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Abstract—In this paper, we present a new algorithm for 

mining or enumerating maximal biclique (MB) subgraphs in an 

undirected general graph. Our algorithm achieves improved 

theoretical efficiency in time over the best algorithms. For an 

undirected graph with n vertices, m edges and k maximal 

bicliques, our algorithm requires O(kn
2
) time, which is the state 

of the art performance. Our main idea is based on a strategy of 

pruning search space extensively. This strategy is made possible 

by the approach of storing maximal bicliques immediately after 

detection and allowing them to be looked up during runtime to 

make pruning decisions. The space complexity of our algorithm 

is O(kn) because of the space used for storing the MBs. However, 

a lot of space is saved by using a compact way of storing MBs, 

which is an advantage of our method. Experiments show that our 

algorithm outperforms other state of the art methods. 
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I. INTRODUCTION 

A biclique is a graph (or a subgraph of a graph) whose 
vertex set can be partitioned into two component sets where 
every vertex in one set is adjacent to every vertex in the other 
set. A biclique is also referred to as a complete bipartite graph. 
A maximal biclique (MB) of a graph G is a biclique which 
cannot be not a subgraph of another biclique of G. 

Nowadays social networks based on the internet or mobile 
communications are popular [1]. Protein interaction networks 
receive much attention in biomedical areas [2]. The emerging 
block chain technology must handle large-scale graphs [3]. In 
these fields, enumerating all MBs existing (as subgraphs) in a 
graph is very important to many practical data mining 
problems. As networks get large in size, efficiency in speed 
and space of algorithms becomes important. 

In this paper, we introduce a new efficient algorithm that 
can enumerate all MBs in an undirected graph given as input. 
Henceforth, we use variables n, m and k to denote the number 
of vertices, edges and MBs in an input graph, respectively. The 
emphasis in this research is to improve performance of fully 
general algorithms that involves no constraints. The constraints 
that can be placed on the algorithms are diverse. Some 
algorithms accept only bipartite graphs as input. Other 
algorithms produce only MBs whose component sets are 
independent sets. There can be size constraints on the 
component sets. We aim to design a fully general algorithm 
that does not have any such constraints. 

Our approach is based on a new idea of exploiting search 
space pruning techniques to gain efficiency. In contrast to other 
fully general algorithms, ours looks up stored MBs to make 
decisions related to pruning search space, which allows to gain 
efficiency in time. As a result, we discovered an algorithms 
with O(kn2) and O(kn) as time and space complexity, 
respectively. 

Our algorithm's time complexity O(kn2) can be considered 
to be a significant improvement over the current state of the art 
O(kmn) [4]. The algorithm of Li et al. [4] has been the state of 
the art for more than a decade and a half among the fully 
general algorithms. This means that improving speed of the 
best fully general algorithm has been quite hard. In this respect, 
contribution of our work is nontrivial. 

The theoretical space complexity of our algorithm is O(kn) 
due to the space required to store all MBs. This space 
requirement seems natural considering the fact that the MBs 
enumerated anyway need to be loaded into memory to allow 
application tasks to utilize them. In our scheme of storing MBs, 
a lot of space can be saved by using a compact way of storing 
MBs. This is due to the fact that the component vertex sets of 
different MBs can share their parts and thus the actual amount 
of space required can be quite less than that of theoretical 
expectation. This is another advantage of our algorithm. How 
much space is saved depends on the structure of the graph. It 
was observed in the experiments that more than 50% of the 
space is easily saved in case of dense input graphs. 

II. RELATED WORK 

A lot of research has been done on the problem of mining 
all MBs in an undirected graph G. Algorithms for this purpose 
belong to one of three categories. Algorithms in the first 
category have a constraint that the input graph should be 
bipartite. Algorithms of the other two categories do not have 
the bipartite-graph constraint. The algorithms in the second 
category have a restriction that the components of MBs should 
be independent sets. In other words, they only generate 
maximal induced bicliques. Algorithms that do not need any 
constraints or restrictions belong to the third category. 

Various algorithms of the first category were developed in 
the past [5, 6]. Makino and Uno [7] proposed an algorithm 
whose time complexity is O(n4) time and O(n2) space. Zhang et 
al. [8] recently introduced a novel efficient algorithm of time 
complexity O(d2n2) where d is the maximum degree of any 
vertex. The space complexity is O(min(d,a)b) and a and b are 
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cardinalities of the two vertex partitions composing the input 
bipartite graph G. 

Many algorithms have also been developed that belong to 
the second category by allowing a general undirected graph as 
input. One of them is the algorithm introduced by Dias et al. 
which requires O(kn4) time and O(2n) space [9]. However, this 
algorithm generates only maximal induced bicliques. If an MB 
consists of component sets at least one of which is not an 
independent vertex set, the MB is not enumerated. Kloster et 
al. [10] pursued improving the algorithm of Dias et al. But their 
algorithm is specifically designed for general graphs which are 
near to bipartite graphs. Their algorithm has time complexity 
of O(knmh23h/3) where h is the cardinality of the vertex set 
whose deletion from G makes G a bipartite graph. Sullivan et 
al. [11] attempted to even further improve the algorithm of 
Kloster et al. and achieved time complexity of O(knmh). 

There has been research on developing fully general 
algorithms belonging to the third category. Liu et al. [12] 
effectively uses the size constraints on both vertex sets to prune 
unpromising bicliques and to reduce the search space 
iteratively during the mining process. The time complexity of 
the proposed algorithm is O(kdn), where d is the maximal 
degree of the vertices. But this algorithm has a size constraint 
in such a way that only MBs are enumerated whose 
components' sizes are above a threshold ms. One of those fully 
general algorithms with no constraints was proposed by Alexe 
et al. [13] which has O(kn3) and O(kn) as time and space 
complexity, respectively. Another general algorithm in this 
category is that of Tomita et al. [14] whose time complexity is 
O(3n/3). The state of the art algorithm in this category is the one 
by Li et al. [4] as mentioned in section I. This algorithm has 
time complexity of O(kmn) and space complexity of O(mn). 
However, this space complexity does not include the space for 
storing the MBs enumerated. When the MBs enumerated need 
to be stored to be used later by application tasks, their space 
complexity should be O(kn). 

