
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

170 | P a g e

www.ijacsa.thesai.org

Video Genre Classification using Convolutional

Recurrent Neural Networks

Dr K Prasanna Lakshmi1

Professor and Head, Information

Technology Department, Gokaraju

Rangaraju Institute of Engineering and

Technology, Hyderabad, India

Mihir Solanki2, Jyothi Swaroop Dara3

Information Technology Department

Gokaraju Rangaraju Institute of

Engineering and Technology

Hyderabad, India

Avinash Bhargav Kompalli4

Department of CSE

SRM University,

Chennai, India

Abstract—A wide amount of media in the internet is in the

form of video files which have different formats and encodings.

Easy identification and sorting of videos becomes a mammoth

task if done manually. With an ever-increasing demand for video

streaming and download, the Video Classification problem is

brought into foresight for managing such large and unstructured

data over the internet and locally. We present a solution for

classifying videos into genres and locality by training a

Convolutional Recurrent Neural Network. It involves feature

extraction from video files in the form of frames and audio. The

Neural Networks makes a suitable prediction. The final output

layer will place the video in a certain genre. This problem could

be applied to a vast number of applications including but not

limited to search optimization, grouping, critic reviews, piracy

detection, targeted advertisements, etc. We expect our fully

trained model to identify, with acceptable accuracy, any video or

video clip over the internet and thus eliminate the cumbersome

problem of manual video classification.

Keywords—Convolutional recurrent neural networks; video

classification; temporal and spatial aspects; machine learning;

computer vision; images classification; audio classification

I. INTRODUCTION

By and large all techniques used in video classification
have been image based, with little consideration going into the
background audio and annotations. CNN-LSTMs [1] have
shown great strides in recognizing image-based video inputs
and classifying them into output categories. As humans though,
we not only recognize a video by its visual features, but also by
the perceived audio it generates. To teach a machine to take
similar features into consideration would make a lot of sense
because audio plays a large role in classifying videos too. For
example, an action scene in a movie will have a fast-paced
audio accompanying it, a serious dialogue session will have a
lot of voices and weak music notes. Also, a lot of video shot in
the internet could be amateurish, with blurry images and weird
camera angles.

Giving the context of audio will help the Neural Network
more features to rely on while making a classification.

To a human a video is a ray of different colors striking the
eyes, but computers perceive video in a completely different
way from us. At the lowest level, it is a series of 1’s and 0’s
which makes no sense to the processor except to light up a

certain pixel in certain color. When we teach a Neural Network
to identify videos, we are asking it to identify certain patterns
in those numbers based on mathematical calculations. An
image, therefore may be viewed by a machine as in Fig. 1(a)
and 1(b).

The problem inherent in computer vision, in fact, the very
purpose of the field, is to recover information about the world
from sensory input. This can be thought about as a formula:

S = f (W) (1)

(a) Information visible to a Machine in Gaussian Blur Format.

Fig 1. (b): Information visible to a Machine in Bitmap Format.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

171 | P a g e

www.ijacsa.thesai.org

Our sensory information(S) is a function of the world (W)
around us (1). What humans take for granted, and what the
field of Computer Vision struggles to make machines do, is the
reverse:

W = f -1(S) (2)

That is, to understand the world from sensory information
(2).

Audio is different scene altogether. A common way to
input audio to Machine Learning algorithms is by using a Mel
spectrogram. A mel-frequency cepstrum (MFC) is a
representation of the short-term power spectrum of a sound,
based on a linear cosine transform of a log power spectrum on
a nonlinear mel scale of frequency.

MFC coefficients are commonly derived as follows:

1) Take the Fourier transform of (a windowed excerpt of)

a signal.

2) Map the powers of the spectrum obtained above onto

the mel scale, using triangular overlapping windows.

3) Take the logs of the powers at each of the mel

frequencies.

4) Take the discrete cosine transform of the list of mel log

powers, as if it were a signal.

