
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

593 | P a g e
www.ijacsa.thesai.org

Adaptive Sequential Constructive Crossover Operator

in a Genetic Algorithm for Solving the Traveling

Salesman Problem

Zakir Hussain Ahmed

Department of Mathematics and Statistics, College of Science

Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia

Abstract—Genetic algorithms are widely used metaheuristic

algorithms to solve combinatorial optimization problems that are

constructed on the survival of the fittest theory. They obtain near

optimal solution in a reasonable computational time, but do not

guarantee the optimality of the solution. They start with random

initial population of chromosomes, and operate three different

operators, namely, selection, crossover and mutation, to produce

new and hopefully better populations in consecutive generations.

Out of the three operators, crossover operator is the most

important operator. There are many existing crossover operators

in the literature. In this paper, we propose a new crossover

operator, named adaptive sequential constructive crossover, to

solve the benchmark travelling salesman problem. We then

compare the efficiency of the proposed crossover operator with

some existing crossover operators like greedy crossover,

sequential constructive crossover, partially mapped crossover

operators, etc., under same genetic settings, for solving the

problem on some benchmark TSPLIB instances. The

experimental study shows the effectiveness of our proposed

crossover operator for the problem and it is found to be the best
crossover operator.

Keywords—Genetic algorithm; adaptive sequential constructive

crossover; traveling salesman problem; NP-hard

I. INTRODUCTION

The usual travelling salesman problem (TSP) is very
famous combinatorial optimization problem that finds a least
cost Hamiltonian cycle in a network. The RAND Corporation
introduced the TSP in 1948. The Corporation‘s reputation
helped to make the TSP well-known and popular problem.
The TSP also became popular at that time due to the new
subject of linear programming and attempts to solve
combinatorial optimization problems. It can be stated as.

A network with ‗n‘ nodes, with 'node 1' as ‗depot‘ and a
travel cost (or distance, or travel time etc.,) matrix C= [cij] of
order n associated with ordered pairs (i, j) of nodes is given.
The problem is to find a least cost Hamiltonian cycle. Based
on the structure of the cost matrix, the TSPs are classified into

two types as symmetric and asymmetric. If cij = cji,  i, j, the
TSP is symmetric, otherwise, it is asymmetric. For

asymmetric TSP with n nodes, there are)!1(n possible

solutions with at least one of them provide the minimum cost.

For symmetric TSP, there are
2

)!1(n possible solutions along

with same valued reverse cyclic permutations. If there are only
10 nodes, then there are 362,880 and 181,440 tours for
asymmetric TSP and symmetric TSP, respectively. The
number of possible solutions in both types is very large for
any size, n; so, a complete search is very difficult, if it is not
impossible. That means, the problem is very difficult to solve.
The TSP has been researched by several researchers for
mainly three reasons. First, it can model many real-life
problems. Second, it is NP-Hard [1]. Third, NP-Hard
problems are so difficult that no one has found any efficient
algorithm to solve them for large sized problem instances.
Also, NP-hard problems are equivalent to each other; so, if
one can develop efficient algorithm for solving one of them,
then one could develop efficient algorithm for others.

The TSP has application in several situations such as
automatic drilling of printed circuit boards and threading of
scan cells in a testable very-large-scale-integrated (VLSI)
circuit, automatic drilling of printed circuit boards and
circuits, computer wiring, X-ray crystallography, movement
of people [2].

Several exact and heuristic/metaheuristic algorithms have
been reported for solving the TSP. Branch and bound [3],
branch and cut [4], and lexisearch algorithm [5] are some
exact algorithms. These algorithms provide the exact optimal
solution to the problem, but as the problem size increases
computational time increases exponentially. As reported by
Deng et al. [6] only small sized TSP instances can be solved to
exact optimality. Since some practically large problem
instances must be solved, hence it is important to obtain
heuristically optimal solution by ensuring the quality of the
solution in reasonable time, rather to obtain exact optimal
solution in hell of time. Heuristic/metaheuristics algorithms
give near optimal solution in a reasonable computational time,
but do not guarantee the optimality of the solution. Example
of metaheuristic algorithms are ant colony optimization [7],
genetic algorithm [8], simulated annealing [9], state transition
algorithm [10], tabu search [11], artificial neural network [12],
artificial bee colony [13], black hole [14], and particle swarm
optimization [7]. Out of these metaheuristic algorithms,
genetic algorithm (GA) is one of the best and widely used
algorithm to solve the TSP as well as other combinatorial
optimization problems in computer science and operations
research.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

594 | P a g e
www.ijacsa.thesai.org

GAs are proposed by John Holland in 1970s which are
based on imitating Darwin‘s theory of ‗the survival of the
fittest‘ in natural biology [8]. To solve a real-world problem
using GAs, two most important conditions are to be fulfilled:
(i) a chromosome representing a solution, and (ii) an
objective/fitness function can be defined. Any simple GA
begins with random initial population, called gene pool of
chromosomes, and operates three different operators to
produce new, usually better, populations in consecutive
iterations/generations. Selection is the 1st operator in which
chromosomes are duplicated to next generation
probabilistically. Crossover is the 2nd operator in which
couples of chromosomes are selected randomly and mated to
produce new and better chromosomes. Mutation is the 3rd
operator which alters occasionally a chromosome position
value. Crossover along with selection operator is the main
leading procedure in GAs. Mutation expands search space and
defends from loss of any genetic substance due to selection
and crossover operators.

Though GA is one of the best algorithms, however, its
performance depends on initial population, selection,
crossover and mutation operators, and some parameters such
as population size, crossover probability, mutation probability
and stopping condition (Goldberg, 1989). Among different
operators, crossover plays very important role in GAs, and
accordingly many crossover operators have been developed
and reported in the literature for solving the TSP [15]. This
paper aims to propose a modified version of sequential
constructive crossover (SCX) [16] named adaptive sequential
constructive crossover (ASCX) and then compare with eight
crossover operators including SCX to assess suitability for the
TSP.

This paper is organized as follows: Section II discusses
GAs using some existing crossover operators and our
proposed crossover operator, named adaptive crossover
sequential constructive crossover operator, for the TSP, while
design of variant GAs is discussed in Section III. Section IV
describes computational experiences for sixteen variant GAs
using eight crossover operators with two possibilities of
mutation operator and discussions. Finally, Section V presents
concluding remarks and future works.

II. GENETIC ALGORITHMS FOR THE TSP

For applying GA to any optimization problem, one must
find a way for representing solutions as legal chromosomes
such that crossovers of legal chromosomes result in legal
chromosomes. The methods for representing solutions differ
by problem and, contain a certain art. There are many
representation methods for solving the TSP using GAs. Some
of them are binary, adjacency, ordinal, matrix and path
representations. We consider only the path representation that
simply lists the node labels such that no node can appear twice
in the same chromosome. For example, let {1, 2, 3, 4, 5, 6, 7,

8, 9} be the node labels in a 9-node instance, then a tour {1→

9→6→ 2→7 → 4→3→8→ 5 →1} may be represented as (1,
9, 6, 2, 7, 4, 3, 8, 5). The objective function is the sum of the
costs of all edges in the tour.

A. Initial Population and Selection Operator

In GAs, after generating the random population of
chromosomes, selection operator is applied. In selection
operator, chromosomes are copied into mating pool with a
probability related to their fitness value. By transferring highly
fit chromosomes to next generation mating pool, selection
mimics the Darwinian theory of survival-of-the-fittest in the
natural biology. In natural biology, fitness is determined by an
individual‘s capability to survive predators, epidemic, and
other difficulties to maturity and following selection. In this
stage no new chromosome is created. The commonly used
selection operator is the proportionate selection operator,
where an individual is selected for the mating pool according
to a probability related to its fitness value. We have
considered the stochastic remainder selection process [17] for
our GAs.

B. Existing Crossover Operators

Since the crossover operator plays a vital role in GA, so
many crossover operators have been proposed for the TSP.
However, the traditional crossover operators such as one-point,
two-point, and uniform crossover operators are not suitable for
the TSP. Two kinds of crossover operators have been
developed for the TSP – distance-based and blind crossover
operators [18]. We consider some of them from both kinds and
compare our proposed crossover operator with them.