III. PRELIMINARY ON MAXIMAL BICLIQUES 

We assume that an undirected graph G = (V, E) is given to 
the algorithm where V denotes a vertex set and E an edge set. 
Let n and m denote the number of vertices and edges in G, 
respectively. We use integers between 1 and n to denote 

vertices. Thus V = {1,  , n}. An edge is represented by a set 
of two vertices (no order between the two). It is said that a 
vertex of an edge is adjacent to the other vertex of the edge. 
We use an adjacency list representation of G. In this 
representation, there is a list L(v) for each vertex v in V which 
is an ordered list of vertices which are adjacent to v. 

Let V1 and V2 be disjoint subsets of V. If every vertex in V1 
is adjacent to every vertex in V2, then V1 and V2 form a biclique 

[V1, V2] which is a subgraph of G. Its vertex set is V1   V2. Its 
edge set consists of all edges connecting a vertex in V1 and a 
vertex in V2. We call V1 and V2 the component vertex sets. A 
biclique formed by components V1 and V2 becomes a maximal 

biclique (MB) if there is no vertex set X  V1 where X and V2 

form a biclique and no vertex set Y  V2 where V1 and Y form a 
biclique. If V1 and V2 form an MB, V2 and V1 can form an MB. 

Thus [V1, V2] and [V2, V1] is actually the same MB. Later in 
this paper, a specific ordering will be enforced for the two 
components in writing an MB. 

To design our algorithm, we begin with the problem of 
finding a maximal vertex set which can form a biclique with a 
given vertex set X. This set is called an occurrence set of X, 
which is denoted by Oc(X) [4]. Throughout this paper, V and E 
denote the vertex and edge set of the input graph G, 
respectively. 

Definition 1: An occurrence set of X  V is Oc(X) = {v  

V | v  X and v is adjacent to all vertices in X}. 

By the definition of Oc(X), it is important to note that 
Oc(X) is a maximal vertex set for given X. In other words, 

there is no vertex set H where H  Oc(X) and H can form a 
biclique with X. 

Theorem 1: Let X  V. [X, Oc(X)] is a biclique. 

Proof: Let us select any vertex u  X and any vertex v  

Oc(X). By Definition 1, (u, v)  E. Thus X and Oc(X) form a 
biclique. Q.E.D. 

Note that [X, Oc(X)] is a biclique. We need to know 
whether this biclique is a maximal biclique or not. Closure of a 
vertex set X , Cl(X), is a maximal vertex set extended from X 
which forms a biclique with Oc(X). It is formally defined in 
Definition 2. Theorem 2 and 3 provide a method for deciding 
whether [X, Oc(X)] is an MB or not. 

Definition 2: Closure of a vertex set X  V, Cl(X), is the 
occurrence set of Oc(X). I.e., Cl(X) = Oc(Oc(X)). 

Theorem 2: Let X  V. [Cl(X), Oc(X)] is an MB. 

Proof: Cl(X) = Oc(Oc(X)). Thus Oc(X) and Cl(X) 

constitute a biclique by Theorem 1. There is no vertex v  
Oc(Oc(X)) which is adjacent to all vertices in Oc(X) by the 
property of an occurrence set. 

If we assume that there is a vertex v  Oc(X) which is 
adjacent to all vertices in Oc(Oc(X)), contradiction occurs since 
v is adjacent to all vertices in X and thus it should be in Oc(X). 
Thus Cl(X) and Oc(X) meet the condition of forming an MB. 
The theorem holds. Q.E.D. 

Theorem 3: Let X V. Then X  Cl(X). 

Proof: X forms a biclique with Oc(X). Cl(X) = Oc(Oc(X)) 

is a maximal set that forms a biclique with Oc(X). Thus X  
Oc(Oc(X)). Q.E.D. 

Theorem 4 states that if a vertex is added to a set, the 
corresponding occurrence set may lose some vertices. 

Theorem 4: For any vertex set X, and a vertex v  X, if Z = 

Oc(X{v}), then Z  Oc(X). 

Proof: Z consists of only those vertices in Oc(X) which are 
adjacent to v. If there is a vertex u in Oc(X) which is not 
adjacent to v, u does not belong to Z. Thus the theorem holds. 
Q.E.D. 
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IV. SET ENUMERATION TREE 

A. Set Enumeration Tree as a Search Space 

A graph with a large number of vertices may have a huge 
number of MBs. The basic strategy of enumerating all MBs is 

simple as follows: for each Y  V, compute Oc(Y), Cl(Y) and 
then enumerate [Y, Oc(Y)] as an MB if Y = Cl(Y). In this 
strategy, all subsets of V should be tried as Y. Therefore, the 
search space to find MBs is the power set of V. We use a set 
enumeration tree as the conceptual model and data structure of 
the search space [15]. 

In a set enumeration (SE) tree for a vertex set V, a unique 
node exists for every subset of V. Each vertex is represented by 

an integer label. The ith vertex in V is given label i, 1  i  n. 
The SE tree for V = {1, ... , 4} is illustrated in Fig. 1. Every 
node has a vertex label. Every node represents a unique subset 
of V which is formed by including the vertex labels of all nodes 
on the path from the root to the node. For example, consider 
the orange node with label 4 in Fig. 1. This node represents the 
vertex set {1, 3, 4}. All nodes of the SE tree for V covers all 
subsets of V. A vertex set and its corresponding node in the SE 
tree is used interchangeably in this paper. 

