
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 2, 2020 

606 | P a g e  
www.ijacsa.thesai.org 

Performance Evaluation of Deep Autoencoder 

Network for Speech Emotion Recognition 

Maria AndleebSiddiqui
1 

Computer Science and Information Technology 

N.E.D University of Engineering & Technology 

Karachi, Pakistan 

Wajahat Hussain
2 

Deputy Manager 

Karachi Shipyard and Engineering Works Ltd 

Karachi, Pakistan 

Syed Abbas Ali
3 

Computer & Information Systems Engineering 

N.E.D University of Engineering and Technology 

Karachi, Pakistan 

Danish-ur-Rehman
4 

Electronics Engineering 

N.E.D University of Engineering and Technology 

Karachi, Pakistan 

 

 
Abstract—The learning methods with multiple levels of 

representation is called deep learning methods. The composition 

of simple but now linear modules results in deep-learning model. 

Deep-learning in near future will have many more success, 

because it requires very little engineering in hands and it can 

easily take ample amount of data for computation. In this paper 

the deep learning network is used to recognize speech emotions. 

The deep Autoencoder is constructed to learn the speech 

emotions (Angry, Happy, Neutral, and Sad) of Normal and 

Autistic Children. Experimental results evident that the 

categorical classification accuracy of speech is 46.5% and 33.3% 

for Normal and Autistic children speech respectively. Whereas, 

Auto encoder shows a very low classification accuracy of 26.1% 

for only happy emotion and no classification accuracy for Angry, 
Neutral and Sad emotions. 

Keywords—Auto-encoder; emotions; DNN; classification 

accuracy; autism 

I. INTRODUCTION 

The composition of simple but nonlinear modules results 
in deep-learning model. The composition is started by 
representation at one level, which is usually raw input, and 
then this raw input is transformed into a representation of 
higher layers, which are slightly more abstract levels [1]. The 
records of machine learning techniques in many domains of 
science, especially in image recognition [2-5] and speech 
recognition [6-8] has been beaten up by deep learning 
modules. Deep learning has revolutionized the speech signal 
processing. Excellent results have been achieved using the 
deep learning networks [9-11]. An Autoencoder is constructed 
in this paper by stacking two layers; First layer is used to 
classify the category of speech that is normal or autistic and 
the second layer is used to classify the emotion of that 
category that is Angry, Happy, Neutral and Sad. Auto-encoder 
is a stack of building block. It contains multiple layers of 
representation [12]. Auto-encoder is also called auto-
associator or Diabolo network. It is used to learn a 
representation of a set of data typically for dimensionality 
reduction [13]. Comprehensive review was presented in [14] 
about popular deep learning algorithms for speech emotion 

recognition. Experimental results shown that the performance 
of EMO-DB using Log Mel spectrograms on CNN+LSTM is 
highest that is 78.10%. To improve the Chinese speech 
emotion recognition, a novel speech emotion recognition 
algorithm based on stack autoencoder, denoise autoencoder 
and sparse autoencoder is proposed [15]. The experimental 
results revealed that the proposed algorithm with stack 
autoencoder performs 14.3% higher than SVM. The 
architecture of this algorithm can be studied in Fig. 1. 

 

 

Fig. 1. Architecture of Auto-Encoder. 
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Here Xte are test samples, Xtr are training samples, W is 
weight, and b is bias 

The representation of weight and bias in neural network is 
shown in Fig. 2. Architecture Neuron Model is an elementary 
neuron with “P” inputs as shown. Each input is weighted with 
an appropriate “w.” The sum of the weighted inputs and the 
bias forms the input to the transfer function “f.” Neurons can 
use any differentiable transfer function “f” to generate their 
output. 

 

Fig. 2. Architecture of Auto-Encoder. 

The basic Algorithm for auto encoder is as follows: 

Step 1. Load the training speech data into memory 

Step 2. Get the number of columns and rows in each 
sample 

Step 3. Turn the training samples into vectors and put them 
in a matrix. As the training samples are saved into a matrix, 
training the network is ready to begin. 