5) The MFCCs are the amplitudes of the resulting

spectrum.

A popular formula to convert f hertz into m mels is in
Fig. 2. Fig. 3 shows the generated Mel spectrogram of an audio
file using Audacity.

Most state-of-the-art algorithms use this technique as a
baseline for their inputs. Hence, we’ve chosen the same
techniques for the inputs to our model. Combining the best of
both audio and video classification techniques, we present a
unique solution for the video genre classification problem
using a Convolutional Recurrent Neural Network or a
Convolutional Long Short-Term Memory Network.

Convolutional Neural Networks have been the best at
spatial feature extraction and classification problems for
images. Some popular examples are ImageNet [2], MobileNet
[3], Inception [3], and Google’s WaveNet [4]. Feature
extraction from a single frame may be straightforward,
however a video is a sequence of frames, and every frame is
important. For example, we cannot recognize an action of say
eating a bowl of cereal, until we have seen a person putting a
spoon into the bowl and then into his mouth. Similarly, we
must teach a machine to not only look at one frame, but a
sequence of frames, to grasp the context of the video. The same
analogy can be applied to audio. Hearing a single beat will not
help us identify the genre of a song. Only when we hear it for a
few seconds are we be able to identify its tempo, the
instruments used and its theme. This is where Recurrent Neural
Networks come into play. A recurrent neural network (RNN) is
a class of artificial neural network where connections between
nodes form a directed graph along a temporal sequence. So
RNNs can not only understand features at a single timestep, but
also remember features from previous timesteps, making them
best suited for solving temporal region problems. Long short-
term memory (LSTM) [20] follow the RNN architecture and
have shown great promise in the video classification problem.

Fig 2. The Convolutional Neural Network Architecture.

Fig 3. Simplified Representation of a Convolutional Neural Network and a Recurrent Neural Network.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

172 | P a g e

www.ijacsa.thesai.org

The CNN output can be taken in two methods. One is we
take the output from the SoftMax layer, which includes the
predictions the CNN has made. The other method is to use the
output from the pool layer, which leaves the output prediction
to the RNN. We have tried both methods for this paper and
they are explained in detail later.

II. GENRE IN VIDEOS

A genre for a video specifies a certain expectation about the
video. Genres in real world videos are neither specific nor
implicit but tend to be overlapping. Also, they vary from
person to person as perspective matters. In such a case,
defining specific boundaries for genres tends to become
difficult. For example, there is a very thin line between the
genres Drama and Thriller, and many film critics argue for the
same. To define audio into genres has a different shortcoming.
Audio Classification is usually multi-label, because they tend
to be a mixture of multiple tastes and themes. Background
music in modern movies tend to be a mixture of both classical
and contemporary, two very different genres if seen separately.
Period movies and biographies today are examples for the above.

Therefore, to define the genres for a classifier, we must
ensure that we remove the maximum conflicts that occur in
genre identification. Hence, we have chosen 6 genres which we
can safely say are non-overlapping and mutually exclusive,
even if based on different perspectives. The genres we chose
are: Action, Animation, Horror, Romance, Sports and Science
Fiction. This ensures that our model does not form any tight
assumptions about one genre and is also flexible and open for
new genres in the future.

III. RELATED WORK IN VIDEO CLASSIFICATION

A. Truly Multi-modal YouTube-8M Video Classification with

Video, Audio, and Text [5]

Zhe Wang, Kingsley Kuan, Mathieu Ravaut and others[5]
present a novel way in Video classification by using multi-
modal features from audio, video and text.Their algorithm
classifies the YouTube 8M dataset, which is a collection of
over 0.7 million YouTube videos , each labelled automatically,
without human curation. The challenge involves classifying an
imbalanced dataset based on user generated video content on
YouTube. They used TextCNN for titles and Random Forest
and max pooling for frame classification. Their research
showed that the inclusion of text yielded state-of-the-art
results, e.g. 86.7% GAP on the YouTube-8M-Text validation
dataset.

