
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

244 | P a g e  

www.ijacsa.thesai.org 

Analysis on the Requirements of Computational 

Thinking Skills to Overcome the Difficulties in 

Learning Programming 

Karimah Mohd Yusoff1, Noraidah Sahari Ashaari2, Tengku Siti Meriam Tengku Wook3, Noorazean Mohd Ali4 

Matriculation Division, Ministry of Education Malaysia, Putrajaya, Malaysia1 

Software Technology and Management System, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia2, 3, 4 

 

 
Abstract—Programming has evolved as an effort to 

strengthen science, technology, engineering and mathematics 

(STEM). Programming is a complex process, especially for 

novices, since it requires problem-solving skills to solve problems 

of developing algorithms and programme codes. Problem-solving 

competencies, which are necessary as 21st-century skills, include 

a set of cognitive skills that are related to problem-solving and 

programme development or specifically known as computational 

thinking (CT) skills. In particular, this study quantitatively 

assessed the computational thinking skills in the context of 

programming, specifically on the difficulties in learning 

programming. From the perspectives of the instructors, the 

survey results highlighted the need to implement CT skills as an 

approach in teaching and learning programming. A model for 

teaching and learning programming is necessary as a guide for 

instructors in the teaching and learning process of programming. 

Keywords—Problem-solving; STEM; difficulties in learning 

programming; cognitive; novice 

I. INTRODUCTION 

Job opportunities and daily activities that involve 
computers have encouraged students to pursue computing, 
such as computer engineering, computer science, information 
science, and software engineering, as a career [1]. The U.S. 
Bureau of Labour Statistics reported that computing 
represented 71% of the careers in science, technology, 
engineering and mathematics (STEM) by 2018 [2]. The 
programming curriculum has gained growing attention given 
the significance of computing in meeting the current needs and 
STEM agenda. Programming is emphasized in schools and 
even at the pre-university level in order to provide students 
with a good knowledge base and programming skills. 
However, it is a challenging and complex process to learn 
programming [3][4][1], since it requires good cognitive ability. 
Novice programmers often face problems during the 
introductory course of programming [5][6] that may cause 
hesitation to pursue the advanced courses of programming. 
This scenario shows that the early mastery of programming 
serves as a catalyst for students to consider courses related to 
programming at a later stage. 

In general, programming is viewed as a means of producing 
computer programmes. Basically, programming solves real-
world problems through computer programmes. The 
implementation of the identified solution involves several 
steps, which are as follows: (1) formulate a problem; (2) design 

a solution by generating an algorithm; (3) translate the 
algorithm into a programme code; (4) test and evaluate the 
complete programme. Although studies have introduced 
several programming methods and approaches to assist novice 
programmers, not all focus on the programming steps involved 
in solving problems. Furthermore, most of the past studies 
focused on mastering the concepts of programming, such as 
learning using MicroWorlds, game-based learning, story-based 
learning, and visualisation tools. 

For instance, the use of MicroWorlds, such as Alice, 
Greenfoot, Marine Biology Case Study, Scratch, and Turtle 
Graphics, provides a user-based interface (GUI) that introduces 
basic programming concepts to novices. Although such 
approach can build problem-solving skills, it mainly focuses on 
implementing solutions in specific programming languages. In 
addition, it does not develop one’s ability to formulate 
problems, design solutions, and generate algorithms that are 
often necessary for large, complex problems or involve 
multiple processes.  Besides, games-based learning approaches 
are considered to provide students with a lot of fun while 
learning, but it also focusses on programming concepts [7].  
Meanwhile, work-based learning approaches involve problem 
solving in programming that can help to reduce the learners’ 
cognitive load by performing solutions based on work 
examples [8][9][10]. Most importantly, the learning process 
must involve learners themselves, where the learning process is 
designed according to their competencies. Learners are also 
required to engage in a group discussion to discuss, interact 
and provide feedback, and guide their peers. 

Accordingly, the idea of computational thinking (CT) 
already existed during the early 1950s and has gained growing 
attention of educators and researchers over the past decade. 
The term “computational thinking” was first used by Seymour 
Papert in 1980 and 1996 [11][12]. Following that, Wing [13] 
formally introduced CT as an approach to solving problems, 
designing systems, and understanding human behaviour, which 
reflects the basic concepts of computing. The discussion of CT 
in the literature is often associated with problem-solving [14]. 

CT is an important and necessary way of thinking for 
computer programmers and other professionals in STEM [15]. 
CT skills, which include decomposition, abstraction, pattern-
recognition, algorithm, logical reasoning, and assessment (or 
evaluation) skills, are cognitive skills that can be used in the 
teaching and learning process of programming that typically 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

245 | P a g e  

www.ijacsa.thesai.org 

involves problem-solving. The computational skills of CT 
derived from computer science have the potential to be used 
for problem solving in all disciplines [16]. Through these 
computational skills, one can be better at solving problems and 
can identify problems and apply a smart approach to solve the 
problems [17]. Problem solving in programming involves 
several processes that can be implemented using appropriate 
CT skills. In general, there are two main phases of problem-
solving in programming. The first phase is to generate an 
algorithm whereas the second phase is to develop a 
programme. Both phases coincide with the role of CT as a 
thought process that involves formulating problems and 
solutions in a form that can be effectively implemented by the 
information processing agents [18] such as computers. 