Rest of paper is organized into following three sections: 
Section II presents the methodology of experimental 
framework. Results of experimental framework with four 
different emotions are discussed in Section III. Conclusion is 
drawn in Section IV. 

II. METHODOLOGY 

A. Speech Data Set 

The data evaluated in this study were collected from 94 
normal and 94 autistic children of age group 10-13 years of 
both genders. Some Urdu language sentences with four 
different emotions (Angry, Happy, Neutral and Sad) are 
chosen for this study. The sentence which is suitable to utter 
and contain maximum phonetic information is used to 
implement the speech emotion corpus. The Emotion Corpus 
consists of 24 samples of each Angry, Happy and Neutral 
emotions and 22 samples of Sad Emotions. The following ITU 
recommendations have been used for corpus recording with 
specifications: SNR>= 45dB and bit rate 24120 bps. Windows 
10 built in sound recorder and microphone has been used for 

recording the speaker’s utterances with 48 kHz sampling rate 
and sensitivity of 56dB ± 25dB. The description of the 
available speech samples of both normal and autistic children 
for each emotion is shown in Table I. 

B. Training and Configuration of Auto Encoder 

The Flow diagram of auto encoder configuration, testing 
and training phases is presented in Fig. 3. 

The training and testing of Autoencoder is discussed in 
subsequent sections. 

1) Create and configure first auto encoder: Sparse auto 

encoder is trained by using speech training data set without 

labels. As auto encoder can replicate its input and output, so 

the size of the input and output will be same. The compressed 

representation of the input is learned by auto encoder when the 

size of the input is greater than the number of neurons in 

hidden layer. By modifying some of the settings of the feed 

forward neural network, the auto encoder is created. 
Step 1. The size of the hidden layer, which is to be trained, 

is set. It is usually less than the input size. 

Step 2. The number of training functions and training 
epochs are changed to create the network. 

TABLE. I. SPEECH EMOTION DATA SET 

Category 
Emotions 

Angry Happy Neutral Sad 

Normal 24 24 24 22 

Autistic 24 24 24 22 

 

Fig. 3. Auto-Encoder Configuration Training and Testing Phases. 
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Step 3. Process function is not used at the input and output. 

Step 4. The transfer function of logistic sigmoid is set for 
both layers. 

Step 5. All the dataset is used for training. 

Step 6. The first layer comprises of the sparse 
representation, which is learned by adding the regularizes as it 
encouraged the learning power of auto-encoder by using the 
following parameters: 

a) |L2WeightRegularization|: It should be small enough 
to control the weighing of an L2 regularizers for the weights of 

the network (not the biases). 

b) |sparsityRegularization|: It is used to prevent the large 
fraction of neurons in hidden layers from activating in response 

of input. 

c) |sparsity|: This function is used to control the fraction 

of neurons.It is activated in response to the input layer in the 

1st layer. Its range is between 0 and 1. 

2) Train First Autoencoder 
Step 1. Train the auto-encoder with the input data that 

should be identical to the target data. 

Step 2. The auto-encoder diagram is viewed to show the 
size of hidden layer, input layer, output layer, as well as the 
transfer function for the two layers. 

Step 3. From the first auto encoder the result can be 
visualized. Visualization helps to get the insight into the 
feature that can be gained. The hidden layer neurons have the 
weights vector associated with it in the input layer. Create and 
Configure empty network. 

3) Create and configure empty network: Curls and Stroke 

patterns from the digit samples are represented by auto-

encoder that are seen by the features learned. The compressed 

version of the input is the 100 dimensional outputs from the 

hidden layer of auto-encoder. Now the next auto-encoder is 

trained on the speech training dataset from which the set of the 

vectors are extracted. For training the next auto-encoder, the 

first version of the auto-encoder is created with the removed 

final layer. Removal of first layer is done by manually 

configuring the settings and creating an empty network object. 

The biases and weights can be copied from the trained auto-

encoder. 
Step 1.  The empty network is created 

Step 2. The number of inputs and outputs are set. 