Note that a node with label b has children with labels from 
b + 1 to n. For a node X, the set of labels on all child nodes is 
called its tail set, Tail(X). In Fig. 1, Tail(X) = {2, 3, 4} for the 
node X = {1}. 

A depth-first search (DFS) traversal scheme is used to visit 
all nodes in an SE tree. Fig 2 illustrates the order of node visits 
in DFS traversal. When the control arrives at a node for the 
first time, this is the visit to the node. After the control leaves a 
node, it may return to the node again later by backtracking 
from a child node. In this paper, a visit to a node stands for the 
first visit and not the return caused by backtracking.  During 
the (first) visit to a node, the processing related to the node is 
performed. This is a kind of preorder traversal. The control at a 
node moves to the leftmost unvisited child of the node. If a 
node has no more unvisited child, the control backtracks to the 
parent of the node. 

Definition 3: Relation Prior(X, Y) is true if and only if the 
visit to node X comes before the visit to node Y during DFS 
traversal of the SE tree. If Prior(X, Y), it is said that X is prior 
to Y. 

Definition 4: Subtree(Y) denotes the subtree whose root is 
the node of vertex set Y. 

For a given graph G, our algorithm does not explicitly build 
the SE tree of G. It uses a recursive function to implement the 
DFS traversal of the implicit SE tree. The basic design of our 
algorithm is the recursive function Basic_GenMB. Our 
algorithm is started by invoking the recursive function with an 

empty set  passed to X. 

Algorithm  Basic_GenMB (X, Oc(X), Tail(X) ): 
(1)  if [X, Oc(X)] is an MB, mine it; 
(2)  for each v in Tail(X): 

(3)     Y  X {v} ; Tail(Y) = { u V | u Tail(X) and u > v}; 
(4)     Compute Oc(Y) using Oc(X) and v; 

(5)     if ( Oc(Y)   ) 
(6)        Basic_GenMB (Y, Oc(Y), Tail(Y) ); 

 

Fig. 1. Set Enumeration Tree with n = 4. 

 

Fig. 2. Depth-First Search Traversal of the SE Tree. 

Though significant pruning of search space is done at step 5 
of our basic algorithm, more pruning needs to be pursued to 
improve efficiency. In our algorithm, it is assumed that all 
vertex sets are ordered sets to improve efficiency in 
computation. Assume the two vertex sets X and Y form an MB. 
We write the MB as [X, Y] if Prior(X, Y) is true. Otherwise, we 
write [Y, X]. In an MB, the component which is prior to the 
other is the first component and the other the second 
component. In our algorithm, an MB is mined (i.e. discovered 
and registered) when its first component is visited. Thus, if [X, 
Y] was mined before, it means Prior(X, Y) is true and the node 
X was visited already. When the second component of an MB 
is visited, the MB is not produced again to avoid duplicate mining. 

B. Storing Maximal Bicliques 

The techniques for achieving efficiency in our algorithm 
are based upon looking up the MBs already mined during the 
run of our algorithm. To exploit this idea, it is required to store 
MBs as soon as they are identified and mined. Our algorithm 
does not construct the SE tree explicitly. Our algorithm uses an 
implicit SE tree as the whole search space. When an MB is 
detected, it should be stored immediately. Its two component 
vertex sets need to be stored. To store a component, its 
corresponding node in the SE tree is constructed. The path 
corresponding to this node is also constructed. The initial part 
of the path is shared with other existing paths as much as 
possible. 

A tree in which MBs are stored is called an MB tree. The 
MB tree is a subgraph of the SE tree. The MB tree has only the 
paths for the components of MBs generated so far. The two 
nodes representing the components of an MB point to each 
other by the component pointer (CP). From a node of a 
component of an MB, the node of the other component can be 
accessed instantly by using the CP pointer. 
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Fig. 3. MB Tree Containing Two MBs: [H, Z] and [A, B]. 

A snapshot of an MB tree is shown in Fig. 3. One MB, [H, 
Z], was stored where H is {1, 3, 5, 10} and Z {2, 4, 8}. Another 
MB, [A, B], also exists in the MB tree where A = {1, 3, 6}, B = 
{2, 7, 9}. Note that the paths of H and A share a sub-path 
consisting of nodes 1 and 3. The paths of an MB tree have the 
same structure as those of an SE tree. In making decisions 
about pruning search space, our algorithm needs to look up an 
MB produced before. Storing and looking up an MB is 
efficient by adopting the idea of an MB tree. 

V. EXPLOITING PRUNING TECHNIQUES 

We will modify Basic_GenMB to improve efficiency by 
utilizing MBs stored in the MB tree and pruning search space. 
Note that MBs are stored as soon as they are identified during 
the run of the algorithm. An MB is constructed and stored as 
soon as its first component is visited for the first time during 
DFS traversal. In this section we will introduce pruning 
techniques exploited by our algorithm. Our algorithm is a 
recursive function GenMB. To run our algorithm, the function 

is invoked as follows: GenMB(, V, V, 0). The algorithm 
starts at the root of the SE tree. The roles of the parameters are 
as follows: 

 X: a vertex set which is being visited by DFS. 

 Oc(X): the occurrence set of X. 

 Tail(X): the tail set of X. 

 genflag: If this flag receives 1, an MB should be 
generated using (extended) X and Oc(X). 

 

If genflag is 1, it means that generation of an MB using X 
and Oc(X) is requested. X may not be maximal to form an MB. 
So X is extended to its closure Cl(X) on line 2. Tail(X) is 
updated by removing vertices added to X. More detailed 
explanation for closure extension and update will be provided 
later in this section. An MB consisting of Cl(X) and Oc(X) is 
generated and stored on line 3. If genflag is 0, it means that an 
MB composed of X and Oc(X) was generated previously and 
thus the MB should not be generated again to avoid 
duplication. But DFS traversal should continue for nodes in 
Subtree(X). Action "continue" on line 7 and 11 stands for 
"jumping to next iteration". 