B. Large Scale Video Classification using both visual and

audio Features on YouTube-8M Dataset [6]

Emma An, Anqi Ji and Edward Ng. [6] presented a solution
for the YouTube-8M challenge by considering both audio and
video features. They used a Convolutional Neural Network to
classify videos into their 4716 classes. Their model used a
Mixture of experts (MoE) to receive 3 inputs, video level
features only, audio level features only and a concatenation of
both audio and video features. They applied a dense layer,
followed by a rule activation layer in their model. Taking the

softmax function output, they achieve an AvgHit of 0.84, Avg
PERR (average precision at equal recall rate) of 0.709, and
mAP (mean average precision) of 0.415 compared to the best
performing baseline.

C. Temporal 3D ConvNets: New Architecture and Transfer

Learning for Video Classification [7]

Ali Diba, Mohsen Fayyaz, Vivek Sharma and others [7]
introduced new 3D convolutional neural network architectures
for video classification named DenseNet3D and T3D.They
introduced a new temporal layer that models variable temporal
convolution kernel depths, embedding this new temporal layer
in their proposed 3D CNN, thus extend the DenseNet
architecture - which normally is 2D - with 3D filters and
pooling kernels. Their research mainly dealt with action
recognition in videos, using the Sports-1M, HMDB and
UCF101 datasets. They beat algorithms trained in multi-GPU
setup for days by removing bottlenecks in the knowledge
gained by 2D ConvNets.

D. Learning Representations from EEG with Deep Recurrent-

Convolutional Neural Networks [8]

Pouya Bashivan, Irina Rish, M. Yeasin, and Noel Codella
[8], applied Deep Recurrent-Convolutional Neural Networks in
classifying electroencephalogram data.
Electroencephalography (EEG) is an electrophysiological
monitoring method to record electrical activity of the brain. It
is typically non-invasive, with the electrodes placed along the
scalp, although invasive electrodes are sometimes used, as in
electrocorticography. EEG measures voltage fluctuations
resulting from ionic current within the neurons of the brain. By
training their model, they were successful in demonstrating
significant improvements in classification accuracy over
current state-of-the-art approaches in this field. A similar
CNN-LSTM [21] is used in this paper.

Although a hot topic in Computer Vision, surprisingly less
research has been done in the category of genre identification
in videos. Most of the state-of-the-art research has been done
on image recognition and on solely visual features. The
challenges posed for such a classification are noisy data, huge
computational costs, large size of datasets and
locality/copyright of videos. Some of the limitations of the
above papers are:

 They classify videos into categories of fixed actions,
which are very specific.

 Most researchers use the YouTube-8M [9] dataset,
which is a highly imbalanced dataset and contains very
generic categories.

 They rely solely on visual features, ignoring a large
amount of audio data.

 They rarely consider temporal space, relying on only
spatial features, which bottlenecks most classification
attempts.

Through this paper, we attempt to outline and demonstrate
methods to improve video classification by fixing most of the
limitation mentioned above. Our research is solely academic

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

173 | P a g e

www.ijacsa.thesai.org

and is meant to spark interest into the genre-classification
problem and its current limitations.

IV. DATA GATHERING

There are certain limitations while using existing popular
video datasets like YouTube-8M, HMDB [10], UCF101 [11]
for genre identification problems, mainly because their labels
are not categorized into movie genres. For examples categories
like playing sports are placed into human actions, which should
instead be classified into a sports genre by our model. Hence,
we had to do a lot of manual data cleaning to get our training
set.

This paper presents the work which are used in parts or in
their entirety as follows:

 The UCF101 dataset

 The Hollywood2 [12] dataset

 The HMDB dataset

 The YouTube-8M dataset

We choose video from these pre-labelled datasets and
classified them into folders representing our six genres. For
example, videos of punching, fighting and explosions went into
the action folder, cases of hauntings and paranormal scenes
went into the horror folder and so on. For animation however,
we had to take an entirely different approach since there is a
dearth of freely available animation videos for research
purposes on the internet. We resorted to manually downloading
clips from public domain websites [13] [14].