1). Partially mapped crossover operator: Goldberg and

Lingle [19] developed the partially mapped crossover (PMX)

that used two crossover points. It defines an interchange

mapping in the section between these points. PMX was the

first crossover for the GA to solve the TSP. Consider, for

example, the two parent chromosomes P1: (1, 2, 3, 4, 6, 9, 5, 7,

8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6). We shall consider same pair

of chromosomes for illustrating all the crossover operators

considered here. Also, we fix headquarters (first gene) as

‗node 1‘. Suppose the randomly selected cut points are

between 3rd and 4th genes and between 7th and 8th genes as

follows (these cut points are marked with ―|‖):

P1: (1, 2, 3 | 4, 6, 9, 5 | 7, 8) and

P2: (1, 3, 5 | 7, 8, 9, 4 | 2, 6)

We always fix first gene as ‗node 1‘. The mapping
sections are between the cut points. In this example, the
mapping systems are 4↔7, 6↔8, 9↔9, and 5↔4. Now these
mapping sections are copied with each other to build
offsprings as follows:

O1: (1, *, * | 7, 8, 9, 4 | *, *),

O2: (1, *, * | 4, 6, 9, 5 | *, *)

Then we can add more genes from the original parents
which do not result any conflict as follows:

O1: (1, 2, 3 | 7, 8, 9, 4 | *, *),

O2: (1, 3, * | 4, 6, 9, 5 | 2, *)

The first * in the first offspring should be 7 that comes
from first parent, but it is already present in this offspring, so

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

595 | P a g e
www.ijacsa.thesai.org

we check mapping 4↔ 7, but 4 is also present in this
offspring, again check mapping 5↔4, so 5 is added. Similarly,
the second * in first offspring should be 8 that comes from
first parent, but it is present in this offspring, so we check
mapping 6↔8 and hence, we add 6 at second *. Thus, the first
offspring becomes

O1: (1, 2, 3 | 7, 8, 9, 4 | 5, 6),

Similarly, we build the second offspring as:

O2: (1, 3, 7 | 4, 6, 9, 5 | 2, 8)

2). Ordered crossover operator: Davis [20] developed the

ordered crossover (OX) that builds offspring by choosing a

subsequence of a tour from one parent and preserving the

relative order of nodes from the other parent. Consider the

same example parent chromosomes with randomly chosen two

cut points marked by ―|‖:

P1: (1, 2, 3 | 4, 6, 9, 5 | 7, 8) and

P2: (1, 3, 5 | 7, 8, 9, 4 | 2, 6)

We always fix first gene as ‗node 1‘. At first, the
offsprings are built by copying the genes between the cuts
with similar way into the offsprings that lead the offsprings as:

O1: (1, *, * | 4, 6, 9, 5 | *, *),

O2: (1, *, * | 7, 8, 9, 4 | *, *)

Then beginning from the second cut point of one parent,
the genes from the other parent are copied in the same order
except the existing genes. The sequence of the genes in the
second parent from the second cut point is ―2
→6→3→5→7→8 →9 →4.‖ After omitting the genes 4, 6, 9
and 5 that are already present in the first offspring, the
sequence becomes ―2→3→7→8‖, which is placed in the first
offspring beginning from the second cut point:

O1: (1, 7, 8 | 4, 6, 9, 5 | 2, 3).

Similarly, we build the second offspring as:

O2: (1, 6, 5 | 7, 8, 9, 4 | 2, 3)

3). Alternating edges crossover operator: Grefenstette et

al. [21] proposed alternating edges crossover (AEX) operator

that assumes a chromosome as a directed cycle of arcs. Only

one offspring is built by selecting alternative arcs from both

parents, with some additional random selections in case of

infeasibility. Consider the same example parent chromosomes

P1: (1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6).

First, the arc (1, 2) is first selected from the first parent and
copied to the offspring. Then the arcs (2, 6) from second
parent, (6, 9) from first parent and (9, 4) from second parent
are selected and copied to the offspring. Then, arc (4, 6) is
selected from first parent, however, this arc produces a cycle
and a new arc leaving the node 4 to a node not yet visited is
selected randomly. Suppose the arc (4, 3) is chosen. Then, the
arcs (3, 5) from second parent, (5, 7) from first parent and (7,
8) from second parents are selected. This way the offspring is
built as follows:

O: (1, 2, 6, 9, 4, 3, 5, 7, 8)

All arcs in the offspring are inherited from the parents,
apart from the arc (4, 3).

4). Cycle crossover operator: Oliver et al. [22] developed

cycle crossover (CX) that builds an offspring where every

node and its corresponding position originated from one of the

parents. Consider the same example parent chromosomes P1:

(1, 2, 3, 4, 6, 9, 5, 7, 8) and P2: (1, 3, 5, 7, 8, 9, 4, 2, 6).

As we fix first gene as node 1, for the next position, we
select randomly between 2 and 3. Suppose we select node 2,
then the offspring becomes:

O1: (1, 2, *, *, *, *, *, *, *)

Every gene in the offspring is taken from one of its parents
with the same position, so the next gene to be considered must
be bit 3, as this gene from the second parent is just below the
selected gene 2. In the first parent this gene is at 3rd position;
thus, the offspring becomes:

O1: (1, 2, 3, *, *, *, *, *, *)

Next gene will be 5 of second parent as it is just below the
current gene 3, which is present at 7th position in first parent.
Thus, the offspring becomes:

O1: (1, 2, 3, *, *, *, 5, *, *)

Next gene will be 4 of second parent as it is just below the
current gene 5, which is present at 4th position in first parent.
Thus, the offspring becomes:

O1: (1, 2, 3, 4, *, *, 5, *, *)

Next gene will be 7 of second parent as it is just below the
current gene 4, which is present at 8th position in first parent.
Thus, the offspring becomes:

O1: (1, 2, 3, 4, *, *, 5, 7, *)

Next, we have node 2, which is already present in the
offspring; thus, we have completed a cycle and hence, we fill
the remaining blank positions with the genes of those
positions which are present in second parent. This way the
offspring is built as follows:

O1: (1, 2, 3, 4, 8, 9, 5, 7, 6)

Similarly, we build the second offspring as (same as P2):

O2: (1, 6, 5, 7, 8, 9, 4, 2, 3)

5). Greedy crossover operator: Grefenstette et al. [21] also

proposed greedy crossover (GX) for the TSP that selects a

starting node randomly. Then in each step, four neighbor

nodes of currently selected node in both parents are

considered, and the cheapest one (not present in the offspring)

is selected. If the cheapest node or all four neighbour nodes

are present in the offspring, then any node from the remaining

is selected randomly. This operator creates only one offspring

from two parents. Let us illustrate the GX through the 9-node

example given as cost matrix in Table I and the same parent

chromosomes considered above.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

596 | P a g e
www.ijacsa.thesai.org

TABLE. I. THE COST MATRIX

Node 1 2 3 4 5 6 7 8 9

1 999 7 15 9 10 6 8 9 10

2 11 999 8 7 11 3 6 4 3

3 15 5 999 16 12 5 8 13 4

4 2 5 11 999 9 13 14 4 2

5 8 6 3 5 999 6 7 10 9

6 6 13 8 11 5 999 5 4 5

7 5 15 3 7 12 6 999 8 9

8 9 3 9 14 3 11 8 999 10

9 11 16 3 9 10 7 9 10 999

As we fixed first gene as ‗node 1‘, the offspring is initiated
as (1). The nodes 2 and 3 are neighbours of 1 with their costs
7 and 15 respectively. The node 2 is cheaper, so, it is copied
into the incomplete offspring: (1, 2).

Next, the nodes 3, 1, 6 and 4 are neighbours of 2 with their
costs 8, 11, 3 and 7 respectively. The node 6 is the cheapest,
so, it is copied into the incomplete offspring: (1, 2, 6).

Next, the nodes 9, 4, 1 and 2 are neighbours of 6 with their
costs 5, 11, 6 and 13 respectively. The node 9 is the cheapest
so, it is copied into the incomplete offspring: (1, 2, 6, 9).

Next, the nodes 5, 6, 4 and 8 are neighbours of 9 with their
costs 10, 7, 9 and 10 respectively. The node 6 is the cheapest,
but it is already present in the offspring, so, node 3 is selected
randomly and it is copied into the incomplete offspring: (1, 2,
6, 9, 3).

Next, the nodes 4, 2, 5 and 1 are neighbours of 3 with their
costs 16, 5, 12 and 15 respectively. The node 2 is the cheapest,
but it is already present in the offspring, so, node 4 is selected
randomly and it is copied into the incomplete offspring: (1, 2,
6, 9, 3, 4).

Continuing in this way, we have the complete offspring:
(1, 2, 6, 9, 3, 4, 5, 7, 8) with cost 67.

6). Sequential constructive crossover operator: Ahmed

[16] proposed the sequential constructive crossover (SCX)

operator which is modified in [23] that constructs an offspring

using better arcs based on their cost present in the parents'

structure. Furthermore, it also uses the better arcs that are

present neither in the parents' structure. SCX sequentially

searches both parent chromosomes and considers the first

legitimate node (i.e. unvisited node) that appeared after the

present node and in case, if no legitimate node is found in

either of the parent chromosomes, it sequentially searches

from the beginning of the chromosome and then compares

their associated cost to decide the next node of the child

chromosome. The SCX is compared with edge recombination

crossover (ERX) and generalized N-point crossover (GNX) on

symmetric and asymmetric TSPLIB instances. As reported,

SCX is better than ERX and GNX. Khan [24] presented a

comparative study among eight different crossover operators,

namely, Two-Point Crossover, PMX, CX, Shuffle Crossover,

ERX, Uniform Order-based Crossover, Sub-tour Exchange

Crossover and SCX, and found that SCX outperformed other

operators in achieving good quality solution for the TSP.

Further, SCX is successfully applied to many other

combinatorial optimization problems ([25]-[31], [32]). Let us

recall the algorithm for the SCX [23].

Step 1: Start from 'node 1‘ (i.e., current node p =1).

Step 2: Sequentially search both parent chromosomes and
consider the first ‗legitimate node' (the node that is not yet
visited) appeared after 'node p‘ in each parent. If no 'legitimate
node' after 'node p‘ is present in any of the parents, search
sequentially from the starting of the parent and consider the
first 'legitimate node', and go to Step 3.