The loop from line 4 to 14 is to traverse SE nodes in the 
subtrees of children of X. On line 5, Y (a child of X in the SE 
tree) is proposed to be visited next by DFS. Y was not visited 
before. It is visited now. Thus Y cannot be a first component of 
an MB generated earlier. It is necessary to compute Oc(Y) (line 
6). 

A. Pruning scheme 1 

Pruning-1: If Oc(Y) is an empty set where Y is the node 
to visit next on line 7 of GenMB, Subtree(Y) can be 
pruned. 

The first strategy of pruning search space, Pruning-1, is 

applied on line 7 of GenMB. If Oc(Y) is an empty set , there 
is no need of visiting nodes in the subtree of Y. This pruning is 
possible since the occurrence set of nodes in those subtrees will 

be  by Theorem 5. The action of “continue” on line 7 makes 
the algorithm to ignore the remaining part of the loop and start 
the next iteration (as in C language). This has the effect of 
ignoring or pruning Subtree(Y) during DFS traversal. 

Definition 5: If X can be obtained by taking zero or more 
consecutive elements starting from the first element of an 
ordered set Z, Prefix(X, Z) is true. Otherwise, Prefix(X, Z) is 
false. 

B. Pruning scheme 2 

Pruning-2: If Oc(Y) exists in the MB tree as a second 
component of an MB stored already on line 8 of GenMB, 
then Subtree(Y) can be pruned. 

Let us consider a situation to which Pruning-2 can be 
applied. Fig. 4 has an example. By Theorem 3, Cl(Y) is the first 

component of the MB. Y  Cl(Y) by Theorem 2. Cl(Y) was 
visited already before Y, which can be derived by the existence 
of Oc(Y) in an MB discovered already. Thus Prior(Cl(Y), Y). 

Thus Prefix(Y, Cl(Y)). Symbol  denotes negation. In this 
case, Subtree(Y) can be pruned safely (on line 8 of GenMB). 
Theorem 5 proves that this pruning is safe. 

Theorem 5: Pruning-2 is safe (This action will not prevent 
any MB from being generated.) 

Proof: Cl(Y) forms a biclique with Oc(Y) by Theorem 3. Y 

 Cl(Y). Y  Cl(Y) since Cl(Y) was visited already and Y is 

being visited now. Thus Y  Cl(Y). Let v  (Cl(Y) – Y). Note 

that v is adjacent to all vertices in Oc(Y) since v  Cl(Y). 

Y and Oc(Y) form a biclique by definition of an occurrence 
set. However, Y cannot form a maximal biclique with Oc(Y) 


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Algorithm  GenMB ( X, Oc(X), Tail(X), genflag ): 

(1)  if (genflag 1 and X   ) { 
(2)    Closure_extension (X, Oc(X), Tail(X)) ; 
(3)    Generate and store MB [X, Oc(X)];  
       } // end if 
(4)  for each v in Tail(X) do { 

(5)       Y  X  {v} ; Tail(Y)  {u | u  Tail(X) and v  u} ;  
(6)       Compute Oc(Y) using Oc(X) and v; 

(7)       if (Oc(Y) = ) continue; // Pruning-1 
(8)       if (Oc(Y) = 2nd component of MB stored already)  
                   continue;   //Pruning-2 
(9)       if (Oc(Y) = 1st component of MB stored already) { 
(10)          Obtain Cl(Y) from node of Oc(Y) using CP link; 
(11)          if (Prior(Cl(Y), Y)) continue; // Pruning-3 
(12)          else {  Extend Y to Cl(Y) and update Tail(Y);  
(13)                     GenMB(Y, Oc(Y), Tail(Y), 0); // Pruning-4 
                 } // end if 
             } // end if 
(14)      GenMB(Y, Oc(Y), Tail(Y), 1 ); // Pruning-5 

    } // end for 
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since a bigger set (Y {v}) can form a biclique with Oc(Y). 
This argument can be applied to any node in Subtree(Y). 

Consider any node L (other than Y) in Subtree(Y). L is 
obtained by adding one or more vertices to Y. (For example, 
consider L in Fig. 4.) L forms a biclique with Oc(L). By 

Theorem 4, Oc(L)  Oc(Y). Thus v  (Cl(Y) – Y) is adjacent 

to all vertices in Oc(L). Therefore, L{v} is completely 
connected with Oc(L). Thus L and Oc(L) can form a biclique 

but not a maximal biclique because a bigger set L{v} can 
form a biclique with Oc(L). Thus no node in Subtree(Y) can be 
a component of a maximal biclique. Q.E.D. 

C. Pruning scheme 3 

Pruning-3: If Oc(Y) exists in the MB tree as a first 
component of an MB and Prior(Cl(Y), Y) is true on line 
11 of GenMB, then Subtree (Y) can be pruned. 

Let us consider a situation to which Pruning-3 is applicable. 
Fig. 5 gives an example of such a situation. Cl(Y) exists in the 
MB tree as a second component of an MB stored already. Line 
11 of our algorithm implements this pruning by executing 
“continue”. Theorem 6 below proves that Pruning-3 is safe. 

Theorem 6: Pruning-3 is safe (This action will not prevent 
any MB from being generated.) 

Proof: An MB [Oc(Y), Cl(Y)] was stored before. Since 

Prior(Cl(Y), Y), Cl(Y) was visited before Y. Y  Cl(Y) by 
Theorem 3. Y and Cl(Y) cannot be equal since Cl(Y) was 

visited before and Y is now being visited. So Y  Cl(Y). 

If Prefix(Y, Cl(Y)) is assumed, Prior(Y, Cl(Y)), which is a 

contradiction. Thus Prefix(Y, Cl(Y)). There should v  

(Cl(Y) – Y) since Y  Cl(Y). (Y {v}) can form a biclique 
with Oc(Y). So Y and Oc(Y) cannot form an MB. 

