 

Node 1 2 3 4 5 6 7 8 9 

1 999 7 15 9 10 6 8 9 10 

2 11 999 8 7 11 3 6 4 3 

3 15 5 999 16 12 5 8 13 4 

4 2 5 11 999 9 13 14 4 2 

5 8 6 3 5 999 6 7 10 9 

6 6 13 8 11 5 999 5 4 5 

7 5 15 3 7 12 6 999 8 9 

8 9 3 9 14 3 11 8 999 10 

9 11 16 3 9 10 7 9 10 999 

As we fixed first gene as ‗node 1‘, the offspring is initiated 
as (1). The nodes 2 and 3 are neighbours of 1 with their costs 
7 and 15 respectively. The node 2 is cheaper, so, it is copied 
into the incomplete offspring: (1, 2). 

Next, the nodes 3, 1, 6 and 4 are neighbours of 2 with their 
costs 8, 11, 3 and 7 respectively. The node 6 is the cheapest, 
so, it is copied into the incomplete offspring: (1, 2, 6). 

Next, the nodes 9, 4, 1 and 2 are neighbours of 6 with their 
costs 5, 11, 6 and 13 respectively. The node 9 is the cheapest 
so, it is copied into the incomplete offspring: (1, 2, 6, 9). 

Next, the nodes 5, 6, 4 and 8 are neighbours of 9 with their 
costs 10, 7, 9 and 10 respectively. The node 6 is the cheapest, 
but it is already present in the offspring, so, node 3 is selected 
randomly and it is copied into the incomplete offspring: (1, 2, 
6, 9, 3). 

Next, the nodes 4, 2, 5 and 1 are neighbours of 3 with their 
costs 16, 5, 12 and 15 respectively. The node 2 is the cheapest, 
but it is already present in the offspring, so, node 4 is selected 
randomly and it is copied into the incomplete offspring: (1, 2, 
6, 9, 3, 4). 

Continuing in this way, we have the complete offspring: 
(1, 2, 6, 9, 3, 4, 5, 7, 8) with cost 67. 

6). Sequential constructive crossover operator: Ahmed 

[16] proposed the sequential constructive crossover (SCX) 

operator which is modified in [23] that constructs an offspring 

using better arcs based on their cost present in the parents' 

structure. Furthermore, it also uses the better arcs that are 

present neither in the parents' structure. SCX sequentially 

searches both parent chromosomes and considers the first 

legitimate node (i.e. unvisited node) that appeared after the 

present node and in case, if no legitimate node is found in 

either of the parent chromosomes, it sequentially searches 

from the beginning of the chromosome and then compares 

their associated cost to decide the next node of the child 

chromosome. The SCX is compared with edge recombination 

crossover (ERX) and generalized N-point crossover (GNX) on 

symmetric and asymmetric TSPLIB instances. As reported, 

SCX is better than ERX and GNX. Khan [24] presented a 

comparative study among eight different crossover operators, 

namely, Two-Point Crossover, PMX, CX, Shuffle Crossover, 

ERX, Uniform Order-based Crossover, Sub-tour Exchange 

Crossover and SCX, and found that SCX outperformed other 

operators in achieving good quality solution for the TSP. 

Further, SCX is successfully applied to many other 

combinatorial optimization problems ([25]-[31], [32]). Let us 

recall the algorithm for the SCX [23]. 

Step 1: Start from 'node 1‘ (i.e., current node p =1). 

Step 2: Sequentially search both parent chromosomes and 
consider the first ‗legitimate node' (the node that is not yet 
visited) appeared after 'node p‘ in each parent. If no 'legitimate 
node' after 'node p‘ is present in any of the parents, search 
sequentially from the starting of the parent and consider the 
first 'legitimate node', and go to Step 3. 

Step 3: Suppose the 'node α' and the 'node β' are found in 
1st and 2nd parent respectively, then for selecting the next 
node go to Step 4. 

Step 4: If cpα < cpβ, then select 'node α', otherwise, 'node β' 
as the next node and concatenate it to the partially constructed 
offspring chromosome. If the offspring is a complete 
chromosome, then stop, otherwise, rename the present node as 
'node p' and go to Step 2. 

Let us illustrate the SCX through the same example given 
above. Select 'node 1' as the 1st gene. The legitimate nodes 
after node 1 in P1 and P2 are 2 and 3 respectively with c12=7 
and c13=15. Since c12<c13, we accept node 2. So, the partially 
constructed chromosome will be (1, 2). 

The legitimate nodes after node in P1 and P2 are nodes 3 
and 6 respectively with c23=8 and c26=3. Since c26<c23, we 
accept node 6. So, the partially constructed chromosome will 
be (1, 2, 6). 

The legitimate node after node 6 in P1 is 9 with c69=5, but 
none in P2. So, for P2, we sequentially search from the 
beginning of the chromosome and find the first legitimate 
node 3 with c63=8. Since c69<c63, we accept node 9. So, the 
partially constructed chromosome will be (1, 2, 6, 9). 

The legitimate nodes after node 9 in P1 and P2 are 5 and 4 
respectively with c95=10 and c94=9. Since c94<c95, we accept 
node 4. So, the partially constructed chromosome will be (1, 2, 
6, 9, 4). 

The legitimate node after node 4 in P1 is 5 with c45=9, but 
none in P2. So, for P2, we sequentially search from the 
beginning of the chromosome and find the first legitimate 
node 3 with c43=11. Since c45<c43, we accept node 5. So, the 
partially constructed chromosome will be (1, 2, 6, 9, 4, 5). 

Continuing this way, we obtain the complete offspring 
chromosome: (1, 2, 6, 9, 4, 5, 7, 8, 3) with cost 72. 

7). Bidirectional circular sequential constructive 

crossover operator: The bidirectional circular sequential 

constructive crossover (BCSCX) was proposed by Kang et al. 

[33] to modify SCX that searches for next neighbor in both 

left and right directions in both parents. Thus, four neighbor 

genes are considered. Also, during searching for the next 

neighbor gene, if it reaches to the end or to the beginning of 
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the genes list in any of the parents, it will wrap around. Let us 

illustrate the BCSCX through the same example given above. 

Select 'node 1' as the 1st gene. The legitimate nodes after 

node 1 in both directions in P1 are 2 and 8 (after wrapping 

around), and in P2 are 3 and 6 (after wrapping around), with 

their costs 7, 9, 15 and 6 respectively. We accept node 6 as it 

is cheapest. So, the partially constructed offspring 

chromosome will be (1, 6). 