Step 3: Suppose the 'node α' and the 'node β' are found in
1st and 2nd parent respectively, then for selecting the next
node go to Step 4.

Step 4: If cpα < cpβ, then select 'node α', otherwise, 'node β'
as the next node and concatenate it to the partially constructed
offspring chromosome. If the offspring is a complete
chromosome, then stop, otherwise, rename the present node as
'node p' and go to Step 2.

Let us illustrate the SCX through the same example given
above. Select 'node 1' as the 1st gene. The legitimate nodes
after node 1 in P1 and P2 are 2 and 3 respectively with c12=7
and c13=15. Since c12<c13, we accept node 2. So, the partially
constructed chromosome will be (1, 2).

The legitimate nodes after node in P1 and P2 are nodes 3
and 6 respectively with c23=8 and c26=3. Since c26<c23, we
accept node 6. So, the partially constructed chromosome will
be (1, 2, 6).

The legitimate node after node 6 in P1 is 9 with c69=5, but
none in P2. So, for P2, we sequentially search from the
beginning of the chromosome and find the first legitimate
node 3 with c63=8. Since c69<c63, we accept node 9. So, the
partially constructed chromosome will be (1, 2, 6, 9).

The legitimate nodes after node 9 in P1 and P2 are 5 and 4
respectively with c95=10 and c94=9. Since c94<c95, we accept
node 4. So, the partially constructed chromosome will be (1, 2,
6, 9, 4).

The legitimate node after node 4 in P1 is 5 with c45=9, but
none in P2. So, for P2, we sequentially search from the
beginning of the chromosome and find the first legitimate
node 3 with c43=11. Since c45<c43, we accept node 5. So, the
partially constructed chromosome will be (1, 2, 6, 9, 4, 5).

Continuing this way, we obtain the complete offspring
chromosome: (1, 2, 6, 9, 4, 5, 7, 8, 3) with cost 72.

7). Bidirectional circular sequential constructive

crossover operator: The bidirectional circular sequential

constructive crossover (BCSCX) was proposed by Kang et al.

[33] to modify SCX that searches for next neighbor in both

left and right directions in both parents. Thus, four neighbor

genes are considered. Also, during searching for the next

neighbor gene, if it reaches to the end or to the beginning of

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

597 | P a g e
www.ijacsa.thesai.org

the genes list in any of the parents, it will wrap around. Let us

illustrate the BCSCX through the same example given above.

Select 'node 1' as the 1st gene. The legitimate nodes after

node 1 in both directions in P1 are 2 and 8 (after wrapping

around), and in P2 are 3 and 6 (after wrapping around), with

their costs 7, 9, 15 and 6 respectively. We accept node 6 as it

is cheapest. So, the partially constructed offspring

chromosome will be (1, 6).

The legitimate nodes after node 6 in both directions in P1
are 9 and 4, and in P2 are 3 (after wrapping around) and 2,
with their costs 5, 11, 8 and 13 respectively. We accept node 9
as it is cheapest. So, the partially constructed chromosome
will be (1, 6, 9).

The legitimate nodes after node 9 in both directions in P1
are 5 and 4, and in P2 are 4 and 8, with their costs 10, 9, 9 and
10 respectively. We accept node 4 and the partially
constructed chromosome will be (1, 6, 9, 4).

The legitimate nodes after node 4 in both directions in P1
are 5 and 3, and in P2 are 2 and 8, with their costs 9, 11, 5 and
4 respectively. We accept node 8 and the partially constructed
chromosome will be (1, 6, 9, 4, 8).

Continuing this way, we obtain the complete offspring
chromosome: (1, 6, 9, 4, 8, 2, 7, 3, 5) with cost 56.

Among the above discussed crossover operators GX, SCX
and BCSCX are called distance-based crossover operators
because they care about the distance between nodes. On the
other hand, crossover operators like PMX, OX, AEX, CX,
GNX and ERX are called blind crossover operators because
they only concern about to satisfy the constraints of the
problem and do not use any information associated with the
problem [18]. We propose to compare our proposed ASCX
against both kind of crossover operators.

C. Proposed Crossover Operator: Adaptive Sequential

Constructive Crossover Operator

We are going to propose a modification of the SCX
operator, named adaptive SCX (ASCX). In BCSCX, four
neighbor genes are considered. We propose to construct
offspring either in forward direction from the first gene or in
backward direction from the last gene or in mixed direction
adaptively depending on the cost of the next node. Hence, we
consider a total of eight neighbour nodes of a current node,
four nodes for each of the two genes (nodes). Since there are n
genes in a chromosome, we select 'node 1' as the first and
(n+1)th (it is not shown in the chromosome) genes. Let us
define the algorithm for the ASCX as follows.

Step 1: Start from the first gene, 'node 1‘ (i.e., current node
p =1 in position i=1) in forward direction and from the (n+1)th
gene, ‗node 1‘ (it is not shown in the chromosome), (i.e.,
current node q =1 in position j=n+1) in backward direction.

Step 2: Sequentially search both parent chromosomes in
right direction and consider the first ‗legitimate node' (the
node that is not yet visited) appeared after 'node p‘ in each
parent. If no 'legitimate node' after 'node p‘ is present in any of
the parents, search sequentially from the starting of the parent
(wrap around) and consider the first 'legitimate node'. Suppose

the 'node α' and the 'node β' are found in 1st and 2nd parent
respectively. Go to Step 3.

Step 3: Sequentially search both parent chromosomes in
left direction and consider the first ‗legitimate node' appeared
after 'node p‘ in each parent. If no 'legitimate node' after 'node
p‘ is present in any of the parents, search sequentially from the
end of the parent (wrap around) and consider the first
'legitimate node'. Suppose the 'node γ‘ and the 'node δ' are
found in 1st and 2nd parent respectively. Now, suppose among
four nodes, 'node u' is the cheapest with cost s=min. {cpα, cpβ,
cpγ, cpδ}. Go to Step 4.

Step 4: Sequentially search both parent chromosomes in
left direction and consider the first ‗legitimate node' appeared
after 'node q‘ in each parent. If no 'legitimate node' after 'node
q‘ is present in any of the parents, search sequentially from the
end of the parent (wrap around) and consider the first
'legitimate node'. Suppose the 'node w' and the 'node x' are
found in 1st and 2nd parent respectively. Go to Step 5.

Step 5: Sequentially search both parent chromosomes in
right direction and consider the first ‗legitimate node'
appeared after 'node q‘ in each parent. If no 'legitimate node'
after 'node q‘ is present in any of the parents, search
sequentially from the beginning of the parent (wrap around)
and consider the first 'legitimate node'. Suppose the 'node y‘
and the 'node z' are found in 1st and 2nd parent respectively.
Now, suppose among four nodes, 'node v' is the cheapest with
cost t=min. {cwq, cxq, cyq, czq}. Now, for selecting the next
node as well as adding it in a position in the offspring
chromosome go to Step 6.

Step 6: If s ≤ t, then add 'node u' in position ‗i' in the
partially constructed offspring chromosome and set p=u,
i=i+1. Otherwise, add 'node v' in position ‗j' in the partially
constructed offspring chromosome and set q=v, j=j-1. Now, If
the offspring is a complete chromosome, then stop, otherwise,
go to Step 2.

Let us illustrate the ASCX through the same example
parent chromosomes given above. Since there are 9 genes in
the parent chromosomes, we select 'node 1' as the first and 10th
gene (it is not shown in the chromosome). The legitimate
nodes after first gene, node 1, in both directions in P1 are 2
and 8 (after wrapping around), and in P2 are 3 and 6 (after
wrapping around), with their costs 7, 9, 15 and 6 respectively.
Among them node 6 with cost 6 is the cheapest. On the other
hand, the legitimate nodes before 10th gene, node 1 (though it
is not shown in the chromosome), in both directions in P1 are
8 and 2 (after wrapping around), and in P2 are 6 and 3 (after
wrapping around), with their costs 9, 7, 6 and 15 respectively.
Among them node 6 with cost 6 is the cheapest. Since both
cheapest nodes are same 6, we add it as the 2nd gene in the
offspring, and hence the partially constructed offspring
chromosome will be (1, 6, *, *, *, *, *, *, *).

The legitimate nodes after 2nd gene, node 6, in both
directions in P1 are 9 and 4, and in P2 are 3 (after wrapping
around) and 2, with their costs 5, 11, 8 and 13 respectively.
Among them node 9 with cost 5 is the cheapest. On the other
hand, the legitimate nodes before 10th gene, node 1, in both
directions in P1 are 8 and 2 (after wrapping around), and in P2

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

598 | P a g e
www.ijacsa.thesai.org

are 2 and 3 (after wrapping around), with their costs 9, 11, 11
and 15 respectively. Among them node 8 with cost 9 is the
cheapest. Since between two cheapest nodes, node 9 is
cheaper, we add it as the 3rd gene in the offspring, and hence
the partially constructed offspring chromosome will be (1, 6,
9, *, *, *, *, *, *).