Although CT is an ideal teaching and learning approach 
that can help with the curriculum problems [19], its 
implementation, to date, focuses on K-12 only [20][21][22][23]. 
Studies have revealed limited CT implementation for higher 
learning, particularly at the pre-university level. Practical 
research on teaching CT skills at the higher education level has 
been continuously implemented in computer science and 
STEM [17]. The difficulties in learning programming have 
been a topic of discussion among educators and researchers. 

The difficulties in learning programming were widely 
explored in past studies [24][25][26][27][28][29][30][31]. 
Besides that, Du Boulay [3], Robins, Rountree, and Rountree 
[4], and Qian and Lehman [32] also reviewed the difficulties in 
learning programming. Some of the identified difficulties 
included designing solution plans, developing algorithms, 
syntactic mastery, writing and evaluating programmes, 
cognitive requirements, and limited programming ability. The 
problem-solving approach can be implemented using CT skills 
according to the required role. For instance, abstraction skills 
play a role in identifying and retrieving relevant information to 
determine key ideas and reduce unnecessary information. 
Besides that, decomposition skills help to decompose complex 
problems (that involve several processes) according to the 
process, which makes problem solving easier, as the problems 
can now be solved in parts. Meanwhile, through pattern-
recognition skills, programmers can observe the patterns, 
trends, and regularity of data by observing the similarities and 
differences with other problems. There are also the algorithm 
skills that involve a set of rules and instructions to execute 
tasks or address any problem-solving needs in programming. 
These skills can help programmers to develop computer 
algorithms, specifically the step-by-step solutions into forms 
that can be implemented by a computer. Apart from that, there 
are logical reasoning skills by analysing and studying facts 
based on accurate and clear-thinking approach. After all, 
problem-solving involves logic. Last but not least, the needs of 
each solution should be evaluated, which highlights the 
important role of evaluation (or assessment) skills in 
determining the adequacy of an algorithm, system, or process 
in serving its purpose of meeting the needs. 

In short, CT plays an important role in learning and solving 
problems and computerizes thinking in all disciplines [33] 
given its significance as the core of STEM for solving 
problems and designing large, complex systems [12]. Focusing 
on the significance of 21st-century skills, learners need to 

master CT skills in order to solve problems based on the 
principles of computer science [14]. Clearly, CT is a thinking 
approach to develop problem-solving skills using the basic 
concepts of computing. In view of the above, the current study 
focused on high-level approaches to solve problems in 
programming using CT proficiency. 

Due to the nature of programming that closely related with 
the problem-solving, computational thinking skills are potential 
to overcome the difficulties in programming. This study 
reviewed related literature on the difficulties in learning 
programming, how these difficulties are linked to 
computational thinking, and the need for computational 
thinking in learning programming. The obtained findings of 
this study were expected to benefit both instructors and 
students or novice programmers, especially in the preparation 
of an effective teaching and learning approach to 
programming. Hence, in this paper, author concerns to study 
the needs of computational thinking skills to overcome the 
difficulties in learning programming. 

II. RESEARCH PURPOSE 

For more than a decade, the use of CT as an approach to 
problem-based learning has prompted researchers to explore its 
use in computer science, especially for programming 
[34][35][36][37]. In addition, there is an increasing need to 
understand the role and skills of CT and identify the need to 
use CT skills in problem-solving and programme development. 
With that, this study aimed to identify the difficulties in 
learning programming and the required CT skills among 
learners in order to facilitate the teaching and learning process 
of programming. In particular, this study addressed the 
following research questions: 

1) What are the common difficulties in learning 

programming among students? 

2) What are the CT skills that are associated with the 

identified difficulties in learning programming? 

3) Do the instructors face the identified difficulties? 

4) What are the CT skills needed to overcome the 

difficulties in learning programming? 

III. METHODOLOGY 

A. Mapping the Difficulties in Learning Programming with 

Computational Thinking Skills 

With respect to the purpose of this study, the difficulties in 
learning programming, especially among novice programmers, 
were reviewed. For this study, the difficulties in learning 
programming were first mapped based on the review of key 
literature, analysis of documents, and the elements of 
difficulties in relation to the CT skills. Fig. 1 illustrates the 
applied mapping method. 

 

Fig. 1. Mapping Method for Difficulties in Learning Programming with 

Computational Thinking Skills. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

246 | P a g e  

www.ijacsa.thesai.org 

Meanwhile, Table I presents the mapping results, which 
showed that the difficulties in learning programming are 
entirely related to all CT skills, such as abstraction, 
decomposition, pattern-recognition, algorithms, logical 

reasoning, and assessment (or evaluation) skills. These initial 
findings demonstrated the significance of CT skills in 
developing the required instrument for the ensuing survey for 
this study. 