Most of the animated videos found online were old hand-
drawn ones, but we were able to secure some modern 3D
animation from the blender.org foundation and other open
sources.

The compiled dataset now consisted of 39GB of videos,
each separated into folders whose names displayed their labels.

V. DATA CLEANING AND PREPROCESSING

A movie video file is usually run at a constant 24 frames
per second. If we convert an entire video file into frames, we
would get 24 images for a second, which when scaled for a 2-
minute video amounts to 2,880 frames. This data is a lot for a
model to process and therefore we had to cut down on frame
count by taking only 4 frames for each second. This limit was
decided after a simple test conducted on human subjects. We
split different videos into 2, 4, 6 and 8 frames per second and
asked the subjects to cycle through the images and guess the
action to be performed. We found that the human mind could
perceive any action taking place optimally in 4 frames every
second, where 2 would be difficult for slow actions and 6 and 8
would be too easy to guess. Hence, we concluded that an
average of 4 frames per second is enough information for a
model to recognize what is going on in a frame of time as
depicted in Fig. 4. The conversion of video to frames was done
with the well-known library OpenCV2 [13] written in
Python3.The frames were arranged in similar folders as the
videos, with folder names specifying the label.

Fig 4. A visualization of different Audio (WAV File) to Frequency Graph

Conversion Techniques.

For audio, we used the well-known codec FFMPEG [14]. It
provides fast, efficient and lossless conversion of video files
into wav files. Then each WAV file was converted into a mel
Frequency Spectrogram using the Python 3 library matplotlib
[15] and stored into a similar folder structure as above.

Overfitting happens when the model fits too well to the
training set. It then becomes difficult for the model to
generalize to new examples that were not in the training set.
For example, the model recognizes specific images in the
training set instead of general patterns. The training accuracy
will be higher than the accuracy on the validation/test set. To
prevent overfitting, we needed regular validation checks as
most of our dataset consisted of specific videos. Hence, we
split the set into 80/10/10 for the training, testing and
validation sets respectively.

VI. THE CONVOLUTIONAL RECURRENT NEURAL NETWORK

APPROACH

A high-level architecture view of the model is shown in
Fig. 3. Both audio and visual features were essentially treated
as images, so they could be easily vectorized. This ensured us
to categorize inputs easily as a TensorFlow/NumPy array to be
given to the model.

A. The Convolutional Neural Network

Pouring research into the availability of state-of-the-art
open-source CNNs like ImageNet, VGGNet [16], InceptionV3
[19] and others, we were able to reduce the resource intensive
and repetitive task of preparing a CNN model without a
baseline. It would prove more time-consuming since we
needed a network that was aware of what an image was first,
before it could start finding patterns. Hence, we decided on
training our dataset on the pre-created models as a baseline.
Inception was selected as our base CNN due to its ability of
transfer learning for new classes of data as well as better
accuracy for home and amateur clips. The InceptionV3 is a
neural network architecture for image classification, originally
published by Christian Szegedy [19], Vincent Vanhoucke,
Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna[17]. This
model has already been trained on a similar task for thousands
of images and thus comes with an intuition for feature
extraction from images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

174 | P a g e

www.ijacsa.thesai.org

The input to this layer comes in the form of images of size
225 x 225 x 3(width x height x channels) which are scaled
accordingly using NumPy [18].