Step 3. The First and only layer is connected to the first 
input and also to the output. 

Step 4. The connection for the bias term to the first layer is 
added. 

Step 5. The size of the input and first layer is set. 

Step 6. The first layer uses the logistic sigmoid transfer 
function. 

Step 7. The first layer of trained auto encoder is used to 
copy the weights and biases. 

Step 8. The empty network is seen by the |view| function 
which is equivalent to the first auto encoder with the first layer 
removed. 

Step 9. To train the second auto-encoder, the features are 
now generated. This is achieved by evaluating the truncated 
auto-encoder on the speech training data set. 

4) Configure second auto encoder: The second auto-

encoder is trained in the similar way as the first auto-encoder. 

The main difference is that for training the second auto-

encoder the speech training data set are the features obtained 

by hidden layer of the previous auto-encoder. The feed 

forward neural network is created once again and the settings 

are modified. 
Step 1. The network is created. The number of training 

function, the size of the hidden layers and the training epochs 
are changed to conduct the experiment. 

Step 2. The process function is not used at the input and 
output. 

Step 3. The transfer function of the logistic sigmoid is set 
to both the layers 

Step 4. All of the data is used for training. 

Step 5. After creating the network, performance function is 
set to |msesparse|, the values of the performance function are 
set. The sparsity and the mean squared error with L2 weight 
are used to regularize the performance. 

Step 6. The parameters are altered to conduct the 
experiment. 

5) Training second autoencoder: The features generated 

from the previous auto-encoder are used to train the second 

auto-encoder. 
Step 1. The second auto-encoder is trained. 

Step 2. The |view| command is called once again to view 
the diagram of the autoencoder. The first and Second auto-
encoder are similar but the size of the layers is different. 

6) Create and configure empty network: As before, a 

version of the second auto encoder is created with the final 

layer removed. 
Step 1. The number of inputs and layers are set. 

Step 2. The first and the only layer are connected to the 
first input and also connect to the output. 

Step 3. A connection for bias term to the first layer is 
added. 

Step 4. The size of the input and first layer is set. 

Step 5. The first layer uses the logistic sigmoid function. 

Step 6. The first layer of the trained auto-encoder copies 
the weights and biases. 

Step 7. The diagram of the network can be seen by the 
|view| function. With the last layer removed, it is equivalent to 
the second auto encoder. 
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Step 8. The second truncated auto encoder passes the 
previous set which is used to extract the second set of features. 

7) Create and configure final softmax layer: The original 

vectors in the speech training dataset had 784 dimensions. 

After passing them through the first auto encoder, this was 

reduced to 100 dimensions. After using the second auto 

encoder, this was reduced again to 50 dimensions. The 50 

dimensional vectors are classified into different classes to 

carry out the training of the final layer. A softmax layer is 

created for the training of the final softmax layer. The output 

of hidden layer from the second auto encoder is used for its 

training. As the softmax layer only consists of one layer, it is 

created manually. 
Step 1. Creation of the empty network. 

Step 2. The number of inputs and layers are set. 

Step 3. The first and the only layer is connected to the first 
input and also connected to the output. 

Step 4. A connection for the bias term to the first layer is 
added. 

Step 5. The size of the input and first layer is set. 

Step 6. All of the data is used for training. 

Step 7. The cross-entropy performance function is used. 

Step 8. The number of training functions and training 
epochs is changed to conduct the experiment. 

8) Train Empty Network Softmax Layer 
Step 1. The training of the softmax layer is carried out. 

Supervised learning is used to train the softmax layer unlike 
the auto-encoders. 

Step 2. |view| command is called to view the diagram of 
the softmax layer. 

Step 3. A multilayer neural network is formed. 

Step 4. In isolation, the training of the three separate 
components of the deep neural network is carried out. To view 
these three components are useful at these points. They are the 
networks |autoencHid1|, |autoencHid2|, and |finalSoftmax|. 