TABLE I.  RELATIONSHIP OF DIFFICULTIES IN LEARNING PROGRAMMING WITH COMPUTATIONAL THINKING SKILLS 

References 
Difficulties in 

programming 

Justifications of mapping to computational 

thinking (CT) skills  

Computational Thinking (CT) Skills  

Decomposition Abstraction 
Pattern-

Recognition 
Algorithm 

Logical 

Reasoning 

Assessment 

or 

Evaluation 

Qian and 

Lehman 

[32] 

1) Not familiar 

with the 

syntax 

1) Syntax is closely related to the closeness 
of mapping, which is a relationship 

between the programming languages 

and students’ existing knowledge of the 
concepts used. The existing knowledge 

refers to knowledge in programming or 

other knowledge that applies the same 
concepts to programming. It is related to 

the pattern-recognition skills. 

2) The existing knowledge used to predict 
is part of logical reasoning [38]. 

3) Evaluation skills are indirectly required 

when logical reasoning is used to 
predict. 

  √  √ 
√ 
 

2) Lack of 
ability in 

mathematics 

1) The ability in mathematics is related to 

cognitive skills. 

2) CT skills are a set of cognitive skills. 
These skills are in tandem with 

problem-solving skills for mathematics. 

3) Problem-solving for mathematics 
requires strategy; perform solution 

sequentially; and involve logical 

reasoning and evaluation skills. 

√ √ √ √ √ √ 

3) Lack of 
mental model 

to implement 

codes 

1) This is related to the concepts of 
programming. It involves cognitive 

skills to master it. 

2) The use of analogies in daily life can 

help to understand the implementation 

of codes, as variables can hold one 

value at a time; each statement ends 
with a semicolon and each repeated 

process has a numerator to track it. This 

is related to pattern-recognition, logical 
reasoning, and evaluation skills. 

3) Students in the study were found to face 

problem to understand how codes work. 
This issue is related to algorithm since 

logic in programming is in line with the 

logic flow of algorithm.  

  √ √ √ √ 

4) Lack of 

strategic 

knowledge 

1) This leads to difficulties in designing 
solutions, writing programmes, and 

resolving errors. 

2) These issues are related to 
decomposition, abstraction, pattern-

recognition, algorithm, logical 

reasoning, and evaluation skills. 

√ √ √ √ √ √ 

5) Lack of 

existing 
knowledge in 

programming 

1) The existing knowledge is related to 
pattern-recognition, logical thinking, 

and assessment skills. 

2) Existing knowledge that is used to 
predict is part of logical reasoning [38]. 

  √  √ √ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

247 | P a g e  

www.ijacsa.thesai.org 

References 
Difficulties in 

programming 

Justifications of mapping to computational 

thinking (CT) skills  

Computational Thinking (CT) Skills  

Decomposition Abstraction 
Pattern-

Recognition 
Algorithm 

Logical 

Reasoning 

Assessment 

or 

Evaluation 

6) Difficult to 

solve 

complex 
tasks 

1) Complex tasks involve students’ 

cognitive load.  

2) It is related to strategies of problem 
solving with respect to decomposition 

skill to decompose complex problems, 

abstraction skill to simplify the problem 
by removing unimportant information 

while not losing important information, 

and the ability to adapt other methods of 
almost similar solutions. 

3) Students in the study were found to 

demonstrate the tendency of making 
mistakes when it comes to managing 

complex tasks. 

4) Involves logical thinking and 
assessment skills. 

√ √ √ √ √ √ 

Kwon [31] 

 

7) Difficulty in 
designing a 

solution plan 

1) Some of the proposed strategies are: 
a) Decompose the complex task in parts 

b) Retrieve relevant information to 

perform solution 
c) Identify other similar problem and 

adapt its solution 

2) Abstraction and algorithm are closely 
related to the capability of problem 

solving [39]. 

3) Students in the study were found to fully 
understand the problem and have the 

ability to describe the solution but 

difficult to figure out a solution or 
develop instructions that can be 

implemented by a computer. Related to 

the ability to generate or develop 
algorithms. Logical thinking skill is also 

involved in developing algorithms. 

√ √ √ √ √  

Papadopoulos 

and Tegos [29] 

8) Lack of 
problem 

solving 

1) Problem solving involves planning such 
in problem (7) to perform solution in the 

form of algorithm. 

√ √ √ √ √  

9) Lack of CT 

skills 
2) Indirectly related to CT skills √ √ √ √ √ √ 

Siti Rosminah 

and Ahmad 

Zamzuri [30] 

10) Difficult to 

understand 
the basic 

concepts of 

programming 
structures and 

programme 

design 

1) Based on the literature, this is related to 

the existing knowledge. This problem 

can be solved using the phenomenon in 
daily life as a comparison to understand 

the concepts of programming structure. 

It is related to pattern recognition skill. 
2) Designing programmes is related to the 

ability to develop an algorithm or 

symbolic languages that describe 
solutions in programme codes. 

3) Logical reasoning is used to predict the 

aftermath of recognising the patterns 
and generate the algorithms. Logical 

reasoning assesses whether the 

algorithm is correct and meets its 
purpose. 

4) The evaluation ensures that the design 
of the programme is good and meets its 

purpose [40]. 

  √ √ √ √ 

11) Difficult to 
master the 

syntax of 

programming 
language 

1) Students need to understand what they 
want to achieve and the process to 

achieve results. For example: 

a) The instructions for text display to 
specifically display the “Hello” text. 