We train the session for a total of 4000 steps with the
default hyper-parameters. Training checkpoints are created
every 400 steps. The output will give us a retrained graph in pb
format and a text file containing labels. However, we are more
interested in the output of the pool and softmax layers. The
layer output was taken accordingly in code and then passed on
to the RNN. The reason why softmax is useful is because it
converts the output of the last layer in the neural network into
what is essentially a probability distribution. This gives the
RNN more data to work with rather than a single 2048 vector
and a class label. The advantage here is that instead of just
getting a predefined label as output, we are giving our next
iteration the entire data that led to its prediction of a particular
label. At the end of this process we have both the vector arrays
containing the features as well as the prediction probability of
each class label for that vector.

B. The Recurrent Neural Network

We could choose to build our RNN either as a deeper
network or as a wider network. Testing with both options, we
discovered better training results while using a wider network.
Another way to think about RNNs is that they have a
“memory” which captures information about what has been
calculated so far. In theory RNNs can make use of information
in arbitrarily long sequences, but in practice they are limited to
looking back only a few steps. The RNN-LSTM [21] has 2
main layers, viz. LSTM layer and the regression layer. The
LSTM layer provides the temporal feature extraction that we
need for the video. Denoting ∗ as elementwise multiplication
and ignore bias term, LSTM calculates a hidden state ht as:

it=σ(xtUi+ht−1Wi)

ft=σ(xtUf+ht−1Wf)

ot=σ(xtUo+ht−1Wo)

~Ct=tanh(xtUg+ht−1Wg)

Ct=σ(ft∗Ct−1+it∗~Ct)

ht=tanh(Ct)∗ot (3)

Here, i, f, o are called the input, forget and output gates,
respectively. These gates have the exact same equations, just
with different parameter matrices (W is the recurrent
connection at the previous hidden layer and current hidden
layer, U is the weight matrix connecting the inputs to the
current hidden layer). They are called gates because the
sigmoid function squashes the values of these vectors between
0 and 1, and by multiplying them element wise with another
vector it defines the part of the other vector that is allowed to
the next layer. The input gate defines how much of the newly
computed state for the current input you want to allow to the
next layer. The forget gate defines how much of the previous
state you want to allow to the next layer. Finally, the output
gate defines how much of the internal state you want to expose
to the external network (higher layers and the next time step).
All the gates have the same dimensions dh, the size of your

hidden state. ~C is a candidate hidden state that is computed
based on the current input and the previous hidden state. C is
the internal memory of the unit. It is a combination of the
previous memory, multiplied by the forget gate, and the newly
computed hidden state, multiplied by the input gate. Thus,
intuitively it is a combination of how we want to combine
previous memory and the new input. We could choose to
ignore the old memory completely (forget gate all 0’s) or
ignore the newly computed state completely (input gate all
0’s), but most likely we want something in between these two
extremes. ht is output hidden state, computed by multiplying
the memory with the output gate. Not all of the internal
memory may be relevant to the hidden state used by other units
in the network.

That sequential information is preserved in the recurrent
network’s hidden state, which manages to span many time
steps as it cascades forward to affect the processing of each
new example. It is finding correlations between events
separated by many moments, and these correlations are called
“long-term dependencies”, because an event downstream in
time depends upon, and is a function of, one or more events
that came before. Mathematically, the carrying forward of
memory is represented as:

ht=φ(Wxt + Uht-1) (4)

The hidden state at time step t is h_t. It is a function of the

input at the same time step x_t, modified by a weight matrix W
(like the one we used for feedforward nets) added to the hidden

state of the previous time step h_t-1 multiplied by its own

hidden-state-to-hidden-state matrix U, otherwise known as a

transition matrix and similar to a Markov chain. The weight
matrices are filters that determine how much importance to
accord to both the present input and the past hidden state. The
error they generate will return via backpropagation and be used
to adjust their weights until error can’t go any lower.

From the output of the CNN, we group the vector
sequences into 40 frames, giving us 10 seconds of information
to process. The RNN has 2056 nodes and gives the output as
the six classes with their probabilities. The label with the most
probability assumed as the predicted class for the current frame
sequence. Fig. 5 shows the architecture of our RNN.