We can apply the same argument used in the proof of 
Theorem 5 to conclude that Subtree(Y) can be pruned without 
missing any MBs. Q.E.D. 

D. Pruning scheme 4 

Pruning-4: If Oc(Y) exists as a first component of an 

MB stored already and Prior(Cl(Y), Y) (line 12 of 
GenMB), then the DFS traversal visits a node W in 
Subtree(Y) and all nodes in Subtree(W) if and only if 

Cl(Y)  W. This leads to the fact that any Subtree(W) 

contained in Subtree(Y) will be pruned if [Cl(Y)  

(WTail(W))]. 

Fig. 6 shows a situation to which Pruning-4 can be applied. 
Since Prior(Cl(Y),Y) is false, Y is being visited now but Cl(Y) 
has not been visited yet. But Cl(Y) exists as a second 

component of an MB in the MB tree. Note that Y  Cl(Y) by 

Theorem 3. Thus Prefix(Y, Cl(Y)). Y = Cl(Y) or Y  Cl(Y). For 
example, node W in Fig. 6 will be pruned since Cl(Y) = {2, 4, 
6, 8} is not a subset of W = {2, 4, 7} and Tail(W) = {8, 9, 10}. 
Subtree(W) will be pruned since any node in it can contain 
Cl(Y). Note that R is not visited since R = {2, 4, 5}. But, since 
Tail(R) = {6, 7, 8, 9, 10}, some nodes in Subtree(R) can 
contain Cl(Y) and thus can be traversed. For example, Z = {2, 
4, 5, 6, 8} in Subtree(R) will be visited since Z contains Cl(Y). 

S in Subtree(R) and all nodes in Subtree(S) will be pruned since 
they cannot contain Cl(Y). 

Theorem 7:  Pruning-4 is safe (This action will not prevent 
any MB from being generated.) 

Proof: Let W be a node in Subtree(Y). Assume that  

[Cl(Y)  W]. Let v be a vertex in Cl(Y) but not in W. Thus v is 

adjacent to all vertices in Oc(Y). Oc(W)  Oc(Y) by Theorem 
4. Thus v is adjacent to all vertices in Oc(W) because v is 
adjacent to all vertices in Oc(Y). 

Let Q = W  {v}. Oc(Q) = Oc(W) because v is adjacent to 
all vertices in Oc(W). Cl(W) = Oc(Oc(W)) = Oc(Oc(Q)) = 

Cl(Q). Cl(W)  Q. Thus Cl(W)  W. Therefore, W cannot 
form a maximal biclique with Oc(W). 

Instead, Cl(W) forms an MB with Oc(W). W needs not to 

be visited. If  [Cl(Y)  (WTail(W))], then no node Z in 

Subtree(W) can satisfy Cl(Y)  Z and thus Subtree(W) can be 
pruned. Q.E.D. 

 

Fig. 4. Situation where Pruning-2 is Applicable. 

 

Fig. 5. Situation where Pruning-3 is Applicable. 

 

Fig. 6. Pruning-4 is Possible at Y; n =10, T:Tail. 
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To implement Pruning-4, our algorithm executes the 
operations on lines 12, 13 implemented by the next procedure. 

Procedure for Pruning-4: 
(i) // Extend Y to Cl(Y) and update Tail(Y) by using next for loop. 
     for each v in Tail(Y):  
         if (v in Cl(Y)) { add v to Y; remove v from Tail(Y); } 
(ii) GenMB(Y, Oc(Y), Tail(Y), 0 ) ; // recursive invocation of itself 

This procedure accomplishes pruning search space as stated 
in Pruning-4. Let us use a simple example in Fig. 7 to 
understand how our algorithm works related with Pruning-4. 
Let n = 10. After extension and update operations applied to 
Fig. 6, Y = {2, 4} becomes Y' = {2, 4, 6, 8} as in Fig. 7. Tail(Y') 
= {5, 7, 9, 10}. Note that Tail(Y') has extra vertices 5 and 7 in 
addition to {9, 10}, the normal tail set of Y'. Thus the tail set 
becomes unorthodox. GenMB(Y', Oc(Y), Tail(Y'), 0) is called. 
Zero is passed to genflag to suppress MB generation using Y' 
and Oc(Y). This call results in visiting only nodes Z in 

Subtree(Y) where Z  Cl(Y) and all nodes in Subtree(Z). The 

nodes W (in Subtree(Y)) and Subtree(W) will be pruned if  

[Cl(Y)  (WTail(W))]. 

Fig. 8 illustrates nodes in Subtree(Y={2,4}) in the MB tree 
of Fig. 7 that will be visited by the algorithm. So the parts of 
Subtree(Y) not covered by traversals in this figure are pruned. 
First, node Y of Fig. 8(a) and its subtree will be traversed. 
Secondly, Y of Fig. 8(b) and its subtree will be traversed. Then 
Y of Fig. 8(c) and its subtree will be traversed. Finally, Y of 
Fig. 8(d) and 8(e) and their subtree will be traversed. 

Theorem 8: Procedure for Pruning-4 accomplishes pruning 
suggested by Pruning-4. 

Proof: Let Y be a node at which Pruning-4 condition is 
met. We need to verify that Pruning-4 operations achieve the 
effect that Subtree(W) for any node W in subtree(Y) is pruned 

if  [Cl(Y)  (WTail(W))]. 

Extension operation updates Y and Tail(Y) accordingly 
(see step i). Let Y' and Tail(Y') denote the updated results. 
Thus Y' = Cl(Y). Tail(Y') contains all elements of Tail(Y) 
except those added to Y'. Then GenMB(Y', Oc(Y), Tail(Y'), 0) 
is invoked. 

All nodes W that will be visited as a result of this 

invocation satisfy that Cl(Y)  W since Y' = Cl(Y) and W is 
obtained by adding some nodes in Tail(Y') to Y'. Q.E.D. 