The legitimate nodes after node 6 in both directions in P1 
are 9 and 4, and in P2 are 3 (after wrapping around) and 2, 
with their costs 5, 11, 8 and 13 respectively. We accept node 9 
as it is cheapest. So, the partially constructed chromosome 
will be (1, 6, 9). 

The legitimate nodes after node 9 in both directions in P1 
are 5 and 4, and in P2 are 4 and 8, with their costs 10, 9, 9 and 
10 respectively. We accept node 4 and the partially 
constructed chromosome will be (1, 6, 9, 4). 

The legitimate nodes after node 4 in both directions in P1 
are 5 and 3, and in P2 are 2 and 8, with their costs 9, 11, 5 and 
4 respectively. We accept node 8 and the partially constructed 
chromosome will be (1, 6, 9, 4, 8). 

Continuing this way, we obtain the complete offspring 
chromosome: (1, 6, 9, 4, 8, 2, 7, 3, 5) with cost 56. 

Among the above discussed crossover operators GX, SCX 
and BCSCX are called distance-based crossover operators 
because they care about the distance between nodes. On the 
other hand, crossover operators like PMX, OX, AEX, CX, 
GNX and ERX are called blind crossover operators because 
they only concern about to satisfy the constraints of the 
problem and do not use any information associated with the 
problem [18]. We propose to compare our proposed ASCX 
against both kind of crossover operators. 

C. Proposed Crossover Operator: Adaptive Sequential 

Constructive Crossover Operator 

We are going to propose a modification of the SCX 
operator, named adaptive SCX (ASCX). In BCSCX, four 
neighbor genes are considered. We propose to construct 
offspring either in forward direction from the first gene or in 
backward direction from the last gene or in mixed direction 
adaptively depending on the cost of the next node. Hence, we 
consider a total of eight neighbour nodes of a current node, 
four nodes for each of the two genes (nodes). Since there are n 
genes in a chromosome, we select 'node 1' as the first and 
(n+1)th (it is not shown in the chromosome) genes. Let us 
define the algorithm for the ASCX as follows. 

Step 1: Start from the first gene, 'node 1‘ (i.e., current node 
p =1 in position i=1) in forward direction and from the (n+1)th 
gene, ‗node 1‘ (it is not shown in the chromosome), (i.e., 
current node q =1 in position j=n+1) in backward direction. 

Step 2: Sequentially search both parent chromosomes in 
right direction and consider the first ‗legitimate node' (the 
node that is not yet visited) appeared after 'node p‘ in each 
parent. If no 'legitimate node' after 'node p‘ is present in any of 
the parents, search sequentially from the starting of the parent 
(wrap around) and consider the first 'legitimate node'. Suppose 

the 'node α' and the 'node β' are found in 1st and 2nd parent 
respectively. Go to Step 3. 

Step 3: Sequentially search both parent chromosomes in 
left direction and consider the first ‗legitimate node' appeared 
after 'node p‘ in each parent. If no 'legitimate node' after 'node 
p‘ is present in any of the parents, search sequentially from the 
end of the parent (wrap around) and consider the first 
'legitimate node'. Suppose the 'node γ‘ and the 'node δ' are 
found in 1st and 2nd parent respectively. Now, suppose among 
four nodes, 'node u' is the cheapest with cost s=min. {cpα, cpβ, 
cpγ, cpδ}. Go to Step 4. 

Step 4: Sequentially search both parent chromosomes in 
left direction and consider the first ‗legitimate node' appeared 
after 'node q‘ in each parent. If no 'legitimate node' after 'node 
q‘ is present in any of the parents, search sequentially from the 
end of the parent (wrap around) and consider the first 
'legitimate node'. Suppose the 'node w' and the 'node x' are 
found in 1st and 2nd parent respectively. Go to Step 5. 

Step 5: Sequentially search both parent chromosomes in 
right direction and consider the first ‗legitimate node' 
appeared after 'node q‘ in each parent. If no 'legitimate node' 
after 'node q‘ is present in any of the parents, search 
sequentially from the beginning of the parent (wrap around) 
and consider the first 'legitimate node'. Suppose the 'node y‘ 
and the 'node z' are found in 1st and 2nd parent respectively. 
Now, suppose among four nodes, 'node v' is the cheapest with 
cost t=min. {cwq, cxq, cyq, czq}. Now, for selecting the next 
node as well as adding it in a position in the offspring 
chromosome go to Step 6. 

Step 6: If s ≤ t, then add 'node u' in position ‗i' in the 
partially constructed offspring chromosome and set p=u, 
i=i+1. Otherwise, add 'node v' in position ‗j' in the partially 
constructed offspring chromosome and set q=v, j=j-1. Now, If 
the offspring is a complete chromosome, then stop, otherwise, 
go to Step 2. 

Let us illustrate the ASCX through the same example 
parent chromosomes given above. Since there are 9 genes in 
the parent chromosomes, we select 'node 1' as the first and 10th 
gene (it is not shown in the chromosome). The legitimate 
nodes after first gene, node 1, in both directions in P1 are 2 
and 8 (after wrapping around), and in P2 are 3 and 6 (after 
wrapping around), with their costs 7, 9, 15 and 6 respectively. 
Among them node 6 with cost 6 is the cheapest. On the other 
hand, the legitimate nodes before 10th gene, node 1 (though it 
is not shown in the chromosome), in both directions in P1 are 
8 and 2 (after wrapping around), and in P2 are 6 and 3 (after 
wrapping around), with their costs 9, 7, 6 and 15 respectively. 
Among them node 6 with cost 6 is the cheapest. Since both 
cheapest nodes are same 6, we add it as the 2nd gene in the 
offspring, and hence the partially constructed offspring 
chromosome will be (1, 6, *, *, *, *, *, *, *). 

The legitimate nodes after 2nd gene, node 6, in both 
directions in P1 are 9 and 4, and in P2 are 3 (after wrapping 
around) and 2, with their costs 5, 11, 8 and 13 respectively. 
Among them node 9 with cost 5 is the cheapest. On the other 
hand, the legitimate nodes before 10th gene, node 1, in both 
directions in P1 are 8 and 2 (after wrapping around), and in P2 
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are 2 and 3 (after wrapping around), with their costs 9, 11, 11 
and 15 respectively. Among them node 8 with cost 9 is the 
cheapest. Since between two cheapest nodes, node 9 is 
cheaper, we add it as the 3rd gene in the offspring, and hence 
the partially constructed offspring chromosome will be (1, 6, 
9, *, *, *, *, *, *). 