  √  √ √ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

248 | P a g e  

www.ijacsa.thesai.org 

References 
Difficulties in 

programming 

Justifications of mapping to computational 

thinking (CT) skills  

Computational Thinking (CT) Skills  

Decomposition Abstraction 
Pattern-

Recognition 
Algorithm 

Logical 

Reasoning 

Assessment 

or 

Evaluation 

b) The instructions to enter inputs like 

scores. 

2) Syntax is related to the programming 
language structure. Connecting with 

other concepts can assist students to 

learn syntax, such as a sentence must 
end with a period (.), while in 

programming, a statement ends with a 

semicolon (;). This is related to pattern-
recognition skill.  

3) Logical reasoning and evaluation skills 

help students to improve the ability to 
master syntax. 

12) Difficult to 

understand 

the abstract 

concepts that 

involve the 
position of 

variables in 

computer 
memory 

1) Analogies in daily life can help to 
understand the abstract concepts, such 

as an object with its content refers to the 

variable that holds its value. 
2) The abstract concepts can also be 

conveyed using teaching aids, such as 

visualisation. For example, in computer 
memory, there is a variable that holds a 

value; the input entered would be held 

by the variable. 

  √  √  

Chan Mow [28] 
13) Cognitive 

needs 
1) CT skills refer to the cognitive process 

in problem solving [37]. 
√ √ √ √  √ √ 

Renumol, 
Jayaprakash, and 

Janakiram [41] 

14) Cognitive 

difficulties 
Same as the above problem (13)  √ √ √ √  √ √ 

Haberman and 

Muller [42] 

15) Difficult to 

use the 

abstraction 
process 

1) If problems are complex, decomposition 

skill is required to break down the 

problem into smaller parts; so, it would 
be easier to manage. Decomposition is a 

prerequisite for abstraction [14] when it 

comes to complex problems. The 
abstraction process to retrieve relevant 

information for each section is made 

after decomposition.  
2) It is directly related to the need for 

abstraction skill. 

3) Pattern-recognition skill can be helpful 
because the pattern-oriented instruction 

approach influences abstraction skill 

[27]. 

√ √ √    

Gomes & 
Mendes 

[26] 

16) Cannot write 

a programme 

and develop 
an algorithm 

1) Abstraction, decomposition, and 

pattern-recognition skills are best used 

as strategies to design solutions for the 
development of algorithms. It also 

requires logical thinking skill because 

an algorithm is a series of steps in the 
form that can be processed by a 

computer. 

2) The study suggested emphasising the 
development of problem-solving skills 

among the novices.  

3) Decomposition, abstraction, pattern-
recognition, and algorithm skills are part 

of problem-solving skills. 

4) Logical thinking is required to develop 
algorithms. 

√ √ √ √  √  

Lahtinen, Ala-
Mutka, and 

Jarvinen  [25] 

17) Difficult to 
understand 

the concepts 

1) The study found the involvement of 
complex cognitive to understand 

without the phenomenon in daily life for 

  √ √ √  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

249 | P a g e  

www.ijacsa.thesai.org 

References 
Difficulties in 

programming 

Justifications of mapping to computational 

thinking (CT) skills  

Computational Thinking (CT) Skills  

Decomposition Abstraction 
Pattern-

Recognition 
Algorithm 

Logical 

Reasoning 

Assessment 

or 

Evaluation 

of 

programming 

related to 
recursion, 

instruction, 

and abstract 
data 

comparison. The study proposed 

appropriate design of teaching and 

learning materials to help students to 
master the concepts of programming 

through the comparison of concepts in 

life. Pattern recognition skill can help 
the students to master the concepts of 

programming that include: 

a) Recursive functions can be 
demonstrated through the concept 

of reuse, such as factorial or other 

situations in life. 
b) Demonstrates the use of pointers 

through the phenomena in daily life 

that can represent the concepts of 
programming 

c) Use other representations in daily 

life to illustrate abstract data 
2) The concepts of programming are 

related to algorithm skill. 

3) Logical thinking is necessary to master 
the concepts of programming. 

18) Difficult to 

develop 

programmes 

1) Materials such as the instructions to 

convert the algorithms to programme 

codes are used as references for 
students. Students can refer to the 

examples to write the programme. It is 

related to pattern-recognition skill. 
2) The development of programmes 

involves syntax and semantics. Students 

must understand the flow of algorithms 
and use logical thinking skill to develop 

and evaluate programmes. 

  √ √ √  

Robins, 

Rountree, and 

Rountree [4] 

19) Lack of 

strategy to 

plan the 

solutions and 
design 

algorithms 

1) Decomposition, abstraction, pattern-

recognition, and algorithm skills are 

important problem-solving skills for 
programming. Students need to think 

logically to design the algorithms. 

√ √ √ √ √  

20) Implement 
algorithms 

and write 

programmes 

1) A guide to translate algorithms into 

suitable programme codes as a reference 
for students to implement algorithms. 