Fig 5. The Recurrent Neural Network Architecture and Layers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

175 | P a g e

www.ijacsa.thesai.org

VII. TRAINING SPECIFICATIONS

Training video classifiers require tremendous hardware
capabilities due to the size and structure of data. We decided to
use the Google Cloud Platform for training our model. A Deep
Learning AMI by Google was deployed on the platform and
its’ specifications were:

 4x Intel XEON vCPUs

 1x NVIDIA Tesla K80 with 12GB VRAM

 10GB of RAM

 100GB of fast SSD

 Debian OS

This provided us a fast, reliable, on-the-go and cost-
effective solution for cloud training.

VIII. EXPERIMENTAL RESULTS

With the dataset and model ready, the training took us 4
hours for the CNN part and 4 hours for the RNN part, running
on the machine specified above.

The accuracy mark when we used the output from the
softmax layer method, that is taking the output from the second
layer, yielded 85.4%. This method gave raw data from CNN to
the RNN, hence the RNN had an upper hand in making a
decision. The TensorFlow log is attached in Fig. 6.

To further improve this, we used the pool layer method
which took output from the third layer. This gave more
computational power to the CNN and the predictions were
narrowed down. This brought the accuracy mark up to 90.3%.

We then tested the model on completely unknown videos
from the internet. They consisted of movies, science fiction
documentaries, live sport matches and TV series. Our
algorithm was able to safely classify videos by observing the
temporal space in most of the cases. The shortcomings are
discussed later.

To set a benchmark for our method, we trained the naïve
model on the UCF101 dataset. The model was able to beat the
average accuracy benchmark set on the dataset after just 3
hours of training. Table I lists the comparison of accuracies for
different Video Classification methods applied on the dataset.

TABLE I. A COMPARISON OF VARIOUS VIDEO CLASSIFICATION

TECHNIQUES USED IN THE PAPER

Sno Name Accuracy

1 ConvNet[22] 65%

2 Time distributed CNN [23] 41%

3 3D convolutional Network[24] 52.8%

4 CNN-RNN 74%

5 CNN-LSTM – soft-max 85.4%

6 CNN-LSTM – pool 90.3%

Fig 6. Tensor board Training Graphs for the CNN-LSTM Network.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

176 | P a g e

www.ijacsa.thesai.org

IX. CONCLUSION AND FUTURE ENHANCEMENTS

Video classification is a long open problem with
tremendous possibilities for applications in the fields of
medicine, entertainment, surveillance, search optimization and
many others. Using only visual features has inputs leave a lot
of gap for the classification methods to fill. By using audio
features, we aim to fill this gap and also make a machine more
intelligent while dealing with data. Video files take up a huge
chunk of data stored on the internet and easy classification will
always be a prime problem to be solved. The lack of proper
datasets, copyright issues, video quality, etc. will always
continue to be bottlenecks in the way of this problem.
However, as more open-source research is made into this field,
we can expect to see more efficient methods emerge which are
not so computationally expensive. Our paper highlights the
main shortcomings many video classifiers are plagued with,
namely in using audio features and in the temporal space.
Computer vision is and will be a booming field in the years to
come as we move to autonomous machines and robots. Video
feeds are the best input we can give to these intelligent
machines.

However, there is still a long way to go before we can
completely trust machines to make prediction on genres. In our
testing we found two interesting cases where the model
classified a certain genre wrong. In the first case; the input
video we gave was from a horror movie, where a ghost is
walking vertically on a tree trunk. The model continued to
classify the video as action despite there being clear elements
of horror present in the scene. Another case is highlighted in
the genre of Romance, where due to the lack of lighting and the
expressions of the actress, the model thinks the genre is horror.
Such false classifications will always arrive as long as
machines are ignorant about a lot of other features like human
emotions and the technicalities involved in the direction of a
movie. To bridge this gap would be a major step in building an
AI critic, who could not only classify movies, but also judge
their effectiveness and themes.