The legitimate nodes after 3rd gene, node 9, in both 
directions in P1 are 5 and 4, and in P2 are 4 and 8, with their 
costs 10, 9, 9 and 10 respectively. Among them node 4 with 
cost 9 is the cheapest. On the other hand, the legitimate nodes 
before 10th gene, node 1, in both directions in P1 are 8 and 2 
(after wrapping around), and in P2 are 2 and 3 (after wrapping 
around), with their costs 9, 11, 11 and 15 respectively. Among 
them node 8 with cost 9 is the cheapest. Since both cheapest 
nodes have same costs, we add node 4 as the 4th gene in the 
offspring, and hence the partially constructed offspring 
chromosome will be (1, 6, 9, 4, *, *, *, *, *). 

The legitimate nodes after 4th gene, node 4, in both 
directions in P1 are 5 and 3, and in P2 are 2 and 8, with their 
costs 9, 11, 5 and 4 respectively. Among them node 8 with 
cost 4 is the cheapest. On the other hand, the legitimate nodes 
before 10th gene, node 1, in both directions in P1 are 8 and 2 
(after wrapping around), and in P2 are 2 and 3 (after wrapping 
around), with their costs 9, 11, 11 and 15 respectively. Among 
them node 8 with cost 9 is the cheapest. Since between two 
cheapest nodes, node 8 is cheaper, we add it as the 5th gene in 
the offspring, and hence the partially constructed offspring 
chromosome will be (1, 6, 9, 4, 8, *, *, *, *). 

The legitimate nodes after 5th gene, node 8, in both 
directions in P1 are 2 (after wrapping around) and 7, and in P2 
are 2 and 7, with their costs 3, 8, 3 and 8 respectively. Among 
them node 2 with cost 3 is the cheapest. On the other hand, the 
legitimate nodes before 10th gene, node 1, in both directions in 
P1 are 7 and 2 (after wrapping around), and in P2 are 2 and 3 
(after wrapping around), with their costs 5, 15, 5 and 15 
respectively. Among them node 7 with cost 5 is the cheapest. 
Since between two cheapest nodes, node 2 is cheaper, we add 
it as the 6th gene in the offspring, and hence the partially 
constructed offspring chromosome will be (1, 6, 9, 4, 8, 2, *, 
*, *). 

The legitimate nodes after 6th gene, node 2, in both 
directions in P1 are 3 and 7 (after wrapping around), and in P2 
are 3 (after wrapping around) and 7, with their costs 8, 6, 8 
and 6 respectively. Among them node 7 with cost 6 is the 
cheapest. On the other hand, the legitimate nodes before 10th 
gene, node 1, in both directions in P1 are 7 and 3 (after 
wrapping around), and in P2 are 7 and 3 (after wrapping 
around), with their costs 5, 15, 5 and 15 respectively. Among 
them node 7 with cost 5 is the cheapest. Since between two 
cheapest nodes, node 7 is cheaper, we add it as the 9th gene in 
the offspring, and hence the partially constructed offspring 
chromosome will be (1, 6, 9, 4, 8, 2, *, *, 7). 

The legitimate nodes after 6th gene, node 2, in both 
directions in P1 are 3 and 5 (after wrapping around), and in P2 
are 3 (after wrapping around) and 5, with their costs 8, 11, 8 
and 11 respectively. Among them node 3 with cost 8 is the 
cheapest. On the other hand, the legitimate nodes before 9th 
gene, node 7, in both directions in P1 are 5 and 3 (after 

wrapping around), and in P2 are 5 and 3 (after wrapping 
around), with their costs 7, 8, 7 and 8 respectively. Among 
them node 5 with cost 7 is the cheapest. Since between two 
cheapest nodes, node 5 is cheaper, we add it as the 8th gene in 
the offspring, and hence the partially constructed offspring 
chromosome will be (1, 6, 9, 4, 8, 2, *, 5, 7). 

Continuing this way, we obtain the complete offspring 
chromosome: (1, 6, 9, 4, 8, 2, 3, 5, 7) with cost 59. 

D. Mutation Operator 

After applying crossover operator, mutation operator is 
applied. The mutation operator randomly selects a position in 
the chromosome and changes the corresponding allele (value 
of a gene), thereby modifying information. The need for 
mutation comes from the fact that as the less fit members of 
successive generations are discarded; some aspects of genetic 
material could be lost forever. By performing occasional 
random changes in the chromosomes, GAs ensure that new 
parts of the search space are reached, which selection and 
crossover alone couldn‘t fully guarantee. In doing so, mutation 
ensures that no important features are prematurely lost, thus 
maintaining the mating pool diversity. For the TSP, the 
classical mutation operator does not work. For this 
investigation, we have considered the reciprocal exchange 
mutation that selects two nodes randomly and swaps them. 

III. DESIGN OF OUR GENETIC ALGORITHMS 

A simple GA may be summarized as follows: 

Step 1: Create initial random population of chromosomes 
of size Ps and set generation = 0. 

Step 2: Evaluate the population. 

Step 3: Set generation = generation + 1 and select good 
chromosomes by selection procedure. 

Step 4: Perform crossover with crossover probability Pc. 

Step 5: Perform bit-wise mutation with mutation 
probability Pm. 

Step 6: Replace old population with new one. 

Step 7: Repeat Steps 2 to 6 until the terminating criterion 
is satisfied. 

As suggested in [18] if the performance of the distance-
based crossover is compared with blind crossovers, the 
comparison is not going to be as fair as it should be. So, we 
consider both types of crossover operators. There are eight 
possible selections for crossover operator, which are: PMX, 
OX, AEX, CX, GX, SCX, BCSCX and ASCX respectively. 
Within one selection, a single crossover operator is executed. 

However, we apply two possibilities of selecting 
mutation–presence or absence of mutation. There are eight 
possible selections for crossover operator along with two 
possibilities of mutation, thus providing altogether sixteen 
variants of GAs. The goal of such separate execution is to 
measure effectiveness of specific operator and to find their 
comparative ranking. Note that each variant GA is purely 
simple or non-hybrid, which is built of GA procedures and 
operators, and it does not combine elements of any other 
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heuristic or metaheuristic algorithm. However, GA search 
process is guided by some parameters, namely, population size 
that determines number of chromosomes in a population, 
crossover probability that states the probability of performing 
crossover between two parent chromosomes, mutation 
probability that specifies the probability of performing bit-
wise mutation, and termination condition that specifies 
condition to stop the GA search. 