E. Pruning scheme 5 

Pruning-5: If neither Y nor Oc(Y) exist as a component 
of an MB stored already in the MB tree, the same type of 
pruning as Pruning-4 should be done. The algorithm will 
visit a node W in Subtree(Y) and all nodes in Subtree(W) 

if and only if Cl(Y)  W. As a result, any Subtree(W) 

contained in Subtree(Y) is pruned if [Cl(Y)  

(WTail(W)) ] 

If the conditions required by the pruning strategies 
introduced so far are not satisfied by Y, our algorithm will 
arrive at line 14. This happens when neither Y nor Oc(Y) does 
exist as a component of an MB stored already in the MB tree. 
(Note that Y cannot be a first component of a stored MB since 
Y is being visited now and thus was not visited before.) In this 

case, it is guaranteed that Y is a prefix of Cl(Y), which is 
proved by Theorem 9. Thus the situation of this Y is quite 
similar to that of pruning case 4. In both cases, Y is a prefix of 
Cl(Y). In the current case, Cl(Y) will be a first component 
while, in case 4, Cl(Y) is a second component of an MB. In the 
current case, [Cl(Y), Oc(Y)] was not generated and thus will be 
generated. In case 4, an MB [Oc(Y), Cl(Y)] was generated 
already. For the current Y, Pruning-5 will be carried out which 
is similar to Pruning-4. 

Note that Oc(Y) was not visited yet. Otherwise, it should 
exist as a component of an MB in the MB tree. Thus Prior(Y, 
Oc(Y)) is true. Fig. 9 shows an example of Y on line 14. An 
MB [Y, Oc(Y)] cannot be proposed as an MB because it is not 

known yet if Y = Cl(Y) or not. Oc(Y)   (determined on line 
7). Thus Cl(Y) and Oc(Y) form an MB. But the algorithm is 
visiting node Y. The algorithm invokes a recursive call: 
GenMB(Y, Oc(Y), Tail(Y), 1). At the start of new instance of 
GenMB invoked by this call, the two operations are carried out 
(lines 2, 3 of GenMB): extending Y to Cl(Y) by executing 
procedure Closure_extension shown below, and generating and 
storing MB [Cl(Y), Oc(Y)]. 

Procedure Closure_extension performs the same task of 
step i of "Proceudre for Pruning-4" shown before. The only 
difference is that Cl(Y) is not known in this case and thus needs 
to be computed in using steps (1) and (2). Subtree(W) for any 

node W in subtree(Y) can be pruned if [Cl(Y)  

(WTail(W))] where Y here is before being extended by 
Closure_extension. 

Procedure Closure_extension (Y, Oc(Y), Tail(Y)): 

(1) Scan all adjacency lists of vertices in Oc(Y); 

(2) By scanning, occurrence count is obtained for each vertex; 

(3) for each v in Tail(Y):  

(4)     if (Count of v = |Oc(Y)|)  

                { Add v to Y; Remove v from Tail(Y); } 

     end for; 

 

Fig. 7. Extension and update of Y and Tail (Y) to Y' and Tail (Y'). 

 

Fig. 8. More Examples of nodes visited while Pruning-4 is Done. 
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An example of pruning caused by Pruning-5 is shown in 
Fig. 9 by red line segments. Fig. 10 illustrates additional 
examples of pruning caused by Pruning-5. Green nodes and 
their subtrees are traversed; red lines indicate pruning of 
subtrees. Justifying Pruning-5 can be done using the same 
arguments used to justify Pruning-4. 

Theorem 9: If neither Y nor Oc(Y) exists as a component 
of an MB stored already, Y is a prefix of Cl(Y). 

Proof: A prefix of a node in the SE tree is visited before 
the node in DFS traversal because of the structure of SE tree. 

Oc(Y)   since the test on line 7 was false. Thus Cl(Y) and 
Oc(Y) can constitute an MB. 

If Cl(Y) had been visited already, Oc(Y) should exist as a 
component of an MB since Cl(Y) and Oc(Y) can form an MB 
(by Theorem 2). Because Oc(Y) does not exist as a component 

of an MB in the MB tree, Cl(Y)  Y was not visited yet. 
Therefore, Y is a prefix of Cl(Y). Q.E.D. 

F. Correctness of our algorithm 

Theorem 10 proves the correctness of our algorithm as an 
MB enumerator. In other words, there is no MB that is not 
generated by our algorithm. 

Theorem 10: Our algorithm GenMB enumerates all MBs 
in a graph given as input. 

Proof: DFS traversal implemented by GenMB visits all 
subsets of V in an SE tree if there is no pruning. Y proposed on 
line 5 of GenMB is the vertex set being visited. 

 

Fig. 9. Situation to which Pruning-5 is Applicable. 

 

Fig. 10. More Examples for Pruning-5. 

 

Fig. 11. Decision Tree to Decide Processing for Y. 

In GenMB, a decision tree shown in Fig. 11 is used to 
select a case for Y. This Y will be assigned to one of 5 cases at 
the leaf in the decision tree. It is necessary to verify that there 
is no loss of MB after performing actions in any case. 

We verified above that the pruning actions for each case are 
safe and thus no MB is lost from being generated. So the 
theorem holds. Q.E.D. 

VI. PERFORMANCE EVALUATION 

In this section, we determine computational complexity of 
our algorithm GenMB. The result of experimental comparison 
with current state of the art algorithm is also provided. Let n = 
|V|, and m = |E|. Let k be the total number of MBs in the given 
graph. 

A. Theoretical  Performance Evaluation 

Our algorithm uses a recursive function named GenMB. 
Let TGenMB(X) denote the amount of time required for executing 
function GenMB when it is invoked with X passed to the first 
input parameter. The time complexity of our algorithm, T(n, 

m), will be equal to that of TGenMB() which is the time taken 

by the initial invocation GenMB(, V, V, 0) to finish. An 

analytical solution for TGenMB() is hard to obtain since 
systematic progression cannot be formulated for the case of 
GenMB. 