The legitimate nodes after 3rd gene, node 9, in both
directions in P1 are 5 and 4, and in P2 are 4 and 8, with their
costs 10, 9, 9 and 10 respectively. Among them node 4 with
cost 9 is the cheapest. On the other hand, the legitimate nodes
before 10th gene, node 1, in both directions in P1 are 8 and 2
(after wrapping around), and in P2 are 2 and 3 (after wrapping
around), with their costs 9, 11, 11 and 15 respectively. Among
them node 8 with cost 9 is the cheapest. Since both cheapest
nodes have same costs, we add node 4 as the 4th gene in the
offspring, and hence the partially constructed offspring
chromosome will be (1, 6, 9, 4, *, *, *, *, *).

The legitimate nodes after 4th gene, node 4, in both
directions in P1 are 5 and 3, and in P2 are 2 and 8, with their
costs 9, 11, 5 and 4 respectively. Among them node 8 with
cost 4 is the cheapest. On the other hand, the legitimate nodes
before 10th gene, node 1, in both directions in P1 are 8 and 2
(after wrapping around), and in P2 are 2 and 3 (after wrapping
around), with their costs 9, 11, 11 and 15 respectively. Among
them node 8 with cost 9 is the cheapest. Since between two
cheapest nodes, node 8 is cheaper, we add it as the 5th gene in
the offspring, and hence the partially constructed offspring
chromosome will be (1, 6, 9, 4, 8, *, *, *, *).

The legitimate nodes after 5th gene, node 8, in both
directions in P1 are 2 (after wrapping around) and 7, and in P2
are 2 and 7, with their costs 3, 8, 3 and 8 respectively. Among
them node 2 with cost 3 is the cheapest. On the other hand, the
legitimate nodes before 10th gene, node 1, in both directions in
P1 are 7 and 2 (after wrapping around), and in P2 are 2 and 3
(after wrapping around), with their costs 5, 15, 5 and 15
respectively. Among them node 7 with cost 5 is the cheapest.
Since between two cheapest nodes, node 2 is cheaper, we add
it as the 6th gene in the offspring, and hence the partially
constructed offspring chromosome will be (1, 6, 9, 4, 8, 2, *,
*, *).

The legitimate nodes after 6th gene, node 2, in both
directions in P1 are 3 and 7 (after wrapping around), and in P2
are 3 (after wrapping around) and 7, with their costs 8, 6, 8
and 6 respectively. Among them node 7 with cost 6 is the
cheapest. On the other hand, the legitimate nodes before 10th
gene, node 1, in both directions in P1 are 7 and 3 (after
wrapping around), and in P2 are 7 and 3 (after wrapping
around), with their costs 5, 15, 5 and 15 respectively. Among
them node 7 with cost 5 is the cheapest. Since between two
cheapest nodes, node 7 is cheaper, we add it as the 9th gene in
the offspring, and hence the partially constructed offspring
chromosome will be (1, 6, 9, 4, 8, 2, *, *, 7).

The legitimate nodes after 6th gene, node 2, in both
directions in P1 are 3 and 5 (after wrapping around), and in P2
are 3 (after wrapping around) and 5, with their costs 8, 11, 8
and 11 respectively. Among them node 3 with cost 8 is the
cheapest. On the other hand, the legitimate nodes before 9th
gene, node 7, in both directions in P1 are 5 and 3 (after

wrapping around), and in P2 are 5 and 3 (after wrapping
around), with their costs 7, 8, 7 and 8 respectively. Among
them node 5 with cost 7 is the cheapest. Since between two
cheapest nodes, node 5 is cheaper, we add it as the 8th gene in
the offspring, and hence the partially constructed offspring
chromosome will be (1, 6, 9, 4, 8, 2, *, 5, 7).

Continuing this way, we obtain the complete offspring
chromosome: (1, 6, 9, 4, 8, 2, 3, 5, 7) with cost 59.

D. Mutation Operator

After applying crossover operator, mutation operator is
applied. The mutation operator randomly selects a position in
the chromosome and changes the corresponding allele (value
of a gene), thereby modifying information. The need for
mutation comes from the fact that as the less fit members of
successive generations are discarded; some aspects of genetic
material could be lost forever. By performing occasional
random changes in the chromosomes, GAs ensure that new
parts of the search space are reached, which selection and
crossover alone couldn‘t fully guarantee. In doing so, mutation
ensures that no important features are prematurely lost, thus
maintaining the mating pool diversity. For the TSP, the
classical mutation operator does not work. For this
investigation, we have considered the reciprocal exchange
mutation that selects two nodes randomly and swaps them.

III. DESIGN OF OUR GENETIC ALGORITHMS

A simple GA may be summarized as follows:

Step 1: Create initial random population of chromosomes
of size Ps and set generation = 0.

Step 2: Evaluate the population.

Step 3: Set generation = generation + 1 and select good
chromosomes by selection procedure.

Step 4: Perform crossover with crossover probability Pc.

Step 5: Perform bit-wise mutation with mutation
probability Pm.

Step 6: Replace old population with new one.

Step 7: Repeat Steps 2 to 6 until the terminating criterion
is satisfied.

As suggested in [18] if the performance of the distance-
based crossover is compared with blind crossovers, the
comparison is not going to be as fair as it should be. So, we
consider both types of crossover operators. There are eight
possible selections for crossover operator, which are: PMX,
OX, AEX, CX, GX, SCX, BCSCX and ASCX respectively.
Within one selection, a single crossover operator is executed.

However, we apply two possibilities of selecting
mutation–presence or absence of mutation. There are eight
possible selections for crossover operator along with two
possibilities of mutation, thus providing altogether sixteen
variants of GAs. The goal of such separate execution is to
measure effectiveness of specific operator and to find their
comparative ranking. Note that each variant GA is purely
simple or non-hybrid, which is built of GA procedures and
operators, and it does not combine elements of any other

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

599 | P a g e
www.ijacsa.thesai.org

heuristic or metaheuristic algorithm. However, GA search
process is guided by some parameters, namely, population size
that determines number of chromosomes in a population,
crossover probability that states the probability of performing
crossover between two parent chromosomes, mutation
probability that specifies the probability of performing bit-
wise mutation, and termination condition that specifies
condition to stop the GA search.

IV. COMPUTATIONAL EXPERIENCES AND DISCUSSIONS

In order to compare the efficiency of the different
crossover operators, variant GAs using different crossovers
have been encoded in Visual C++ on a Laptop with i3-3217U
CPU@1.80 GHz and 4 GB RAM under MS Windows 7, and
run for twelve benchmark TSPLIB instances [34]. In these
twelve problem instances, the ftv33, ftv38, ft53, kro124p,
ftv170, rbg323, rbg358, rbg403 and rbg443 are asymmetric,
and gr21, fri26 and dantzig42 are symmetric TSPs. Initial
population of chromosomes is generated randomly. The
following common parameters are selected for all algorithms:
population size is 50, crossover probability is 1.0 (i.e., 100%),
mutation probability is 0.09 (i.e., 9%), and maximum of 1,000
generations is the terminating condition. Though GA is
structured, yet randomized, so, its repeated execution on the
same input data with the same number of procedures usually
gives slightly different results. To compensate this
randomization effect, the experiments have been repeated 50
times for each instance. The results of experiments by the
sixteen GA variants are summarized in Tables II and IV. All
tables are organized in the same way: a row corresponds to a
problem instance (its best known solution is reported within
brackets) and a column to a GA variant considered by a
certain selection of crossover operator. Thus, a table entry
presents the summary of results of the corresponding instance
by the corresponding GA variant. The result is described by its
best solution cost, average solution cost, average percentage of
excess to the best known solution, standard deviation (S.D.) of
costs, and average convergence time (in second). The best
result for a chosen instance over all variants is marked by bold
face. The percentage of excess above the best known solution,
reported in TSPLIB website, is given by the

Fig. 1 and Fig. 2 present results for the instance ftv170
(considering only 30 generations). Fig. 1 refers to the GA
variants without mutation, and Fig. 2 to the variants with
mutation, respectively. In both figures, each graph
corresponds to a crossover operator, and it shows how the
current solution improves depending on the number of
generations. Only the three best performing crossover
operators, namely, SCX, BCSCX and ASCX, are reported.

In the figures, the labels on the left margin denote the
solution cost, while the labels on the right margin refer to
percentage of excess to the best known solution (Excess (%)).
All crossover operators have some randomized factors that
make them more effective when trying to add an allele. The

more randomized these operators are, the more possibilities of
progress should have. Fig. 1 shows that SCX has some
variations, but it is not the best. Though BCSCX and ASCX
have less variations and are competing each other, still ASCX
provides us best results. But it has limited variation range and
gets stuck in local minimums very quickly. From Fig. 2, it is
observed that mutation always improves performance by
helping crossovers to escape from local minima.

Table II reports results by the eight GA variants where
mutation is not applied. With respect to the average cost, it is
very clear from Table II that distance-based crossovers are far
better than blind crossovers. Among the crossovers, GX, SCX
and BCSCX obtain lowest average cost with lowest S.D for
the instances danzig42, gr21 and fr26 respectively. The
crossovers SCX and BCSCX are competing. The proposed
crossover ASCX obtains lowest average costs with lower S.D.
for remaining nine instances, namely, ftv33, ftv38, ft53,
kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443. So,
among all the crossovers ASCX is found to be the best. Based
on best solution costs also ASCX is found to be the best. The
results are depicted in Fig. 3, which also shows the
effectiveness of our proposed crossover operator ASCX.