IV. COMPUTATIONAL EXPERIENCES AND DISCUSSIONS 

In order to compare the efficiency of the different 
crossover operators, variant GAs using different crossovers 
have been encoded in Visual C++ on a Laptop with i3-3217U 
CPU@1.80 GHz and 4 GB RAM under MS Windows 7, and 
run for twelve benchmark TSPLIB instances [34]. In these 
twelve problem instances, the ftv33, ftv38, ft53, kro124p, 
ftv170, rbg323, rbg358, rbg403 and rbg443 are asymmetric, 
and gr21, fri26 and dantzig42 are symmetric TSPs. Initial 
population of chromosomes is generated randomly. The 
following common parameters are selected for all algorithms: 
population size is 50, crossover probability is 1.0 (i.e., 100%), 
mutation probability is 0.09 (i.e., 9%), and maximum of 1,000 
generations is the terminating condition. Though GA is 
structured, yet randomized, so, its repeated execution on the 
same input data with the same number of procedures usually 
gives slightly different results. To compensate this 
randomization effect, the experiments have been repeated 50 
times for each instance. The results of experiments by the 
sixteen GA variants are summarized in Tables II and IV. All 
tables are organized in the same way: a row corresponds to a 
problem instance (its best known solution is reported within 
brackets) and a column to a GA variant considered by a 
certain selection of crossover operator. Thus, a table entry 
presents the summary of results of the corresponding instance 
by the corresponding GA variant. The result is described by its 
best solution cost, average solution cost, average percentage of 
excess to the best known solution, standard deviation (S.D.) of 
costs, and average convergence time (in second). The best 
result for a chosen instance over all variants is marked by bold 
face. The percentage of excess above the best known solution, 
reported in TSPLIB website, is given by the 

           
                             

              
       

Fig. 1 and Fig. 2 present results for the instance ftv170 
(considering only 30 generations). Fig. 1 refers to the GA 
variants without mutation, and Fig. 2 to the variants with 
mutation, respectively. In both figures, each graph 
corresponds to a crossover operator, and it shows how the 
current solution improves depending on the number of 
generations. Only the three best performing crossover 
operators, namely, SCX, BCSCX and ASCX, are reported. 

In the figures, the labels on the left margin denote the 
solution cost, while the labels on the right margin refer to 
percentage of excess to the best known solution (Excess (%)). 
All crossover operators have some randomized factors that 
make them more effective when trying to add an allele. The 

more randomized these operators are, the more possibilities of 
progress should have. Fig. 1 shows that SCX has some 
variations, but it is not the best. Though BCSCX and ASCX 
have less variations and are competing each other, still ASCX 
provides us best results. But it has limited variation range and 
gets stuck in local minimums very quickly. From Fig. 2, it is 
observed that mutation always improves performance by 
helping crossovers to escape from local minima.  

Table II reports results by the eight GA variants where 
mutation is not applied. With respect to the average cost, it is 
very clear from Table II that distance-based crossovers are far 
better than blind crossovers. Among the crossovers, GX, SCX 
and BCSCX obtain lowest average cost with lowest S.D for 
the instances danzig42, gr21 and fr26 respectively. The 
crossovers SCX and BCSCX are competing. The proposed 
crossover ASCX obtains lowest average costs with lower S.D. 
for remaining nine instances, namely, ftv33, ftv38, ft53, 
kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443. So, 
among all the crossovers ASCX is found to be the best. Based 
on best solution costs also ASCX is found to be the best. The 
results are depicted in Fig. 3, which also shows the 
effectiveness of our proposed crossover operator ASCX. 

 

Fig. 1. Performance of Three Crossover Operators without Mutation for the 

Instance ftv170. 

 

Fig. 2. Performance of Three Crossover Operators with Mutation for the 

Instance ftv170. 
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TABLE. II. SUMMARY OF THE RESULTS BY THE VARIANT GAS WITHOUT MUTATION FOR TSPLIB INSTANCES 

Instance Results PMX OX AEX CX GX SCX BCSCX ASCX 

gr21 Best Sol 3393 2927 3887 5112 3821 2707 2707 2707 

(2707) Avg. Sol 4289.74 3806.40 4462.80 5767.94 4282.04 2907.20 2924.26 2916.04 

 AvgExc(%) 58.47 40.61 64.86 113.07 58.18 7.40 8.03 7.72 

 
S.D. 447.10 485.88 339.14 284.30 219.95 112.17 100.03 67.24 

 
Avg. Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

fri26 Best Sol 1193 1014 1100 1799 993 941 937 937 

(937) Avg. Sol 1520.24 1364.70 1305.86 2060.34 1071.26 981.38 957.70 959.74 

 AvgExc(%) 62.25 45.65 39.37 119.89 14.33 4.74 2.21 2.43 

 
S.D. 158.59 149.79 91.51 101.83 41.12 32.33 14.51 14.16 

 
Avg. Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ftv33 Best Sol 2236 1722 1843 3269 1604 1380 1420 1378 

(1286) Avg. Sol 2695.08 2352.22 2282.60 3539.30 1770.02 1489.20 1487.62 1412.68 

 AvgExc(%) 109.57 82.91 77.50 175.22 37.64 15.80 15.68 9.85 

 
S.D. 231.60 277.64 187.21 122.80 114.42 37.26 36.08 44.42 

 
Avg. Time 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 

ftv38 Best Sol 2730 2288 2244 3806 1860 1635 1619 1629 

(1530) Avg. Sol 3281.28 2853.34 2699.46 4267.20 2098.12 1772.80 1720.80 1707.50 

 AvgExc(%) 114.46 86.49 76.44 178.90 37.13 15.87 12.47 11.60 

 
S.D. 267.82 324.38 221.03 164.85 119.59 47.61 36.42 32.79 

 
Avg. Time 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 

dantzig42 Best Sol 1430 1159 937 2167 699 750 736 699 

(699) Avg. Sol 1786.76 1570.24 1153.74 2425.48 711.72 814.34 812.16 746.94 

 AvgExc(%) 155.62 124.64 65.06 246.99 1.82 16.50 16.19 6.86 

 
S.D. 168.28 165.08 91.39 111.80 22.30 32.43 29.54 27.99 

 
Avg. Time 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 

ft53 Best Sol 13539 11923 13058 20977 11504 8188 8082 7970 

(6905) Avg. Sol 17059.50 14595.36 14691.82 22342.38 12736.38 8626.44 8611.80 8472.16 