GenMB is invoked in two places in its procedure as 
follows: (i) line 13 (X receives a second component of an MB 
generated already), and (ii) line 14 (X will be a first component 
of an MB immediately by closure extension.) For each MB, 
GenMB is called twice (when DFS is visiting its two 
components). Thus the number of invocations of GenMB is 
equal to 2k. We first compute the time taken by one instance of 
GenMB, Tinstance, which does not include the time to wait for 
the return from the recursive call issued during the run of the 
instance. Then T(n, m) can be obtained from the result of 
multiplying Tinstance and 2k. 

Obtaining Tinstance requires to compute the time taken by 
each step of the function. It takes O(m) to perform procedure 
Closure_extension on line 2, which is shown by Theorem 11. 
Storing an MB involves storing two components in the MB 
tree and connect them by a CP pointer. By Theorem 12, it takes 
O(n) time to store an MB (on line 3). 
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To represent a vertex set, say X, a bit-sequence array can be 
used for fast processing. Let A be the bit-sequence array used 

to represent X. It has n elements. If v  X, A[v] =1. Otherwise, 
A[v] = 0. It takes a constant time to check if a vertex v is in X, 
since it is needed just to check the value of A[v]. 

Theorem 11: It takes O(m) time for executing 
Closure_extension (on line 2). 

Proof: Let us consider function Closure_extension. At step 
1, adjacency lists of vertices in Oc(Y) are scanned. We prepare 
an array Ar[1..n] of n integers (initialized to 0) for storing 
counts of vertices. Ar[i] has the count of vertex i encountered 
during scanning. During scanning, if an element with value of 
v is encountered, Ar[v] is incremented. It takes O(m) time for 
this scanning and counting since the number of elements in 
adjacency lists is 2m. 

Y and Tail(Y) are represented by bit-sequence arrays. Thus 

step 4 takes O(1) time. Since |Tail(Y)|  n, step 3 and 4 of 
Closure_extension take O(n) time. Thus time complexity of 
Closure_extension is O(m + n). Since m is usually much bigger 
than n, it can be said that Closure_extension takes O(m) time. 
Q.E.D. 

Theorem 12: It takes O(n) to store an MB in the MB tree. 

Proof: Let X be a component of an MB to be stored in the 
MB tree. Note that the MB tree is a subgraph of the SE tree. 
Only the nodes in the paths for components of MBs generated 
are actually constructed. Let X = {a1, a2, ... , ar}. 

Assume that the prefix (a1, ... , aj-1) of the path for X already 
exists in the MB tree and aj-1 does not have a child with label 

aj. Let a pointer P point to the root node  of the MB tree at 
first. Locate a child of P whose label is a1. This takes a1 

operations at most since node  may have children with all 
labels from 1 to a1. Let P point to a1 node. 

Among children of a1, a node with label a2 should be 

identified. This may take (a2  a1) operations at most since the 
node with label a1 may have children with labels from a1 + 1, 
... , a2. Let P point to a2 node. By proceeding in this way, P 
will point to a node of label aj-1 eventually. Then searching for 
node with aj among children of node with aj-1 will be tried but 

fail, which takes (aj aj-1) operations at most. 

A node with label aj should be created and attached to node 
aj-1. For each element in the sequence (aj+1, ... , ar), a node is 
created and attached to its predecessor's node. So the number 

of operations required is a1 + (a2  a1) + (a3  a2) + ⋯ + (aj  

aj-1) + (r  j) = aj + r  j. All aj, r, j is upper-bounded by n. It 
takes O(n) to store a component of an MB. Creating a CP link 
takes O(1). Storing an MB involves storing two components 
and creating a CP pointer. Thus it takes O(n) to store an MB. 
Q.E.D. 

It takes O(n) time to execute line 5 since scanning Tail(X) 
can be done in O(n) time. Theorem 13 shows that it takes O(n) 
to compute Oc(Y) from Oc(X) on line 6. 

Theorem 13: Let Y = X  {v} and v  V. Oc(X) is given. 
It takes O(n) to compute Oc(Y). 

Proof: Oc(Y) = Oc(X)  L(v) where the adjacency list 

L(v) = {u  V | u is adjacent to v}. Since Oc(X) and L(v) are 
ordered lists, intersection of them can be done in this way. We 
use two pointers p1 and p2 to point to elements of Oc(X) and 
L(v), respectively. Initially they are made to point to the 
leftmost element of their set. The next loop is repeated until 
either p1 or p2 falls off the end of their set: 

 Use p2 to scan L(v) left to right to find a next element 
which is not less than the element of p1, 

 If the elements of p1 and p2 are the same, the element 
of p1 is added to the intersection result, 

 p1 is made to point to the next element of Oc(X). 

Thus computing intersection can be done in |Oc(X)| + |L(v)| 
steps. Since n is the upper bound of |Oc(X)| and |L(v)|, Oc(Y) 
can be computed in O(n) time. Q.E.D. 

It takes O(1) to carry out the empty-set test on line 7. 
Theorem 14 shows that it takes O(n) for the look-up operations 
on lines 8 and 9. 

Theorem 14: It takes O(n) time to look up a component of 
an MB stored already. 

Proof: It is needed to find a path corresponding to Y in the 
MB tree. Let Y = {a1, ... , ar}. It is certain that ar  n. As assumed 
before, Y is ordered. To locate the nodes for all vertices in Y, 
the number of nodes to be probed depends only on the final 
element ar because of the characteristics of the SE tree. 