Approaches such as reusing, modifying, 

or integrating the existing programmes 
are strategies to develop new 

programmes. It is related to pattern-

recognition skill. 
2) Students must understand the flow of 

algorithms before writing the 

programme to ensure that the solution 
design is logical and valid. 

3) The development and evaluation of 

programmes require logical thinking 
and assessment skills. 

  √ √ √ √ 

21) Evaluate 

programmes 

and tracking 
and fixing 

errors 

1) Require logical reasoning to evaluate 

and debug the programme  
    √ √ 

Winslow [24] 

22) Problem to 

combine 

syntax and 
semantics to 

1) Syntax is related to the structure of 

programming languages whereas 

semantics relates to the logic or 
concepts of statements, expressions, or 

  √ √ √ √ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

250 | P a g e  

www.ijacsa.thesai.org 

References 
Difficulties in 

programming 

Justifications of mapping to computational 

thinking (CT) skills  

Computational Thinking (CT) Skills  

Decomposition Abstraction 
Pattern-

Recognition 
Algorithm 

Logical 

Reasoning 

Assessment 

or 

Evaluation 

produce a 

valid 

programme 

programmes. 

2) Students need to understand the flow of 

algorithms before writing the program 
because an algorithm is a symbolic 

language that describes the solution in 

the form of programme code. It deals 
with algorithm and logical reasoning 

skills. 

3) Syntax relates to the closeness of 
mapping, which is a relationship of 

programming languages with the 

students’ existing knowledge of the 
concepts used. It is related to pattern 

recognition. 

4) The semantics relates to the logic or 
concept for statement, expression, or 

programme. Students need to evaluate 

whether the algorithm or programme is 
logic and meets its purpose. Evaluation 

skill is used to ensure that the 

programme performs well and is able to 
achieve its goal [40]. Relates to logical 

reasoning and evaluation skills. 

Du Boulay [3] 

23) Cognitive 
needs of 

programming 

1) CT skills refer to cognitive processes in 

problem-solving [37]. Six CT skills are 
deemed very relevant to support 

problem solving in programming. 

√ √ √ √ √ √ 

24) Syntax and 

semantics 

1) Syntax refers to the programming 
language structure. It is related to the 

closeness of mapping, which is the 

relationship of programming language 
with the students’ existing knowledge of 

the problem or the concept that students 

want to learn. This is related to pattern-

recognition skill.  

2) The semantics relates to the logic or 

concept for statement, expression, or 
program are logic and valid. This stage 

uses logical reasoning and evaluation 

skills to evaluate an algorithm or 
programme.  

  √ √ √ √ 

 

25) Lack of 

support skills 
(pragmatic) 

1) Pragmatics refers to the practical aspects 

of how language features can be used to 

achieve multiple objectives. This is 
related to the logical reasoning skills. 

2) Evaluation skill is also required to 

determine whether the programme is 
written in line with its objectives. The 

study then concluded that students need 

to learn the skills of how to determine, 
develop, test, and debug using the 

available tools. 

    √ √ 

 26) Orientation 

1) The need to understand its uses, the 

types of problems that can be solved, 
and its advantages in programming 

2) It is difficult for students to identify the 

terms of the programme, the actual 
process needed, and its usefulness. 

Students can be guided by 

programming-oriented contexts used in 
real life. It is directly related to pattern-

recognition, logical reasoning and 

evaluation skills. 

  √  √ √ 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

251 | P a g e  

www.ijacsa.thesai.org 

Overall, the difficulties in learning programming can be 
categorised as cognitive difficulties, difficulties in designing 
solutions, difficulties in developing algorithms, difficulties in 
writing and evaluating programmes, difficulties in combining 
syntax and semantics, difficulties related to the concepts of 
programming, and limited programming skills. The cognitive 
difficulties are related to difficulties in completing complex 
tasks, cognitive programming needs, lack of ability in 
mathematics, and less computational thinking. With limited 
cognitive abilities, it would also be difficult to design solutions. 
Difficulties in designing solutions refer to difficulties in using 
the abstraction process and designing solutions. As a result, it 
would be difficult to develop an algorithm as well. 

Besides that, there are also the lack of strategies to design 
algorithms, difficult to understand the concepts of 
programming structure and programme design. Such scenario 
would inevitably lead to difficulties in writing and evaluating 
programmes. There are also other lack of strategies in 
implementing algorithms, difficulties in combining syntax and 
semantics (to produce a complete programme), and difficulties 
in evaluating programmes, debugging error, and tracking and 
correcting the errors. Moreover, learners who are not familiar 
with syntax would not be able to master semantics. Apart from 
the strategies to plan and develop algorithms, understanding 
the concepts of programming, which are typically related to 
recursive, pointer, abstract data, and mental models to 
implement programs, is also important. Last but not least, there 
are also the lack of support skills and orientation difficulties 
when it comes to the difficulties in learning programming. 

B. Mapping Validation by Experts 

These initial findings were then validated by the appointed 
experts. In this case, the mapping validation by experts referred 
to the expert evaluation on the CT skills in relation to the 
difficulties in learning programming. The mapping method in 
Fig. 1 was applied. The tabulated justifications of mapping to 
CT skills in Table III were reviewed by the experts. These 
experts were required to indicate their agreement to the 
established categories in the table. 