 AvgExc(%) 147.06 111.37 112.77 223.57 84.45 24.93 24.72 22.70 

 
S.D. 1541.62 1746.14 856.81 620.64 602.92 239.55 228.45 272.27 

 
Avg. Time 0.00 0.02 0.01 0.00 0.01 0.03 0.02 0.27 

kro124p Best Sol 109400 84177 122824 148310 97683 41392 41396 40308 

(36230) Avg. Sol 130592.18 108875.06 143543.54 165422.36 107546.14 43789.36 42625.90 42156.86 

 AvgExc(%) 260.45 200.51 296.20 356.59 196.84 20.86 17.65 16.36 

 S.D. 9738.64 10308.85 9821.05 4375.44 4150.34 682.39 568.96 598.17 

 Avg. Time 0.01 0.08 0.03 0.01 0.02 0.04 0.09 0.06 

ftv170 Best Sol 17932 13271 9501 22545 5245 3696 3255 3258 

(2755) Avg. Sol 19522.98 16231.42 10765.90 23785.48 6158.00 3719.26 3611.54 3473.52 

 AvgExc(%) 608.64 489.16 290.78 763.36 123.52 35.00 31.09 26.08 

 S.D. 1048.53 1629.45 620.84 427.26 319.37 179.77 137.69 112.91 

 Avg. Time 0.03 0.25 0.11 0.03 0.07 0.13 0.19 1.44 

rbg323 Best Sol 4675 3616 5050 5645 2651 1731 1657 1620 

(1326) Avg. Sol 5014.40 4292.42 5259.02 5797.06 2985.10 1840.80 1747.90 1689.16 

 AvgExc(%) 278.16 223.71 296.61 337.18 125.12 38.82 31.82 27.39 

 S.D. 212.01 366.03 214.99 62.72 141.85 62.96 54.36 27.95 

 Avg. Time 0.08 0.91 0.37 0.12 0.50 0.83 2.04 10.33 

rbg358 Best Sol 5014 4081 5225 6307 2705 1678 1586 1393 

(1163) Avg. Sol 5562.44 4641.02 5600.40 6481.82 3010.70 1740.04 1713.26 1453.60 

 AvgExc(%) 378.28 299.06 381.55 457.34 158.87 49.62 47.31 24.99 

 S.D. 237.13 350.20 260.00 73.70 167.65 78.91 78.86 26.85 

 Avg. Time 0.09 1.33 0.46 0.14 0.65 0.96 2.34 6.18 

rbg403 Best Sol 5972 4931 6253 7031 4080 3483 3229 2928 

(2465) Avg. Sol 6346.12 5428.20 6360.18 7215.74 4310.88 3510.74 3403.54 3012.70 

 AvgExc(%) 157.45 120.21 158.02 192.73 74.88 42.42 38.07 22.22 

 S.D. 255.46 346.60 234.33 77.70 102.96 88.64 96.20 36.90 

 Avg. Time 0.11 1.95 0.55 0.25 0.80 1.28 3.22 4.84 

rbg443 Best Sol 6574 5538 6622 7615 4533 3731 3699 3333 

(2720) Avg. Sol 6933.96 6030.42 7076.30 7816.20 4730.06 3904.62 3881.90 3404.44 

 AvgExc(%) 154.93 121.71 160.16 187.36 73.90 43.55 42.72 25.16 

 S.D. 232.79 417.55 243.32 87.11 104.65 85.01 82.04 38.80 

 Avg. Time 0.13 2.31 0.71 0.27 1.09 1.52 4.76 5.16 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 2, 2020 

601 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 3. Average Excess (%) by GA Variants without Mutation. 

Among the blind crossovers, OX and AEX are competing. 
OX obtains lower average solutions for seven instances, 
namely, gr21, ft53, kro124p, rbg323, rbg358, rbg403 and 
rbg443, whereas AEX obtains lower average costs for five 
instances, namely, fri26, ftv33, ftv38, dantzig42 and ftv170. 
From this observation, one can tell that OX is better than 
AEX, and PMX and CX show very bad performances. 

In order to decide if ASCX-based GA average (without 
mutation) is significantly different than the averages obtained 
by other GA variants, we performed Student‘s t-test. It is to be 
noted that we performed 50 runs for every problem instance 
considered here. We used the following t-test for the case of 
two big independent samples [35]: 
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The values of  ̅  and     are obtained by the ASCX-based 

GA, while of  ̅  and     values are obtained by other GA 
variants. The calculated values of the t statistic are reported in 
the Table III. 

The t values can be positive or negative. The positive value 

indicates that the ASCX obtained better solution than the 

competitive GA variant. In the negative case, the competitive 

algorithm obtained better solution. We used confidence 

interval at the 95% confidence level (t0.05 = 1.96). When t-

value is greater than 1.96, the difference between the two 

values is significant. In this situation, the ASCX solution is 

better, when t has positive value. Negative t value means that 

the competitive GA variant has better solution. The case when 

t-value is less than 1.96, it corresponds to the situation that the 

difference between the observed values is not significant. The 

table also reports the information about the GA variants that 

obtained significantly better solutions. 

In the case of three instances there is no statistically 
significant difference between ASCX and BCSCX. On nine 
instances ASCX is better than BCSCX. There is no significant 
difference between ASCX and SCX on one instance only. 
ASCX performed better than SCX on eleven instances. Next, 
ASCX performed better than GX on eleven instances, GX 
performed better than ASCX on one instance only. Finally, 
when comparing ASCX against blind crossovers, PMX, OX, 
AEX and CX, we found that ASCX performed better on all 
twelve instances, but it is not reported. 

Table III also reports calculated values of the t statistic of 
blind crossovers against OX. In the case of one instance, 
ftv33, there is no statistically significant difference between 
OX and AEX. On seven instances OX is better than AEX. OX 
performed better than PMX and CX on all twelve instances. 