Fig. 1. Performance of Three Crossover Operators without Mutation for the

Instance ftv170.

Fig. 2. Performance of Three Crossover Operators with Mutation for the

Instance ftv170.

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0

20000

40000

60000

80000

100000

120000

140000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

E
x
c
e
ss

 (
%

)

S
o

lu
ti

o
n

 c
o

st

Generations

SCX BCSCX ASCX
SCX BCSCX ASCX

0.00

50.00

100.00

150.00

200.00

0

20000

40000

60000

80000

100000

120000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

E
x
c
e
ss

 (
%

)

S
o

lu
ti

o
n

 c
o

st

Generations

SCX BCSCX
ASCX SCX

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

600 | P a g e
www.ijacsa.thesai.org

TABLE. II. SUMMARY OF THE RESULTS BY THE VARIANT GAS WITHOUT MUTATION FOR TSPLIB INSTANCES

Instance Results PMX OX AEX CX GX SCX BCSCX ASCX

gr21 Best Sol 3393 2927 3887 5112 3821 2707 2707 2707

(2707) Avg. Sol 4289.74 3806.40 4462.80 5767.94 4282.04 2907.20 2924.26 2916.04

 AvgExc(%) 58.47 40.61 64.86 113.07 58.18 7.40 8.03 7.72

S.D. 447.10 485.88 339.14 284.30 219.95 112.17 100.03 67.24

Avg. Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

fri26 Best Sol 1193 1014 1100 1799 993 941 937 937

(937) Avg. Sol 1520.24 1364.70 1305.86 2060.34 1071.26 981.38 957.70 959.74

 AvgExc(%) 62.25 45.65 39.37 119.89 14.33 4.74 2.21 2.43

S.D. 158.59 149.79 91.51 101.83 41.12 32.33 14.51 14.16

Avg. Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ftv33 Best Sol 2236 1722 1843 3269 1604 1380 1420 1378

(1286) Avg. Sol 2695.08 2352.22 2282.60 3539.30 1770.02 1489.20 1487.62 1412.68

 AvgExc(%) 109.57 82.91 77.50 175.22 37.64 15.80 15.68 9.85

S.D. 231.60 277.64 187.21 122.80 114.42 37.26 36.08 44.42

Avg. Time 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01

ftv38 Best Sol 2730 2288 2244 3806 1860 1635 1619 1629

(1530) Avg. Sol 3281.28 2853.34 2699.46 4267.20 2098.12 1772.80 1720.80 1707.50

 AvgExc(%) 114.46 86.49 76.44 178.90 37.13 15.87 12.47 11.60

S.D. 267.82 324.38 221.03 164.85 119.59 47.61 36.42 32.79

Avg. Time 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01

dantzig42 Best Sol 1430 1159 937 2167 699 750 736 699

(699) Avg. Sol 1786.76 1570.24 1153.74 2425.48 711.72 814.34 812.16 746.94

 AvgExc(%) 155.62 124.64 65.06 246.99 1.82 16.50 16.19 6.86

S.D. 168.28 165.08 91.39 111.80 22.30 32.43 29.54 27.99

Avg. Time 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01

ft53 Best Sol 13539 11923 13058 20977 11504 8188 8082 7970

(6905) Avg. Sol 17059.50 14595.36 14691.82 22342.38 12736.38 8626.44 8611.80 8472.16

 AvgExc(%) 147.06 111.37 112.77 223.57 84.45 24.93 24.72 22.70

S.D. 1541.62 1746.14 856.81 620.64 602.92 239.55 228.45 272.27

Avg. Time 0.00 0.02 0.01 0.00 0.01 0.03 0.02 0.27

kro124p Best Sol 109400 84177 122824 148310 97683 41392 41396 40308

(36230) Avg. Sol 130592.18 108875.06 143543.54 165422.36 107546.14 43789.36 42625.90 42156.86

 AvgExc(%) 260.45 200.51 296.20 356.59 196.84 20.86 17.65 16.36

 S.D. 9738.64 10308.85 9821.05 4375.44 4150.34 682.39 568.96 598.17

 Avg. Time 0.01 0.08 0.03 0.01 0.02 0.04 0.09 0.06

ftv170 Best Sol 17932 13271 9501 22545 5245 3696 3255 3258

(2755) Avg. Sol 19522.98 16231.42 10765.90 23785.48 6158.00 3719.26 3611.54 3473.52

 AvgExc(%) 608.64 489.16 290.78 763.36 123.52 35.00 31.09 26.08

 S.D. 1048.53 1629.45 620.84 427.26 319.37 179.77 137.69 112.91

 Avg. Time 0.03 0.25 0.11 0.03 0.07 0.13 0.19 1.44

rbg323 Best Sol 4675 3616 5050 5645 2651 1731 1657 1620

(1326) Avg. Sol 5014.40 4292.42 5259.02 5797.06 2985.10 1840.80 1747.90 1689.16

 AvgExc(%) 278.16 223.71 296.61 337.18 125.12 38.82 31.82 27.39

 S.D. 212.01 366.03 214.99 62.72 141.85 62.96 54.36 27.95

 Avg. Time 0.08 0.91 0.37 0.12 0.50 0.83 2.04 10.33

rbg358 Best Sol 5014 4081 5225 6307 2705 1678 1586 1393

(1163) Avg. Sol 5562.44 4641.02 5600.40 6481.82 3010.70 1740.04 1713.26 1453.60

 AvgExc(%) 378.28 299.06 381.55 457.34 158.87 49.62 47.31 24.99

 S.D. 237.13 350.20 260.00 73.70 167.65 78.91 78.86 26.85

 Avg. Time 0.09 1.33 0.46 0.14 0.65 0.96 2.34 6.18

rbg403 Best Sol 5972 4931 6253 7031 4080 3483 3229 2928

(2465) Avg. Sol 6346.12 5428.20 6360.18 7215.74 4310.88 3510.74 3403.54 3012.70

 AvgExc(%) 157.45 120.21 158.02 192.73 74.88 42.42 38.07 22.22

 S.D. 255.46 346.60 234.33 77.70 102.96 88.64 96.20 36.90

 Avg. Time 0.11 1.95 0.55 0.25 0.80 1.28 3.22 4.84

rbg443 Best Sol 6574 5538 6622 7615 4533 3731 3699 3333

(2720) Avg. Sol 6933.96 6030.42 7076.30 7816.20 4730.06 3904.62 3881.90 3404.44

 AvgExc(%) 154.93 121.71 160.16 187.36 73.90 43.55 42.72 25.16

 S.D. 232.79 417.55 243.32 87.11 104.65 85.01 82.04 38.80

 Avg. Time 0.13 2.31 0.71 0.27 1.09 1.52 4.76 5.16

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

601 | P a g e
www.ijacsa.thesai.org

Fig. 3. Average Excess (%) by GA Variants without Mutation.

Among the blind crossovers, OX and AEX are competing.
OX obtains lower average solutions for seven instances,
namely, gr21, ft53, kro124p, rbg323, rbg358, rbg403 and
rbg443, whereas AEX obtains lower average costs for five
instances, namely, fri26, ftv33, ftv38, dantzig42 and ftv170.
From this observation, one can tell that OX is better than
AEX, and PMX and CX show very bad performances.

In order to decide if ASCX-based GA average (without
mutation) is significantly different than the averages obtained
by other GA variants, we performed Student‘s t-test. It is to be
noted that we performed 50 runs for every problem instance
considered here. We used the following t-test for the case of
two big independent samples [35]:

 ̅ ̅

√

 ̅

 ̅

The values of ̅ and are obtained by the ASCX-based

GA, while of ̅ and values are obtained by other GA
variants. The calculated values of the t statistic are reported in
the Table III.

The t values can be positive or negative. The positive value

indicates that the ASCX obtained better solution than the

competitive GA variant. In the negative case, the competitive

algorithm obtained better solution. We used confidence

interval at the 95% confidence level (t0.05 = 1.96). When t-

value is greater than 1.96, the difference between the two

values is significant. In this situation, the ASCX solution is

better, when t has positive value. Negative t value means that

the competitive GA variant has better solution. The case when

t-value is less than 1.96, it corresponds to the situation that the

difference between the observed values is not significant. The

table also reports the information about the GA variants that

obtained significantly better solutions.

In the case of three instances there is no statistically
significant difference between ASCX and BCSCX. On nine
instances ASCX is better than BCSCX. There is no significant
difference between ASCX and SCX on one instance only.
ASCX performed better than SCX on eleven instances. Next,
ASCX performed better than GX on eleven instances, GX
performed better than ASCX on one instance only. Finally,
when comparing ASCX against blind crossovers, PMX, OX,
AEX and CX, we found that ASCX performed better on all
twelve instances, but it is not reported.

Table III also reports calculated values of the t statistic of
blind crossovers against OX. In the case of one instance,
ftv33, there is no statistically significant difference between
OX and AEX. On seven instances OX is better than AEX. OX
performed better than PMX and CX on all twelve instances.