Overall, the experts agreed on the mapped CT skills. There 
were additional expert reviews provided. For instance, students 
who are capable in mathematics may still encounter difficulty 
in mastering the logic of programming. The experts argued that 
the difficulties to come up with algorithms and programs are 
related to logical reasoning skill instead. In addition, certain 
students may not be able to come up with the solution because 
they evaluate the problem as a single, whole problem, rather 
than assessing the problem in different stages or processes. 
Such scenario demonstrates the students’ incapability in 
problem-solving strategies, such as formulating problems to 
understand and design solutions and relate them to the existing 
knowledge and experience. 

C. Conducting a Survey 

Following that, an instrument was developed. In general, 
the instrument included a list of statements on the difficulties in 
learning programming. Considering the purpose of this study, 
the survey items aimed to measure all six identified CT skills, 
which were abstraction, decomposition, pattern-recognition, 

algorithm, logical reasoning, and evaluation skills. The details 
of the items for each construct are presented in Table II. 

A total of 17 items were developed for each construct. A 
five-point Likert scale was employed. Likewise, these items 
were verified by experts before the actual data collection. 
Table III presents the level of measurement scale to determine 
the mean score of each construct. 

A survey that involved instructors was then conducted to 
gather empirical data on the students’ difficulties in learning 
programming. This study focused on programming lecturers 
from the Matriculation Division, Ministry of Education 
Malaysia. A total of 32 respondents participated in the survey. 
The survey aimed to identify the difficulties in learning 
programming based on the perspectives of these instructors. 
Through this survey, the need for CT skills to overcome the 
difficulties in learning programming can be identified to serve 
as a guide for the instructors in the teaching and learning 
process in programming. 

TABLE II.  DETAILS OF ITEMS FOR EACH CONSTRUCT 

Construct Description of items 

Abstraction 

Items were intended to identify the students’ difficulties in 

understanding and formulating problems as well as 

identifying relevant information. 

Decomposition 

Items were intended to identify students’ difficulties to 

decompose a problem that involves several processes in 
parts, so that it can be solved by section, as part of the 

problem-solving strategies. 

Pattern-

recognition 

Items were intended to identify students’ difficulties in 

integrating the existing knowledge and experience as 
problem-solving strategies. 

Algorithm 

Items were intended to identify students’ difficulties in 

developing algorithms as well as their consequences if fail 

to create the algorithm. 

Logical 

reasoning 

Items were intended to identify students’ difficulties in 

thinking logically by identifying and explaining the 
reasons behind the solution. 

Evaluation 
Items were intended to identify students’ difficulties in 
evaluating the solution, whether the solution is suitable and 

meets its purpose. 

TABLE III.  LEVEL OF MEASUREMENT SCALE BASED ON MEAN SCORE 

Mean score Level 

1.00 – 2.33 Low 

2.34 – 3.67 Average  

3.68 – 5.00 High 

(Source: Landell, 1977) [43] 

IV. ANALYSIS AND FINDINGS 

There are two analysis and findings in this study. First, 
mapping the difficulties in learning programming with 
computational thinking skills. Second, survey among 
instructors on the students’ difficulties in learning 
programming as well as the needs of CT skills. For the first 
analysis, the results of mapping help to identify the CT skills 
which is relevant to the difficulties in learning programming. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

252 | P a g e  

www.ijacsa.thesai.org 

Some of the comments from experts described the problems 
encountered in programming learning.  These results are useful 
for instructors to understand students’ need in learning 
programming, helps to plan teaching and learning approaches 
or strategies and also in planning teaching materials and 
exercises. 

Survey among instructors aim to identify students’ 
difficulties in learning programming that in tandem with the 
needs of CT skills. Due to this purpose, data were analysed 
descriptively to determine the mean score of each item and 
construct, specifically to identify the level of need for each 
skill to overcome the difficulties in learning programming. As 
shown in Table IV, all items and constructs recorded high 
mean scores. The obtained results demonstrated that the 
difficulties in learning programming that were identified from 
literature are issues for learners. In addition, the results 
indirectly demonstrated the need for CT in teaching and 
learning programming.  Algorithm skill recorded the highest 
mean score.  This skill is useful for designing solutions by 
creating algorithms before writing the programs. Failure to 
develop algorithms may cause difficulty while coding. In 
addition, decomposition skill also showed high mean scores. 
This construct refers to the problems in managing large and 
complex problems. Due to this situation, it may cause problem 
to develop the algorithms. Based on these results, students need 
more problem solving practices to design the solutions.  Hence, 
instructor must expose students with vary type of problems that 
require several processes to raise the strategies in problem 
solving. In conclusion, both of analysis and findings are useful 
to plan the strategy and approach in teaching and learning as 
well as to overcome the difficulties that commonly faced by 
students in programming. 