TABLE. III. THE CALCULATED VALUES OF THE T STATISTIC (VARIANT 

GAS WITHOUT MUTATION) AND THE INFORMATION ABOUT VARIANT GAS 

THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS 

Instance 
t-values against OX t-values against ASCX 

PMX AEX CX GX SCX BCSCX 

gr21 5.12 7.75 24.39 41.57 -0.47 0.47 

Better OX OX OX ASCX ----- ---- 

fri26 4.99 -2.34 26.88 17.94 4.29 -0.70 

Better OX AEX OX ASCX ASCX ---- 

ftv33 6.63 -1.45 27.37 20.37 9.23 9.17 

Better OX --- OX ASCX ASCX ASCX 

ftv38 7.12 -2.74 27.20 22.05 7.91 1.90 

Better OX AEX OX ASCX ASCX ---- 

dantzig42 6.43 -15.45 30.03 -6.89 11.01 11.22 

Better OX AEX OX GX ASCX ASCX 

ft53 7.41 0.35 29.26 45.12 2.98 2.75 

Better OX OX OX ASCX ASCX ASCX 

kro124p 10.72 17.04 35.35 109.16 12.59 3.98 

Better OX OX OX ASCX ASCX ASCX 

ftv170 11.89 -21.94 31.39 55.47 8.10 5.43 

Better OX AEX OX ASCX ASCX ASCX 

rbg323 11.95 15.94 28.36 62.75 15.41 6.73 

Better OX OX OX ASCX ASCX ASCX 

rbg358 15.25 15.40 36.01 64.20 24.06 21.82 

Better OX OX OX ASCX ASCX ASCX 

rbg403 14.92 15.60 35.23 83.09 36.31 26.55 

Better OX OX OX ASCX ASCX ASCX 

rbg443 13.23 15.15 29.31 83.14 37.47 36.83 

Better OX OX OX ASCX ASCX ASCX 
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TABLE. IV. SUMMARY OF THE RESULTS BY THE VARIANT GAS WITH MUTATION FOR TSPLIB INSTANCES 

Instance Results PMX OX AEX CX GX SCX BCSCX ASCX 

gr21 Best Sol 2707 2707 2835 2707 3614 2707 2707 2707 

(2707) Avg. Sol 3122.58 2827.12 3056.16 3201.74 3988.84 2885.36 2900.82 2826.20 

 AvgExc(%) 15.35 4.44 12.90 18.28 47.35 6.59 7.16 4.40 

 S.D. 219.5 90.36 156.58 272.06 169.99 104.16 86.26 61.29 

 
Avg. Time 0.02 0.04 0.06 0.06 0.05 0.03 0.05 0.04 

fri26 Best Sol 953 1165 956 999 955 937 937 937 

(937) Avg. Sol 1103.02 1234.3 993.24 1150.16 1012.08 979.04 953.44 954.04 

 AvgExc(%) 17.72 31.73 6.00 22.75 8.01 4.49 1.75 1.82 

 S.D. 69.85 36.02 25.56 62.95 5.51 24.54 9.37 11.27 

 
Avg. Time 0.04 0.05 0.07 0.1 0.12 0.04 0.02 0.13 

ftv33 Best Sol 1577 1671 1436 1660 1510 1371 1405 1371 

(1286) Avg. Sol 1759.54 2209.82 1604.42 1922.98 1679.9 1474.48 1478.94 1386.72 

 AvgExc(%) 36.82 71.84 24.76 49.53 30.63 14.66 15.00 7.83 

 S.D. 109.81 86.85 62.93 125.13 52.31 49.02 42.04 2.85 

 
Avg. Time 0.06 0.07 0.13 0.17 0.07 0.04 0.00 0.18 

ftv38 Best Sol 1723 2273 1794 2217 1746 1630 1619 1599 

(1530) Avg. Sol 2077.04 2458.48 1971.24 2465.84 1911.48 1705.68 1712.56 1648.64 

 AvgExc(%) 35.75 60.68 28.84 61.17 24.93 11.48 11.93 7.75 

 
S.D. 112.98 92.71 84.32 113.34 43.37 30.78 20.85 21.88 

 
Avg. Time 0.07 0.09 0.16 0.20 0.13 0.10 0.07 0.12 

dantzig42 Best Sol 845 1069 827 1170 699 723 725 699 

(699) Avg. Sol 989.80 1108.88 915.18 1297.50 704.18 808.72 810.08 699.72 

 
AvgExc(%) 41.60 58.64 30.93 85.62 0.74 15.70 15.89 0.10 

 
S.D. 88.68 62.68 31.93 66.57 3.64 30.50 28.83 24.41 

 
Avg. Time 0.08 0.10 0.18 0.25 0.04 0.06 0.01 0.11 

ft53 Best Sol 10027 10597 10299 12629 10109 7678 7848 7631 

(6905) Avg. Sol 11796.86 13902.48 12273.08 13854.44 11144.14 8494.82 8524.50 8127.34 

 
AvgExc(%) 70.85 101.34 77.74 100.64 61.39 23.02 23.45 17.70 

 
S.D. 701.64 421.58 288.69 588.81 455.60 246.93 183.91 156.51 

 
Avg. Time 0.09 0.13 0.27 0.40 0.25 0.26 0.31 0.38 

kro124p Best Sol 106539 79811 109251 110833 81824 41331 41668 40246 

(36230) Avg. Sol 117138.20 100806.48 116768.26 120254.10 89253.80 43674.54 42544.46 41471.58 

 
AvgExc(%) 223.32 178.24 222.30 231.92 146.35 20.55 17.43 14.47 

 
S.D. 3153.95 2264.52 2428.83 2740.37 2557.47 638.43 566.01 432.72 

 
Avg. Time 0.18 0.43 0.66 1.22 0.57 1.25 0.13 2.22 

ftv170 Best Sol 17088 13158 9482 18962 4667 3285 3257 3232 

(2755) Avg. Sol 18689.18 15389.62 10588.86 19630.42 4817.32 3523.74 3608.40 3393.00 