For example, let Y = {2, 5, 8}. The path for Y can be found 
in this way: we try to find a node with 2 among children of the 
root, which may require scanning 2 nodes at most (labels 1 and 
2); then we try to find a node with label 5 among children of 2 

which may require scanning of (5  2) nodes at most (with 
labels 3, 4, 5); we try to find a node with 8 among children of 

5, which may require scanning of (8  5) nodes at most. In 

total, the maximum number of operations required is 2 + (5  

2) + (8  5) = 8. 

The maximum number of nodes to scan is equal to ar. Thus 
the number of operations required is of the order of ar. Note 

that ar  n. Thus O(n) time is taken at most to locate a node of 
a vertex set. Finally the node with ar is checked if it has a CP 
pointer, which takes O(1) time. Q.E.D. 

It takes O(1) time to obtain Cl(Y) on line 10 via CP pointer 
in the node of Oc(Y). It takes O(n) to test Prior(Cl(Y), Y) since 
the two lists are scanned using two pointers to find the first 
position at which the elements do not match. Thus it takes O(n) 
to execute line 11. Theorem 15 shows that it takes O(n) to do 
extension and update on line 12. 

Theorem 15: It takes O(n) to carry out extension and 
update operations on line 12. 

Proof: The operations to perform is step i of Procedure for 
Pruning-4. The bit-sequence array representations introduced 
above are used to implement vertex sets Y, Tail(Y) and Cl(Y). 

Thus it takes O(1) to test if v  Cl(Y). 
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TABLE. I. EXPERIMENTAL RESULTS 

Input graphs R1 R2 R3 B1 B2 

graphsp

ec. 

n 100 100 300 992 3,890 

m 496 2,476 8,971 1,138 7,729 

k 721 696,000 2.38106 52 5,165 

Exec. 

time 

(sec) 

Li [4] 0.043 269 3,130 1.48 186  

Ours 0.036 99.8 1,474 1.47 65 

Adding v to Y takes O(1) since it can be done by setting the 
corresponding element of the array of Y to 1. Similarly, 
removing v from Tail(Y) takes O(1). The number of iterations 
of the loop is not more than |Tail(Y)|. Thus it takes O(n) to 
execute the loop. Q.E.D. 

The amount of time taken to invoke a function on line 13 
and 14 requires O(1) time (since the time to wait for the return 
from the called function is not included). 

By adding the amounts of time for lines from 5 to 14, it is 
found out that one iteration of the loop of line 4 requires O(n) 

time. This loop iterates |Tail(X)| number of times. |Tail(X)|  n. 
It takes O(1) time for line 1, O(m+n) for line 2 and O(n) for 
line 3. Therefore, Tinstance = c1n + c2m + c3n

2 for some constants 
c1, c2 and c3. By multiplying 2k and Tinstance, we obtain time 
complexity of our algorithm which is T(n) = O(kn2). 

The number of nodes used to store a component of an MB 
is less than or equal to n. Thus O(n) space is required for 
storing an MB. So O(kn) space is required to store all MBs. 
Each active instance of GenMB uses storage for the variables 
such as X, Oc(X), Y, Oc(Y), Tail(X), Tail(Y), Cl(Y). However, 
each of them requires O(n) space. The maximum number of 
instances of GenMB existing in memory at the same time is 
equal to the height of the SE tree. Thus it is n. So it needs O(n2) 
space to store variables used by all active instances of GenMB. 
Therefore, it requires O(kn+n2) space by our algorithm. It can 
be approximated to O(kn) because usually n is much smaller 
than k. 

As a conclusion, we obtain T(n) = O(kn2) and S(n) = O(kn) 
as time and space complexity of our algorithm, respectively. 

B. Empirical Performance Evaluation 

We performed experimentations to confirm the time 
complexity analysis results of our algorithm. We implemented 
our algorithm and measured its speed. The current state of the 
art algorithm is that of Li et al. [4]. This algorithm was 
implemented to compare its efficiency with ours. We compared 
the amounts of time required by the two algorithms as shown 
in Table I. We used five graphs to test the algorithms. 

Graphs were generated randomly (marked with R's in Table 
I) to be used as input. In addition to these artificial graphs, real 
life protein interaction networks were obtained from the 
biological repository, BioGrid (marked with B's in Table I) and 
used as input to test the algorithms [16]. The experimental 
result shows that our algorithm takes less amount of time than 
that of Li et al. [4]. This conforms to the theoretical analysis of 
our algorithm given in the previous subsection. However, if the 

total number k of MBs is small, efficiency of our algorithm is 
not manifested fully. 

C. Discussions 

As far as theoretical time complexity is concerned, our 
algorithm is superior to any fully general algorithms. The 
algorithm of Li et al. [4] has been state of the art for more than 
a decade and a half. Eventually we propose a new state of the 
art algorithm described in this paper. Another advantage of our 
algorithm is that a lot of space can be saved by storing all MBs 
by using paths in a set enumeration tree. 

VII. CONCLUSION 

In this paper, a new efficient algorithm is proposed for 
mining all maximal bicliques in an arbitrary undirected graph 
with n vertices, m edges and k maximal bicliques. The time 
complexity of ours is O(kn2) which is a significant 
improvement over O(kmn) the current state of the art 
performance [4]. This improvement is made possible by 
pruning search space extensively in our method. To be able to 
apply pruning techniques, maximal bicliques are stored as soon 
as they are discovered. They are looked up to make pruning 
decisions. Our algorithm requires O(kn) space which is used 
for storing all MBs. If the MBs need to be loaded into memory 
after generation to be available for application tasks, any 
algorithm cannot but require O(kn) space. Because the paths 
for components of maximal bicliques share a lot of nodes, the 
actual amount of storage used by our algorithm is less than that 
expected by theoretical analysis. 

Nowadays the networks appearing in the fields of social 
networks and protein networks have a huge size. Parallelizing 
the MB-mining algorithms is vital to achieve practical systems 
[17]. This topic is included in our near future research. 
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