Every project is at any stage a work in progress, since we
cannot achieve a perfect system. The scope for its future
enhancement rests on the shoulders of its creators. Our work in
this field will continue to grow and we have a roadmap for
adding more features to this classifier. Some of our planned
enhancements are:

 Subtitle and transcript generation

 Changing video speed based on the action going on

 Vocal narration for disabled

 Large Curations and Sorting of videos

 Medical Video Analysis.

ACKNOWLEDGMENT

First and foremost, we would like to thank our Institute,
Gokaraju Rangaraju Institute of Engineering and Technology,
for providing us this opportunity and the environment to
conduct the research for this paper. We would additionally like

to thank the faculty members and peers of the college for their
valuable feedback and assistance during our research process.
Finally, we thank the UCF group, HMDB and Hollywood
dataset creators for compiling the datasets and making them
freely available to the public.

REFERENCES

[1] https://karpathy.github.io/2015/05/21/rnn-effectiveness/

[2] http://www.image-net.org/

[3] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam:
MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications, arXiv:1704.04861 [cs.CV]

[4] Oord, Aaron van den; Dieleman, Sander; Zen, Heiga; Simonyan, Karen;
Vinyals, Oriol; Graves, Alex; Kalchbrenner, Nal; Senior, Andrew;
Kavukcuoglu, Koray (2016-09-12). "WaveNet: A Generative Model for
Raw Audio". 1609. arXiv:1609.03499

[5] Zhe Wang, Kingsley Kuan and Mathieu Ravaut: Truly Multi-modal
YouTube-8M Video Classification with Video, Audio, and Text,
arXiv:1706.05461

[6] Emma An, Anqi Ji and Edward Ng : Large scale video classification
using both visual and audio features on YouTube-8M dataset,
unpublished.

[7] Ali Diba*, Mohsen Fayyaz*, Vivek Sharma, Amir Hossein Karami,
Mohammad Mahdi Arzani, Rahman Yousefzadeh, Luc Van Gool :
Temporal 3D ConvNets: New Architecture and Transfer Learning for
Video Classification, arXiv:1711.08200

[8] Bashivan, et al. "Learning Representations from EEG with Deep
Recurrent-Convolutional Neural Networks." International conference on
learning representations (2016).

[9] https://research.google.com/youtube8m/

[10] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A
Large Video Database for Human Motion Recognition. ICCV, 2011.

[11] Khurram Soomro, Amir Roshan Zamir and Mubarak Shah, UCF101: A
Dataset of 101 Human Action Classes From Videos in The Wild,
CRCV-TR-12-01, November, 2012.

[12] Marcin Marsza{\l}ek and Ivan Laptev and Cordelia Schmid : Actions in
Context, IEEE Conference on Computer Vision \& Pattern Recognition,
2009

[13] http://publicdomainmovie.net/

[14] http://publicdomainflix.com/

[15] https://opencv.org/

[16] https://ffmpeg.org/about.html

[17] https://matplotlib.org/

[18] Karen Simonyan∗ & Andrew Zisserman+ Visual Geometry Group,
Department of Engineering Science, University of Oxford
{karen,az}@robots.ox.ac.uk, arXiv:1409.1556v6 [cs.CV] 10 Apr 2015

[19] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
Zbigniew Wojna, Rethinking the Inception Architecture for Computer
Vision, arXiv:1512.00567 [cs.CV]

[20] http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[21] https://machinelearningmastery.com/cnn-long-short-term-memory-
networks/

[22] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. “Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks”,
arXiv:1506.01497 [cs.CV].

[23] Hyeonwoo Noh, Seunghoon Hong, Bohyung Han. “Learning
Deconvolution Network for Semantic Segmentation”, arXiv:1505.04366
[cs.CV]

[24] Shuiwang Ji ; Wei Xu ; Ming Yang ; Kai Yu, “3D Convolutional Neural
Networks for Human Action Recognition”, IEEE Explore.