TABLE. III. THE CALCULATED VALUES OF THE T STATISTIC (VARIANT

GAS WITHOUT MUTATION) AND THE INFORMATION ABOUT VARIANT GAS

THAT OBTAINED SIGNIFICANTLY BETTER SOLUTIONS

Instance
t-values against OX t-values against ASCX

PMX AEX CX GX SCX BCSCX

gr21 5.12 7.75 24.39 41.57 -0.47 0.47

Better OX OX OX ASCX ----- ----

fri26 4.99 -2.34 26.88 17.94 4.29 -0.70

Better OX AEX OX ASCX ASCX ----

ftv33 6.63 -1.45 27.37 20.37 9.23 9.17

Better OX --- OX ASCX ASCX ASCX

ftv38 7.12 -2.74 27.20 22.05 7.91 1.90

Better OX AEX OX ASCX ASCX ----

dantzig42 6.43 -15.45 30.03 -6.89 11.01 11.22

Better OX AEX OX GX ASCX ASCX

ft53 7.41 0.35 29.26 45.12 2.98 2.75

Better OX OX OX ASCX ASCX ASCX

kro124p 10.72 17.04 35.35 109.16 12.59 3.98

Better OX OX OX ASCX ASCX ASCX

ftv170 11.89 -21.94 31.39 55.47 8.10 5.43

Better OX AEX OX ASCX ASCX ASCX

rbg323 11.95 15.94 28.36 62.75 15.41 6.73

Better OX OX OX ASCX ASCX ASCX

rbg358 15.25 15.40 36.01 64.20 24.06 21.82

Better OX OX OX ASCX ASCX ASCX

rbg403 14.92 15.60 35.23 83.09 36.31 26.55

Better OX OX OX ASCX ASCX ASCX

rbg443 13.23 15.15 29.31 83.14 37.47 36.83

Better OX OX OX ASCX ASCX ASCX

0

10

20

30

40

50

60
A

v
e
r
a
g

e
 E

x
c
e
ss

(%
)

Instances

SCX BCSCX ASCX

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

602 | P a g e
www.ijacsa.thesai.org

TABLE. IV. SUMMARY OF THE RESULTS BY THE VARIANT GAS WITH MUTATION FOR TSPLIB INSTANCES

Instance Results PMX OX AEX CX GX SCX BCSCX ASCX

gr21 Best Sol 2707 2707 2835 2707 3614 2707 2707 2707

(2707) Avg. Sol 3122.58 2827.12 3056.16 3201.74 3988.84 2885.36 2900.82 2826.20

 AvgExc(%) 15.35 4.44 12.90 18.28 47.35 6.59 7.16 4.40

 S.D. 219.5 90.36 156.58 272.06 169.99 104.16 86.26 61.29

Avg. Time 0.02 0.04 0.06 0.06 0.05 0.03 0.05 0.04

fri26 Best Sol 953 1165 956 999 955 937 937 937

(937) Avg. Sol 1103.02 1234.3 993.24 1150.16 1012.08 979.04 953.44 954.04

 AvgExc(%) 17.72 31.73 6.00 22.75 8.01 4.49 1.75 1.82

 S.D. 69.85 36.02 25.56 62.95 5.51 24.54 9.37 11.27

Avg. Time 0.04 0.05 0.07 0.1 0.12 0.04 0.02 0.13

ftv33 Best Sol 1577 1671 1436 1660 1510 1371 1405 1371

(1286) Avg. Sol 1759.54 2209.82 1604.42 1922.98 1679.9 1474.48 1478.94 1386.72

 AvgExc(%) 36.82 71.84 24.76 49.53 30.63 14.66 15.00 7.83

 S.D. 109.81 86.85 62.93 125.13 52.31 49.02 42.04 2.85

Avg. Time 0.06 0.07 0.13 0.17 0.07 0.04 0.00 0.18

ftv38 Best Sol 1723 2273 1794 2217 1746 1630 1619 1599

(1530) Avg. Sol 2077.04 2458.48 1971.24 2465.84 1911.48 1705.68 1712.56 1648.64

 AvgExc(%) 35.75 60.68 28.84 61.17 24.93 11.48 11.93 7.75

S.D. 112.98 92.71 84.32 113.34 43.37 30.78 20.85 21.88

Avg. Time 0.07 0.09 0.16 0.20 0.13 0.10 0.07 0.12

dantzig42 Best Sol 845 1069 827 1170 699 723 725 699

(699) Avg. Sol 989.80 1108.88 915.18 1297.50 704.18 808.72 810.08 699.72

AvgExc(%) 41.60 58.64 30.93 85.62 0.74 15.70 15.89 0.10

S.D. 88.68 62.68 31.93 66.57 3.64 30.50 28.83 24.41

Avg. Time 0.08 0.10 0.18 0.25 0.04 0.06 0.01 0.11

ft53 Best Sol 10027 10597 10299 12629 10109 7678 7848 7631

(6905) Avg. Sol 11796.86 13902.48 12273.08 13854.44 11144.14 8494.82 8524.50 8127.34

AvgExc(%) 70.85 101.34 77.74 100.64 61.39 23.02 23.45 17.70

S.D. 701.64 421.58 288.69 588.81 455.60 246.93 183.91 156.51

Avg. Time 0.09 0.13 0.27 0.40 0.25 0.26 0.31 0.38

kro124p Best Sol 106539 79811 109251 110833 81824 41331 41668 40246

(36230) Avg. Sol 117138.20 100806.48 116768.26 120254.10 89253.80 43674.54 42544.46 41471.58

AvgExc(%) 223.32 178.24 222.30 231.92 146.35 20.55 17.43 14.47

S.D. 3153.95 2264.52 2428.83 2740.37 2557.47 638.43 566.01 432.72

Avg. Time 0.18 0.43 0.66 1.22 0.57 1.25 0.13 2.22

ftv170 Best Sol 17088 13158 9482 18962 4667 3285 3257 3232

(2755) Avg. Sol 18689.18 15389.62 10588.86 19630.42 4817.32 3523.74 3608.40 3393.00

AvgExc(%) 578.37 458.61 284.35 612.54 74.86 27.90 30.98 23.16

S.D. 305.95 282.54 231.40 219.10 71.52 113.55 92.49 95.42

Avg. Time 0.27 1.15 1.83 3.41 4.17 3.77 3.23 0.93

rbg323 Best Sol 4583 3558 4809 5024 2102 1658 1660 1611

(1326) Avg. Sol 5006.74 4263.20 5075.84 5150.86 2192.08 1718.76 1725.52 1618.80

AvgExc(%) 277.58 221.51 282.79 288.45 65.32 29.62 30.13 22.08

S.D. 50.16 42.92 34.15 39.96 31.70 22.19 20.63 17.70

Avg. Time 0.90 3.05 5.59 10.75 15.51 12.37 24.79 23.53

rbg358 Best Sol 4988 3951 5034 5624 2054 1524 1582 1327

(1163) Avg. Sol 5428.92 4583.32 4650.54 5740.92 2203.12 1699.20 1711.30 1387.92

AvgExc(%) 366.80 294.09 299.87 393.63 89.43 46.10 47.15 19.34

S.D. 53.53 41.32 42.26 45.63 52.02 29.22 23.23 24.05

Avg. Time 1.01 3.56 6.91 12.16 17.28 16.71 30.14 30.77

rbg403 Best Sol 5809 4848 6079 6375 3760 3314 3229 2922

(2465) Avg. Sol 6219.88 5363.96 6273.98 6543.88 3828.34 3401.18 3479.62 2983.38

AvgExc(%) 152.33 117.60 154.52 165.47 55.31 37.98 41.16 21.03

S.D. 49.76 37.89 34.63 46.26 39.16 26.48 24.06 21.43

Avg. Time 1.14 4.48 9.25 17.81 21.43 19.98 33.89 38.93

rbg443 Best Sol 6401 5494 6411 7053 3705 3705 3710 3252

(2720) Avg. Sol 6893.26 5935.72 6895.30 7123.44 3742.88 3882.52 3872.66 3321.58

AvgExc(%) 153.43 118.23 153.50 161.89 37.61 42.74 42.38 22.12

S.D. 43.17 44.32 36.77 34.14 22.11 26.78 25.53 20.95

Avg. Time 1.37 6.35 10.41 18.65 37.87 26.82 42.64 50.82

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

603 | P a g e
www.ijacsa.thesai.org

Table IV reports results by the eight GA variants where
mutation is applied. With respect to the average cost, it is once
again very clear from the Table IV that distance-based
crossovers are superior to blind crossovers. Among the
distance-based crossovers, GX is the worst, however, it
obtains best cost for danzig42 only. Though SCX could not
obtain lowest average cost, but it obtains best costs for the
instances gr21 and fr26 at least once in 50 runs. The
crossovers SCX and BCSCX are competing. SCX obtains
lower average cost for nine instances, whereas BCSCX
obtains lower average cost for three instances only. However,
BCSCX obtains lowest average solution for the instance fri26
and ASCX obtains lowest average solutions with lower S.D.
for eleven instances, namely, gr21, ftv33, ftv38, dantzig42,
ft53, kro124p, ftv170, rbg323, rbg358, rbg403 and rbg443. So,
among all the crossovers ASCX is found to be the best. Based
on best costs also ASCX is found to be the best. The results
are depicted in Fig. 4, which also shows the effectiveness of
our proposed crossover operator ASCX. So, whether mutation
is used or not, the best performance is accomplished by
ASCX. However, based on convergence time blind crossovers
found to be better than distance-based crossovers, and PMX is
the best one.