TABLE IV.  MEAN SCORE OF NEED FOR COMPUTATIONAL THINKING 

SKILLS IN TEACHING AND LEARNING PROGRAMMING 

Construct Item 
Mean score of 

items 

Mean score of 

constructs 

Pattern-recognition 

1 4.00 

4.03 2 4.06 

3 4.03 

Decomposition 

4 4.03 

4.30 5 4.34 

6 4.53 

Abstraction 

7 3.90 

4.17 8 4.22 

9 4.38 

Algorithm 

10 4.31 

4.38 11 4.41 

12 4.41 

Logical reasoning 

13 3.84 

3.87 

14 3.78 

15 4.03 

16 3.75 

17 3.94 

Evaluation This item is contained indirectly in other constructs. 

V. CONCLUSION 

Programming requires cognitive ability and involves 
strategies in planning and solving problems. Focusing on that, 
this study aimed to examine the difficulties in learning 
programming among students and determine the need for CT 
skills among instructors. This study first reviewed 11 empirical 
papers and three review papers on the difficulties in learning 
programming. Most of the identified difficulties in the past 
studies were related to cognitive needs, ability to plan 
solutions, difficulties in developing algorithms, and difficulties 
in writing and evaluating program. These identified difficulties 
were then mapped to the appropriate CT skills, which were 
validated by the experts. Following that, the items for each 
construct were developed for the survey. The survey 
specifically involved 32 instructors to gather empirical data on 
the difficulties in learning programming among students at the 
pre-university level. Based on the survey results, the identified 
difficulties in learning programming are clear among students 
today. Additionally, this directly demonstrated the need for CT 
skills in the teaching and learning process of programming. CT 
skills with appropriate approach or activities should be applied 
to guide students through real problems. The outcomes of 
mapping and survey were expected to contribute to the design 
of the problem-solving model and strategies in programming 
using CT skills, which can serve as a guide for instructors. 

ACKNOWLEDGMENT 

This study was funded by the UKM Research Grant (GUP-
2018-155). We would also like to acknowledge the 
Matriculation Division, Ministry of Education Malaysia for 
their assistance and contribution for this study. 

REFERENCES 

[1] Vassilev, T. I. 2015. An Approach to Teaching Introductory 
Programming for IT Professionals Using Games. International Journal 
of Human Capital and Information Technology Professionals 6(1): 26–
38. 

[2] Stuikys, V. and Burbaite, R., 2018. Smart STEM-Driven Computer 
Science Education: Theory, Methodology and Robot-based Practices. 
Springer. 

[3] Du Boulay, B. 1986. Some Difficulties of Learning to Program. Journal 
of Educational Computing Research 2(1): 57–73. 

[4] Robins, A., Rountree, J. & Rountree, N. 2003. Learning and Teaching 
Programming: A Review and Discussion. Computer Science Education 
13(2): 137–172. 

[5] Yassine, A., Chenouni, D., Berrada, M. & Tahiri, A. 2017. International 
journal of emerging technologies in learning. International Journal of 
Emerging Technologies in Learning (iJET) 12(03): 110–127. Retrieved 
from http://online-journals.org/index.php/i-jet/article/view/6476. 

[6] Watson, C. and Li, F.W., 2014, June. Failure rates in introductory 
programming revisited. In Proceedings of the 2014 conference on 
Innovation & technology in computer science education (pp. 39-44). 

[7] Ibrahim, R., Rahim, N.Z.A., Ten, D.W.H., Yusoff, R., Maarop, N. and 
Yaacob, S., 2018. Student‟ s Opinions on Online Educational Games for 
Learning Programming Introductory. International Journal of Advanced 
Computer Science and Applications, 9(6), pp.332-340. 

[8] Vieira, C., Yan, J. and Magana, A.J., 2015. Exploring design 
characteristics of worked examples to support programming and 
algorithm design. Journal of Computational Science Education, 6(1), 
pp.2-15. 

[9] Margulieux, L.E. and Catrambone, R., 2016. Improving problem solving 
with subgoal labels in expository text and worked examples. Learning 
and Instruction, 42, pp.58-71. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

253 | P a g e  

www.ijacsa.thesai.org 

[10] Jalani, N. H. & Sern, L. C. 2015. The Example-Problem-Based Learning 
Model: Applying Cognitive Load Theory. Procedia - Social and 
Behavioral Sciences 195: 872–880. 

[11] Papert, S. 1980. Mindstorms; Children, Computers and Powerful Ideas. 
New York: Basic Book. 

[12] Papert, S. and Harel, I., 1991. Situating constructionism. 
Constructionism, 36(2), pp.1-11. 

[13] Wing, J. M. 2006. Computational thinking. Communications of the 
ACM 49(3): 33. 

[14] Selby, C. 2015. Relationships: Computational Thinking, Pedagogy of 
Programming, and Bloom’s Taxonomy. Proceedings of the Workshop in 
Primary and Secondary Computing Education 80–87. 

[15] Estapa, A., Hutchison, A. & Nadolny, L. 2018. Recommendations to 
support computational thinking in the elementary classroom. 
International Technology and Engineering Educators Association. 
Retrieved from https://www.iteea.org/File.aspx?id=123563&v=25610bf 

[16] Yadav, A., Gretter, S., Good, J. & Mclean, T. 2017. Computational 
Thinking in Teacher Education (November). 

[17] Czerkawski, B. C. & Lyman, E. W. 2015. Exploring Issues About 
Computational Thinking in Higher Education. TechTrends 59(2): 57–65. 