 
AvgExc(%) 578.37 458.61 284.35 612.54 74.86 27.90 30.98 23.16 

 
S.D. 305.95 282.54 231.40 219.10 71.52 113.55 92.49 95.42 

 
Avg. Time 0.27 1.15 1.83 3.41 4.17 3.77 3.23 0.93 

rbg323 Best Sol 4583 3558 4809 5024 2102 1658 1660 1611 

(1326) Avg. Sol 5006.74 4263.20 5075.84 5150.86 2192.08 1718.76 1725.52 1618.80 

 
AvgExc(%) 277.58 221.51 282.79 288.45 65.32 29.62 30.13 22.08 

 
S.D. 50.16 42.92 34.15 39.96 31.70 22.19 20.63 17.70 

 
Avg. Time 0.90 3.05 5.59 10.75 15.51 12.37 24.79 23.53 

rbg358 Best Sol 4988 3951 5034 5624 2054 1524 1582 1327 

(1163) Avg. Sol 5428.92 4583.32 4650.54 5740.92 2203.12 1699.20 1711.30 1387.92 

 
AvgExc(%) 366.80 294.09 299.87 393.63 89.43 46.10 47.15 19.34 

 
S.D. 53.53 41.32 42.26 45.63 52.02 29.22 23.23 24.05 

 
Avg. Time 1.01 3.56 6.91 12.16 17.28 16.71 30.14 30.77 

rbg403 Best Sol 5809 4848 6079 6375 3760 3314 3229 2922 

(2465) Avg. Sol 6219.88 5363.96 6273.98 6543.88 3828.34 3401.18 3479.62 2983.38 

 
AvgExc(%) 152.33 117.60 154.52 165.47 55.31 37.98 41.16 21.03 

 
S.D. 49.76 37.89 34.63 46.26 39.16 26.48 24.06 21.43 

 
Avg. Time 1.14 4.48 9.25 17.81 21.43 19.98 33.89 38.93 

rbg443 Best Sol 6401 5494 6411 7053 3705 3705 3710 3252 

(2720) Avg. Sol 6893.26 5935.72 6895.30 7123.44 3742.88 3882.52 3872.66 3321.58 

 
AvgExc(%) 153.43 118.23 153.50 161.89 37.61 42.74 42.38 22.12 

 
S.D. 43.17 44.32 36.77 34.14 22.11 26.78 25.53 20.95 

 
Avg. Time 1.37 6.35 10.41 18.65 37.87 26.82 42.64 50.82 
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Table IV reports results by the eight GA variants where 
mutation is applied. With respect to the average cost, it is once 
again very clear from the Table IV that distance-based 
crossovers are superior to blind crossovers. Among the 
distance-based crossovers, GX is the worst, however, it 
obtains best cost for danzig42 only. Though SCX could not 
obtain lowest average cost, but it obtains best costs for the 
instances gr21 and fr26 at least once in 50 runs. The 
crossovers SCX and BCSCX are competing. SCX obtains 
lower average cost for nine instances, whereas BCSCX 
obtains lower average cost for three instances only. However, 
BCSCX obtains lowest average solution for the instance fri26 
and ASCX obtains lowest average solutions with lower S.D. 
for eleven instances, namely, gr21, ftv33, ftv38, dantzig42, 
ft53, kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443. So, 
among all the crossovers ASCX is found to be the best. Based 
on best costs also ASCX is found to be the best. The results 
are depicted in Fig. 4, which also shows the effectiveness of 
our proposed crossover operator ASCX. So, whether mutation 
is used or not, the best performance is accomplished by 
ASCX. However, based on convergence time blind crossovers 
found to be better than distance-based crossovers, and PMX is 
the best one. 

Among the blind crossovers, CX show very bad 
performances that obtains lower average solution for no any 
instance; PMX obtains lower average costs for the instance 
ft53 only; OX obtains lower average solutions for six 
instances, namely, gr21, kro124p, rbg323, rbg358, rbg403 and 
rbg443; whereas AEX obtains lower average solutions for five 
instances, namely, fri26, ftv33, ftv38, dantzig42 and ftv170. 
From this observation one can say that OX is the best and CX 
is the worst. However, CX obtains best solution at least once 
in 50 runs for gr21. 

Here also, in order to decide if ASCX based GA (with 
mutation) average is significantly different than the averages 
obtained by other GA variants, we perform Student‘s t-test 
and the calculated values of the t statistic are reported in the 
Table V. 

In the case of one instance there is no statistically 
significant difference between ASCX and BCSCX, and ASCX 
and GX. On eleven instances ASCX is better than BCSCX 
and GX. ASCX performed better than SCX on all twelve 
instances. While comparing SCX against BCSCX (of course, 
not reported in any table here), we found that on most of the 
instances there is no statistically significant difference 
between them, we can treat them statistically equivalent. 
Finally, when comparing ASCX against blind crossovers, 
PMX, OX, AEX and CX, we found that ASCX performed 
better on all twelve instances, except for one instance, gr21, 
there is no statistically significant difference between ASCX 
and OX, but it is not reported. 

Table V also reports calculated values of the t statistic of 
blind crossovers against OX. On two instances there is no 
statistically significant difference between OX and CX. On 
two instances CX is better than OX, whereas on eight 
instances OX is better than CX. On five instances PMX is 
better than OX, whereas on seven instances OX is better than 
PMX. On six instances OX and AEX are better than each 

other. So, among the blind crossovers OX is the best and CX 
is the worst. 

Based on the above study it very clear that the proposed 
crossover operator ASCX is the best, BCSCX and SCX are 
equivalent and the second-best, and CX is the worst. Among 
blind crossovers OX is the best. About the performance of 
blind crossovers same observation is made in [36]. However, 
in terms of convergent time, PMX is found to be the best. 

 

Fig. 4. Average Excess (%) by GA Variants with Mutation. 