Among the blind crossovers, CX show very bad
performances that obtains lower average solution for no any
instance; PMX obtains lower average costs for the instance
ft53 only; OX obtains lower average solutions for six
instances, namely, gr21, kro124p, rbg323, rbg358, rbg403 and
rbg443; whereas AEX obtains lower average solutions for five
instances, namely, fri26, ftv33, ftv38, dantzig42 and ftv170.
From this observation one can say that OX is the best and CX
is the worst. However, CX obtains best solution at least once
in 50 runs for gr21.

Here also, in order to decide if ASCX based GA (with
mutation) average is significantly different than the averages
obtained by other GA variants, we perform Student‘s t-test
and the calculated values of the t statistic are reported in the
Table V.

In the case of one instance there is no statistically
significant difference between ASCX and BCSCX, and ASCX
and GX. On eleven instances ASCX is better than BCSCX
and GX. ASCX performed better than SCX on all twelve
instances. While comparing SCX against BCSCX (of course,
not reported in any table here), we found that on most of the
instances there is no statistically significant difference
between them, we can treat them statistically equivalent.
Finally, when comparing ASCX against blind crossovers,
PMX, OX, AEX and CX, we found that ASCX performed
better on all twelve instances, except for one instance, gr21,
there is no statistically significant difference between ASCX
and OX, but it is not reported.

Table V also reports calculated values of the t statistic of
blind crossovers against OX. On two instances there is no
statistically significant difference between OX and CX. On
two instances CX is better than OX, whereas on eight
instances OX is better than CX. On five instances PMX is
better than OX, whereas on seven instances OX is better than
PMX. On six instances OX and AEX are better than each

other. So, among the blind crossovers OX is the best and CX
is the worst.

Based on the above study it very clear that the proposed
crossover operator ASCX is the best, BCSCX and SCX are
equivalent and the second-best, and CX is the worst. Among
blind crossovers OX is the best. About the performance of
blind crossovers same observation is made in [36]. However,
in terms of convergent time, PMX is found to be the best.

Fig. 4. Average Excess (%) by GA Variants with Mutation.

TABLE. V. THE CALCULATED VALUES OF THE T STATISTIC (CROSSOVERS

WITH MUTATION) AND THE INFORMATION ABOUT VARIANT GAS THAT

OBTAINED SIGNIFICANTLY BETTER SOLUTIONS

Instance
t-values against OX t-values against ASCX

PMX AEX CX GX SCX BCSCX

gr21 8.71 8.87 9.15 45.04 3.43 4.94

Better OX OX OX ASCX ASCX ASCX

fri26 -11.69 -38.21 -8.12 32.39 6.48 -0.29

Better PMX AEX CX ASCX ASCX ----

ftv33 -22.51 -39.51 -13.18 39.17 12.51 15.32

Better PMX AEX CX ASCX ASCX ASCX

ftv38 -18.27 -27.22 0.35 37.88 10.57 14.80

Better PMX AEX ---- ASCX ASCX ASCX

dantzig42 -7.68 -19.28 14.44 1.26 19.53 20.45

Better PMX AEX OX ---- ASCX ASCX

ft53 -18.01 -22.32 -0.46 43.84 8.80 11.51

Better PMX AEX ---- ASCX ASCX ASCX

kro124p 29.44 33.65 38.29 128.95 19.99 10.54

Better OX OX OX ASCX ASCX ASCX

ftv170 55.46 -92.02 83.03 83.61 6.17 11.35

Better OX AEX OX ASCX ASCX ASCX

rbg323 78.84 103.71 105.96 110.53 24.65 27.48

Better OX OX OX ASCX ASCX ASCX

rbg358 87.53 7.96 131.63 99.57 57.58 67.70

Better OX OX OX ASCX ASCX ASCX

rbg403 95.80 124.10 138.13 132.50 85.85 107.81

Better OX OX OX ASCX ASCX ASCX

rbg443 108.34 116.64 148.61 96.82 115.48 116.81

Better OX OX OX ASCX ASCX ASCX

0

10

20

30

40

50

A
v

e
r
a
g

e
 E

x
c
e
ss

(%
)

Instances

SCX BCSCX ASCX

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

604 | P a g e
www.ijacsa.thesai.org

TABLE. VI. COMPARATIVE STUDY AMONG CX2 [37], HX AND OUR

PROPOSED ASCX

Instance Results ASCX CX2 HX

gr21

Best Sol 2707 2995 2707

Worst Sol 2903 3576 2940

Avg. Sol 2790 3245 2791

fri26

Best Sol 937 1099 937

Worst Sol 970 1278 1014

Avg. Sol 953 1128 967

ftv33

Best Sol 1341 1811 1397

Worst Sol 1480 2322 1941

Avg. Sol 1393 2083 1638

ftv38

Best Sol 1598 2252 1755

Worst Sol 1703 2718 2389

Avg. Sol 1653 2560 2068

dantzig42

Best Sol 699 699 699

Worst Sol 795 920 985

Avg. Sol 703 802 833

 Best Sol 7803 10987 11234

ft53 Worst Sol 8692 13055 13288

 Avg. Sol 8192 12243 12534

kro124p

Best Sol 40607 92450 103988

Worst Sol 41543 121513 121239

Avg. Sol 41473 101229 110447

ftv170

Best Sol 3244 6421 11215

Worst Sol 3422 8416 13221

Avg. Sol 3384 7019 10878

rbg323

Best Sol 1501 4212 5175

Worst Sol 1589 5342 5341

Avg. Sol 1557 4654 5072

rbg358

Best Sol 1339 5404 5560

Worst Sol 1408 6004 5889

Avg. Sol 1394 5622 5629

 Best Sol 2867 6257 6259

rbg403 Worst Sol 3023 6671 6885

 Avg. Sol 2965 6455 6632

 Best Sol 3268 6854 7218

rbg443 Worst Sol 3432 7388 7523

 Avg. Sol 3356 6981 7318

Further, we considered results reported in [37] for
comparing with our proposed crossover ASCX. Recently
Weise et al. [38] made a comparative study among eleven
crossover operators for the TSP and found that heuristic
crossover (HX) [39] is the best performing operator. The HX
applies a greedy heuristic to create an offspring from two
parents. So, we implemented the GA using HX and run on the
above twelve problem instances. It is to be noted that the same
common parameters‘ values selected for GAs in [37] are used
for ASCX and HX. The parameters are as follows: population
size, maximum generation, crossover, and mutation
probabilities are 150, 500, 0.80, and 0.10, respectively, for less
than 100 size instances, whereas population size and
maximum generation are 200 and 1000, respectively for more
than 100 size instances. Also, the experiments are performed

30 times (30 runs) for each instance. Table VI reports best,
worst and average solution costs in 30 runs by ASCX, CX2
and HX.

The crossovers ASCX and HX hit best known solutions
for the instances gr21 and fri26, whereas ASCX, CX2 and HX
hit best known solution for the instance dantzig42 at least once
in 30 runs. In terms of best solution cost, except for the
instance dantzig42, ASCX is found better than CX2, and
except for gr21, fri26 and dantzig42, ASCX is better than HX.
However, in terms of worst and average solution costs ASCX
is found to be the best among three crossover operators for all
instances. From this study it is very clear that our proposed
crossover ASCX is far better than CX2 and HX.

V. CONCLUSION AND FUTURE WORKS

Several crossover operators have been proposed and
reported for the TSP by using GAs. We have proposed a new
crossover operator, named ASCX, for the TSP. This proposed
operator upgrades the SCX and improved the quality of
offspring. It is easy to execute and always generates a valid
offspring. We focused on some blind crossover operators,
namely, PMX, OX, AEX and CX, and distance-based
crossover operators, namely, GX, SCX and BCSCX along
with ASCX. Firstly, we applied these operators on a pair of
chromosomes in manual experiment and found that ASCX
performed very good. Then for a significant performance,
twelve benchmark instances from the TSPLIB (traveling
salesman problem library) have been considered. We
developed sixteen variant GAs using crossovers with/without
mutation and carried out comparative study of the GAs on the
instances. In terms of solution quality, our comparative study
showed that distance-based crossovers are far superior than
the blind crossovers, and our proposed crossover operator
ASCX is the best, BCSCX and SCX are the second-best, and
CX is the worst. However, among blind crossovers OX is
found to be the best. This observation is verified by Student‘s
t-test at 95% confidence level. Further, we carried out a
comparative study among CX2, HX and ASCX, and found
that our proposed crossover ASCX is the best. Thus, our
proposed operator may be good operator to find more better
and accurate results, researchers may use it for other related
combinatorial optimization problems.

In this present study, we considered the original version of
some crossover operators. Our objective was only to compare
the quality of the solutions obtained by the crossover
operators, neither to improve the solution quality by any of the
operators nor to design the most competitive algorithm for the
TSP. So, we neither used any local search technique to
enhance the solution quality nor developed parallel version of
algorithms to find exact solution. Consequently, we have
limited ourselves to simple and pure GA process. Also, we set
highest crossover probability to display exact nature of
crossover operators. Mutation might be used with lowest
probability just not to get stuck in local minima quickly.
However, one can incorporate good local search procedure to
the hybridize the algorithm, and thus, to solve problem
instances exactly, which is under our investigation. Finally,
the advantage and helpfulness of the ASCX can be tested on
other combinatorial optimization problems.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 2, 2020

605 | P a g e
www.ijacsa.thesai.org

ACKNOWLEDGMENT

The author thanks the honourable anonymous reviewers
for their constructive comments and suggestions which helped
the author to improve this paper.