[18] Wing, J. M. 2010. Computational Thinking: What and Why? 
(November): 1–6. 

[19] Shute, V. J., Sun, C. & Asbell-Clarke, J. 2017. Demystifying 
computational thinking. Educational Research Review 22: 142–158. 

[20] Yadav, A., Hong, H. and Stephenson, C., 2016. Computational thinking 
for all: pedagogical approaches to embedding 21st century problem 
solving in K-12 classrooms. TechTrends, 60(6), pp.565-568. 

[21] Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., 
Kampylis, P. & Punie, Y. 2016. Developing Computational Thinking: 
Approaches and Orientations in K-12 Education. Proceedings EdMedia 
2016. 

[22] Gretter, S. & Yadav, A. 2016. Computational Thinking and Media & 
Information Literacy: An Integrated Approach to Teaching Twenty-First 
Century Skills. TechTrends 60(5): 510–516. 

[23] Kong, S. 2016. A framework of curriculum design for computational 
thinking development in K-12 education. Journal of Computers in 
Education 3(4): 377–394. 

[24] Winslow, L. E. 1996. Programming Pedagogy --A Psychological 
Overview. ACM SIGCSE Bulletin 28(3): 17–22. 

[25] Lahtinen, E., Ala-Mutka, K. & Jarvinen, H.-M. 2005. A study of the 
difficulties of novice programmers. ACM SIGCSE Bulletin 37(3): 14. 

[26] Gomes, A. & Mendes, A. J. N. 2007. Learning to program-difficulties 
and solutions. International Conference on Engineering Education 1–5. 
Retrieved from http://ineer.org/Events/ICEE2007/papers/411.pdf 

[27] Muller, O. & Haberman, B. 2008. Supporting abstraction processes in 
problem solving through pattern-oriented instruction. Computer Science 
Education 18(788840272): 187–212. 

[28] Chan Mow, I. T. 2008. Issues and difficulties in teaching novice 
computer programming. Innovative Techniques in Instruction 
Technology, E-Learning, E-Assessment, and Education 199–204. 

[29] Papadopoulos, Y. & Tegos, S. 2012. Using microworlds to introduce 
programming to novices. Proceedings of the 2012 16th Panhellenic 
Conference on Informatics, PCI 2012 180–185. 

[30] Siti Rosminah, M. D. & Ahmad Zamzuri, M. A. 2012. Difficulties in 
learning programming: Views of students. 1st International Conference 
on Current Issues in Education (ICCIE 2012) (SEPTEMBER 2012): 74–
79. 

[31] Kwon, K. 2017. Student’s misconception of programming reflected on 
problem-solving plans. International Journal of Computer Science 
Education in Schools 1(4): 14. 

[32] Qian, Y. & Lehman, J. 2017. Students’ Misconceptions and Other 
Difficulties in Introductory Programming. ACM Transactions on 
Computing Education 18(1): 1–24. 

[33] Bundy, A. 2007. Edinburgh Research Explorer Computational Thinking 
is Pervasive Computational Thinking is Pervasive 1(2): 2–5. 

[34] Witherspoon, E.B., Higashi, R.M., Schunn, C.D., Baehr, E.C. and 
Shoop, R., 2017. Developing computational thinking through a virtual 
robotics programming curriculum. ACM Transactions on Computing 
Education (TOCE), 18(1), pp.1-20. 

[35] Lye, S. Y. & Koh, J. H. L. 2014. Review on teaching and learning of 
computational thinking through programming: What is next for K-12? 
Computers in Human Behavior 41: 51–61. 

[36] Lopez, A. R. & Garcia-Penalvo, F. J. 2016. Relationship of knowledge 
to learn in programming methodology and evaluation of computational 
thinking. Proceedings of the Fourth International Conference on 
Technological Ecosystems for Enhancing Multiculturality - TEEM ’16 
73–77. 

[37] Roman-Gonzalez, M., Perez-Gonzalez, J. C. & Jimenez-Fernandez, C. 
2017. Which cognitive abilities underlie computational thinking? 
Criterion validity of the Computational Thinking Test. Computers in 
Human Behavior 72: 678–691. 

[38] Barefoot Computing. t.th. Computational thinking. 
http://barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/computational-thinking/. 

[39] de Araujo, A. L. S. O., Andrade, W. L. & Guerrero, D. D. S. 2016. A 
Systematic Mapping Study on Assessing Computational Thinking 
Abilities. 2016 Ieee Frontiers in Education Conference (Fie) 1–9. 

[40] Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, 
C. and Woollard, J., 2015. Computational thinking-A guide for teachers.  

[41] Renumol, V., Jayaprakash, S. and Janakiram, D., 2009. Classification of 
cognitive difficulties of students to learn computer programming. Indian 
Institute of Technology, India, 12. 

[42] Haberman, B. & Muller, O. 2008. Teaching abstraction to novices: 
Pattern-based and ADT-based problem-solving processes. Proceedings - 
Frontiers in Education Conference, FIE 7–12. 

[43] Landell, K., 1997. Management by menu. London: Wilay and Sms Inc. 

 