TABLE. V. THE CALCULATED VALUES OF THE T STATISTIC (CROSSOVERS 

WITH MUTATION) AND THE INFORMATION ABOUT VARIANT GAS THAT 

OBTAINED SIGNIFICANTLY BETTER SOLUTIONS 

Instance 
t-values against OX t-values against ASCX 

PMX AEX CX GX SCX BCSCX 

gr21 8.71 8.87 9.15 45.04 3.43 4.94 

Better OX OX OX ASCX ASCX ASCX 

fri26 -11.69 -38.21 -8.12 32.39 6.48 -0.29 

Better PMX AEX CX ASCX ASCX ---- 

ftv33 -22.51 -39.51 -13.18 39.17 12.51 15.32 

Better PMX AEX CX ASCX ASCX ASCX 

ftv38 -18.27 -27.22 0.35 37.88 10.57 14.80 

Better PMX AEX ---- ASCX ASCX ASCX 

dantzig42 -7.68 -19.28 14.44 1.26 19.53 20.45 

Better PMX AEX OX ---- ASCX ASCX 

ft53 -18.01 -22.32 -0.46 43.84 8.80 11.51 

Better PMX AEX ---- ASCX ASCX ASCX 

kro124p 29.44 33.65 38.29 128.95 19.99 10.54 

Better OX OX OX ASCX ASCX ASCX 

ftv170 55.46 -92.02 83.03 83.61 6.17 11.35 

Better OX AEX OX ASCX ASCX ASCX 

rbg323 78.84 103.71 105.96 110.53 24.65 27.48 

Better OX OX OX ASCX ASCX ASCX 

rbg358 87.53 7.96 131.63 99.57 57.58 67.70 

Better OX OX OX ASCX ASCX ASCX 

rbg403 95.80 124.10 138.13 132.50 85.85 107.81 

Better OX OX OX ASCX ASCX ASCX 

rbg443 108.34 116.64 148.61 96.82 115.48 116.81 

Better OX OX OX ASCX ASCX ASCX 
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TABLE. VI. COMPARATIVE STUDY AMONG CX2 [37], HX AND OUR 

PROPOSED ASCX 

Instance Results ASCX CX2 HX 

gr21 

Best Sol 2707 2995 2707 

Worst Sol 2903 3576 2940 

Avg. Sol 2790 3245 2791 

fri26 

Best Sol 937 1099 937 

Worst Sol 970 1278 1014 

Avg. Sol 953 1128 967 

ftv33 

Best Sol 1341 1811 1397 

Worst Sol 1480 2322 1941 

Avg. Sol 1393 2083 1638 

ftv38 

Best Sol 1598 2252 1755 

Worst Sol 1703 2718 2389 

Avg. Sol 1653 2560 2068 

dantzig42 

Best Sol 699 699 699 

Worst Sol 795 920 985 

Avg. Sol 703 802 833 

 Best Sol 7803 10987 11234 

ft53 Worst Sol 8692 13055 13288 

 Avg. Sol 8192 12243 12534 

kro124p 

Best Sol 40607 92450 103988 

Worst Sol 41543 121513 121239 

Avg. Sol 41473 101229 110447 

ftv170 

Best Sol 3244 6421 11215 

Worst Sol 3422 8416 13221 

Avg. Sol 3384 7019 10878 

rbg323 

Best Sol 1501 4212 5175 

Worst Sol 1589 5342 5341 

Avg. Sol 1557 4654 5072 

rbg358 

Best Sol 1339 5404 5560 

Worst Sol 1408 6004 5889 

Avg. Sol 1394 5622 5629 

 Best Sol 2867 6257 6259 

rbg403 Worst Sol 3023 6671 6885 

 Avg. Sol 2965 6455 6632 

 Best Sol 3268 6854 7218 

rbg443 Worst Sol 3432 7388 7523 

 Avg. Sol 3356 6981 7318 

Further, we considered results reported in [37] for 
comparing with our proposed crossover ASCX. Recently 
Weise et al. [38] made a comparative study among eleven 
crossover operators for the TSP and found that heuristic 
crossover (HX) [39] is the best performing operator. The HX 
applies a greedy heuristic to create an offspring from two 
parents. So, we implemented the GA using HX and run on the 
above twelve problem instances. It is to be noted that the same 
common parameters‘ values selected for GAs in [37] are used 
for ASCX and HX. The parameters are as follows: population 
size, maximum generation, crossover, and mutation 
probabilities are 150, 500, 0.80, and 0.10, respectively, for less 
than 100 size instances, whereas population size and 
maximum generation are 200 and 1000, respectively for more 
than 100 size instances. Also, the experiments are performed 

30 times (30 runs) for each instance. Table VI reports best, 
worst and average solution costs in 30 runs by ASCX, CX2 
and HX. 

The crossovers ASCX and HX hit best known solutions 
for the instances gr21 and fri26, whereas ASCX, CX2 and HX 
hit best known solution for the instance dantzig42 at least once 
in 30 runs. In terms of best solution cost, except for the 
instance dantzig42, ASCX is found better than CX2, and 
except for gr21, fri26 and dantzig42, ASCX is better than HX. 
However, in terms of worst and average solution costs ASCX 
is found to be the best among three crossover operators for all 
instances. From this study it is very clear that our proposed 
crossover ASCX is far better than CX2 and HX. 

V. CONCLUSION AND FUTURE WORKS 

Several crossover operators have been proposed and 
reported for the TSP by using GAs. We have proposed a new 
crossover operator, named ASCX, for the TSP. This proposed 
operator upgrades the SCX and improved the quality of 
offspring. It is easy to execute and always generates a valid 
offspring. We focused on some blind crossover operators, 
namely, PMX, OX, AEX and CX, and distance-based 
crossover operators, namely, GX, SCX and BCSCX along 
with ASCX. Firstly, we applied these operators on a pair of 
chromosomes in manual experiment and found that ASCX 
performed very good. Then for a significant performance, 
twelve benchmark instances from the TSPLIB (traveling 
salesman problem library) have been considered. We 
developed sixteen variant GAs using crossovers with/without 
mutation and carried out comparative study of the GAs on the 
instances. In terms of solution quality, our comparative study 
showed that distance-based crossovers are far superior than 
the blind crossovers, and our proposed crossover operator 
ASCX is the best, BCSCX and SCX are the second-best, and 
CX is the worst. However, among blind crossovers OX is 
found to be the best. This observation is verified by Student‘s 
t-test at 95% confidence level. Further, we carried out a 
comparative study among CX2, HX and ASCX, and found 
that our proposed crossover ASCX is the best. Thus, our 
proposed operator may be good operator to find more better 
and accurate results, researchers may use it for other related 
combinatorial optimization problems. 

In this present study, we considered the original version of 
some crossover operators. Our objective was only to compare 
the quality of the solutions obtained by the crossover 
operators, neither to improve the solution quality by any of the 
operators nor to design the most competitive algorithm for the 
TSP. So, we neither used any local search technique to 
enhance the solution quality nor developed parallel version of 
algorithms to find exact solution. Consequently, we have 
limited ourselves to simple and pure GA process. Also, we set 
highest crossover probability to display exact nature of 
crossover operators. Mutation might be used with lowest 
probability just not to get stuck in local minima quickly. 
However, one can incorporate good local search procedure to 
the hybridize the algorithm, and thus, to solve problem 
instances exactly, which is under our investigation. Finally, 
the advantage and helpfulness of the ASCX can be tested on 
other combinatorial optimization problems. 
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