REFERENCES

[1] S. Arora, ―Polynomial time approximation schemes for Euclidean

traveling salesman and other geometric problems,‖ Journal of ACM, vol.
45, no. 5, pp. 753–782, 1998.

[2] C.P. Ravikumar, ―Solving large-scale travelling salesperson problems on

parallel machines,‖ Microprocessors and Microsystems, vol. 16, no. 3,
pp. 149-158, 1992.

[3] J.D.E. Little, K.G. Murthy, D.W. Sweeny, and C.Karel, ―An algorithm

for the travelling salesman problem,‖ Operations Research, vol. 11, pp.
972-989, 1963.

[4] M. Padberg, and G. Rinaldi, ―Optimization of a 532-node symmetric

traveling salesman problem by branch and cut,‖ Operations Research
Letter, vol. 6, no. 1, pp. 1–7, 1987.

[5] S.N.N. Pandit, and K. Srinivas, ―A lexisearch algorithm for the traveling

salesman problem,‖ Proc. IEEE Int. Joint Conf. Neural Networks, vol. 3,
pp. 2521–2527, 1991.

[6] Y. Deng, Y. Liu, and D. Zhou, ―An improved genetic algorithm with

initial population strategy for symmetric TSP,‖ Mathematical Problems
in Engineering, vol. 2015, Article ID212794, 6 pages, 2015.

[7] M. Mahi, Ö.K. Baykan, and H. Kodaz, ―A new hybrid method based on
particle swarm optimization, ant colony optimization and 3-opt

algorithms for traveling salesman problem,‖ Applied Soft Computing,
vol. 30, pp. 484–490, 2015.

[8] D.E. Goldberg, ―Genetic algorithms in search, optimization, and

machine learning,‖ Addison-Wesley, New York, 1989.

[9] S.-M. Chen, and C.-Y. Chien, ―Solving the traveling salesman problem
based on the genetic simulated annealing ant colony system with particle

swarm optimization techniques,‖ Expert Systems with Applications, vol.
38, no. 12, pp. 14439–14450,) 2011.

[10] X. Zhou, D. Gao, C. Yang, and H. Gui, ―Discrete state transition

algorithm for unconstrained integer optimization problems,‖
Neurocomputing, vol. 173, pp. 864–874, 2016.

[11] J. Knox, ―Tabu search performance on the symmetric traveling salesman

problem,‖ Computer and Operations Research, vol. 21, no. 8, pp. 867–
876, 1994.

[12] J.-Y. Potvin, ―State-of-the-art survey—the traveling salesman problem:

a neural network perspective,‖ ORSA Journal of Computing, vol. 5, no.
4, pp. 328–348, 1993.

[13] M.S. Kıran, H. Iscan, and M. Gündüz, ―The analysis of discrete artificial
bee colony algorithm with neighborhood operator on traveling salesman

problem,‖ Neural Computing and Applications, vol. 23, no. 1, pp. 9–21,
2013.

[14] A. Hatamlou, ―Solving travelling salesman problem using black hole

algorithm,‖ Soft Computing, vol. 22, no. 24, pp. 8167–8175, 2018.

[15] Z.H. Ahmed, ―Algorithms for the quadratic assignment problem,‖ LAP
LAMBERT Academic Publishing, Mauritius, 2019, 104 pages.

[16] Z.H. Ahmed, ―Genetic algorithm for the traveling salesman problem

using sequential constructive crossover operator,‖ International Journal
of Biometrics & Bioinformatics, vol. 3, pp. 96-105, 2010.

[17] K. Deb, ―Optimization for engineering design: algorithms and

examples,‖ Prentice Hall of India Pvt. Ltd., New Delhi, India, 1995.

[18] E. Osaba, R. Carballedo, F. Diaz, E. Onieva, A.D. Masegosa, and
A.Perallos, ―Good practice proposal for the implementation,

presentation, and comparison of metaheuristics for solving routing
problems,‖ Neurocomputing, vol. 271, no. 3, pp. 2-8, 2018.

[19] D.E. Goldberg, and R. Lingle, ―Alleles, loci and the travelling salesman
problem,‖ In J.J. Grefenstette (ed.) Proceedings of the 1st International

Conference on Genetic Algorithms and Their Applications. Lawrence
Erlbaum Associates, Hilladale, NJ, 1985.

[20] L. Davis, ―Job-shop scheduling with genetic algorithms,‖ Proceedings of

an International Conference on Genetic Algorithms and Their
Applications, pp. 136-140, 1985.

[21] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Gucht, ―Genetic

algorithms for the traveling salesman problem,‖ In Proceedings of the
First International Conference on Genetic Algorithms and Their

Applications, (J. J. Grefenstette, Ed.), Lawrence Erlbaum Associates,
Mahwah NJ, pp. 160–168, 1985.

[22] I.M. Oliver, D. J. Smith and J.R.C. Holland, ―A study of permutation

crossover operators on the travelling salesman problem,‖ In J.J.
Grefenstette (ed.). Genetic Algorithms and Their Applications:

Proceedings of the 2nd International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, Hilladale, NJ, 1987.

[23] Z.H. Ahmed, ―Improved genetic algorithms for the traveling salesman

problem,‖ International Journal of Process Management and
Benchmarking, vol. 4, no. 1, pp. 109-124, 2014.

[24] I. H. Khan, ―Assessing different crossover operators for travelling

salesman problem,‖ IJISA International Journal of Intelligent Systems
and Applications, vol. 7, no. 11, pp. 19-25, 2015.

[25] Z.H. Ahmed, ―A hybrid genetic algorithm for the bottleneck traveling

salesman problem,‖ ACM Transactions on Embedded Computing
Systems, vol. 12, Art. No. 9, 2013.

[26] Z.H. Ahmed, ―An experimental study of a hybrid genetic algorithm for
the maximum travelling salesman problem,‖ Mathematical Sciences,

vol. 7, pp. 1-7, 2013.

[27] Z.H. Ahmed, ―The ordered clustered travelling salesman problem: A
hybrid genetic algorithm,‖ The Scientific World Journal, vol. 2014, Art

ID 258207, 13 pages, 2014.

[28] Z.H. Ahmed, ―A simple genetic algorithm using sequential constructive
crossover for the quadratic assignment problem,‖ Journal of Scientific

and Industrial Research, vol. 73, pp. 763-766, 2014.

[29] Z.H. Ahmed, ―Experimental analysis of crossover and mutation
operators for the quadratic assignment problem,‖ Annals of Operations

Research, vol. 247, pp. 833-851, 2016.

[30] Z.H. Ahmed, ―The minimum latency problem: a hybrid genetic
algorithm,‖ IJCSNS International Journal of Computer Science and

Network Security, vol. 18, no. 11, pp. 153-158, 2018.

[31] Z.H. Ahmed, ―Performance analysis of hybrid genetic algorithms for the
generalized assignment problem,‖ IJCSNS International Journal of

Computer Science and Network Security, vol. 19, no. 9, pp. 216-222,
2019.

[32] M.A. Al-Omeer, and Z.H. Ahmed, ―Comparative study of crossover
operators for the MTSP,‖ 2019 International Conference on Computer

and Information Sciences (ICCIS), Sakaka, Saudi Arabia, pp. 1-6, 3-4
April 2019.

[33] S. Kang, S.-S. Kim, J.-H. Won, and Y.-M. Kang, ―Bidirectional

constructive crossover for evolutionary approach to travelling salesman
problem,‖ 2015 5th IEEE International Conference on IT Convergence

and Security (ICITCS), pp. 1-4, 2015.

[34] G. Reinelt, TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/

[35] M. Nikolić, and D. Teodorović, ―Empirical study of the bee colony

optimization (BCO) algorithm,‖ Expert Systems with Applications, vol.
40, pp. 4609–4620, 2013.

[36] P. Larranaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S.

Dizdarevic, ―Genetic algorithms for the travelling salesman problem: a
review of representations and operators,‖ Artificial Intelligence Review,

vol. 13, pp. 129–170, 1999.

[37] A. Hussain, Y. S. Muhammad, M. N. Sajid, I. Hussain, A. M. Shoukry,
and S. Gani, ―Genetic algorithm for traveling salesman problem with

modified cycle crossover operator,‖ Computational Intelligence and
Neuroscience, vol. 2017, Article ID 7430125, 7 pages, 2017.

[38] T. Weise, Y. Jiang, Q. Qi, and W. Liu, ―A branch-and-bound-based
crossover operator for the traveling salesman problem,‖ IJCINI

International Journal of Cognitive Informatics and Natural Intelligence,
vol. 13, no. 3, pp. 1-18, 2019.

[39] J. J. Grefenstette, ―Incorporating problem specific knowledge into

genetic algorithms,‖ In L. Davis (Ed.), Genetic algorithms and simulated
annealing, London, UK: Pitman / Pearson, pp. 42–60, 1987.