9) Create and configure final softmax layer: Multilayer 

neural network is formed to join together these layers. The 

neural network is created manually, the weights and biases 

from the auto encoder and softmax layers are copied and the 

settings are configured after the creation of the network. 
Step 1. An empty network is created. 

Step 2. One input and three layers are specified. 

Step 3. The 1st layer is connected to the input. 

Step 4. The 2nd layer is connected to the 1st layer 

Step 5. The 3rd layer is connected to the 2nd layer. 

Step 6. The output is connected to the 3rd layer. 

Step 7. A connection for the bias term to the first layer is 
added. 

Step 8. The size of the input is set. 

Step 9. Same as the layer in autoencHid1, the size of the 
first layer is set. 

Step 10. Same as the layer in autoencHid2, the size of the 
second auto encoder is set. 

Step 11. Same as the layer in final softmax layer, the size 
of the third layer is set. 

Step 12. Same as in 1st auto encoders, the transfer function 
for the first layer is set. 

Step 13. Same as in 2nd auto encoder, the transfer function 
for the second layer is set. 

Step 14. Same as in Softmax layer, the transfer function 
for the third layer is set. 

Step 15. Use all of the data for training 

Step 16. Copy the weights and biases from the three 
networks that have already been trained 

Step 17. Use the cross-entropy performance function 

Step 18. The experiment can be conducted by changing the 
number of training epochs. 

Step 19. |view| command can be used to see the diagram of 
the multi-layer network. 

10) Test the final autoencoder network: The test set is used 

to compute the results with the full deep neural network. Now, 

the test samples have to be reshaped, as was done for the 

training set. 
Step 1. The test samples feature set is loaded. 

Step 2. Confusion matrix is used to visualized the results. 
Overall accuracy can be calculated by the numbers in the 
bottom right hand square of the matrix. 

Step 3. The Deep Neural Network is tuned finely. Back 
propagation application on the whole multi-layer network is 
used to improve the results for the deep neural network. This 
process is called fine tuning. Finally the supervised training is 
used to tune this network by retaining it on the speech training 
data set. 

III. RESULTS 

The experimental results in this section are based on 
Confusion Matrix of categorical classification as shown in 
Fig. 4. 

Categories: Normal and Autistic 

Total Samples: 188 

Target Samples: 

Normal 94 Autistic 94 

Output Sample Classes: 

Normal:175 Autistic:13 
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Fig. 4. Confusion Matrix of Categorical Classification. 

Here 1= Normal , 2 = Autistic Results 

Green are accurate hits per class, Red are error /miss per 
class.  

Our results are 23 Normal hits, missed as Autistic and 20 
Autistic hits, missed as Normal. 

The Error Histogram is shown in Fig. 5. 

 

Fig. 5. Error Histogram of Categorical Classification. 

Bins are sample for views. The algorithm has 45.7% error 
due to less number of dataset. 

The emotional classification is presented in Fig. 6. 

Categories: Normal and Autistic 

Total Samples: 94 

Target Samples: 

Angry :24  Happy :24  Neutral: 24  Sad :22 

Output Sample Classes: 

Angry : 0 Happy :94  Neutral: 0 Sad: 0 

 

Fig. 6. Confusion Matrix Emotional Classification. 

Here 1= Angry, 2 = Happy, 3 = Neutral, 4 =Sad 

Green are accurate hits per class, Red are error /miss per 
class. The result is all Angry, Neutral and Sad are missed as 
Happy and all Happy are hits. The error histogram is shown in 
Fig. 7. 

 

Fig. 7. Error Histogram of Emotional Classification. 

IV. CONCLUSION 

This paper evaluated the performance of deep auto encoder 
for four different emotions of normal and autism children. 
Experimental frame work were comprised on total 94 speech 
emotions sample in four different emotions and make used of 
confusion matrix to demonstrate results in term of 
classification accuracy. Experimental framework of 
categorical classification produced overall accuracy of 52.65% 
and the overall emotional classification of speech produces 
26.1% accuracy which shows very low percentage of 
classification accuracy of emotions. Authors are focusing on 
improving classification accuracy by increasing the emotions 
corpus of the children. 
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