
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

442 | P a g e

www.ijacsa.thesai.org

Efficient Mining of Maximal Bicliques in Graph by

Pruning Search Space

Youngtae Kim1, Dongyul Ra2

Computer and Telecommunications Engineering Division

Yonsei University, Wonju, Kangwon, South Korea

Abstract—In this paper, we present a new algorithm for

mining or enumerating maximal biclique (MB) subgraphs in an

undirected general graph. Our algorithm achieves improved

theoretical efficiency in time over the best algorithms. For an

undirected graph with n vertices, m edges and k maximal

bicliques, our algorithm requires O(kn
2
) time, which is the state

of the art performance. Our main idea is based on a strategy of

pruning search space extensively. This strategy is made possible

by the approach of storing maximal bicliques immediately after

detection and allowing them to be looked up during runtime to

make pruning decisions. The space complexity of our algorithm

is O(kn) because of the space used for storing the MBs. However,

a lot of space is saved by using a compact way of storing MBs,

which is an advantage of our method. Experiments show that our

algorithm outperforms other state of the art methods.

Keywords—Graph algorithms; maximal bicliques; maximal

biclique mining; complete bipartite graphs; pruning search space;

social networks; protein networks

I. INTRODUCTION

A biclique is a graph (or a subgraph of a graph) whose
vertex set can be partitioned into two component sets where
every vertex in one set is adjacent to every vertex in the other
set. A biclique is also referred to as a complete bipartite graph.
A maximal biclique (MB) of a graph G is a biclique which
cannot be not a subgraph of another biclique of G.

Nowadays social networks based on the internet or mobile
communications are popular [1]. Protein interaction networks
receive much attention in biomedical areas [2]. The emerging
block chain technology must handle large-scale graphs [3]. In
these fields, enumerating all MBs existing (as subgraphs) in a
graph is very important to many practical data mining
problems. As networks get large in size, efficiency in speed
and space of algorithms becomes important.

In this paper, we introduce a new efficient algorithm that
can enumerate all MBs in an undirected graph given as input.
Henceforth, we use variables n, m and k to denote the number
of vertices, edges and MBs in an input graph, respectively. The
emphasis in this research is to improve performance of fully
general algorithms that involves no constraints. The constraints
that can be placed on the algorithms are diverse. Some
algorithms accept only bipartite graphs as input. Other
algorithms produce only MBs whose component sets are
independent sets. There can be size constraints on the
component sets. We aim to design a fully general algorithm
that does not have any such constraints.

Our approach is based on a new idea of exploiting search
space pruning techniques to gain efficiency. In contrast to other
fully general algorithms, ours looks up stored MBs to make
decisions related to pruning search space, which allows to gain
efficiency in time. As a result, we discovered an algorithms
with O(kn2) and O(kn) as time and space complexity,
respectively.

Our algorithm's time complexity O(kn2) can be considered
to be a significant improvement over the current state of the art
O(kmn) [4]. The algorithm of Li et al. [4] has been the state of
the art for more than a decade and a half among the fully
general algorithms. This means that improving speed of the
best fully general algorithm has been quite hard. In this respect,
contribution of our work is nontrivial.

The theoretical space complexity of our algorithm is O(kn)
due to the space required to store all MBs. This space
requirement seems natural considering the fact that the MBs
enumerated anyway need to be loaded into memory to allow
application tasks to utilize them. In our scheme of storing MBs,
a lot of space can be saved by using a compact way of storing
MBs. This is due to the fact that the component vertex sets of
different MBs can share their parts and thus the actual amount
of space required can be quite less than that of theoretical
expectation. This is another advantage of our algorithm. How
much space is saved depends on the structure of the graph. It
was observed in the experiments that more than 50% of the
space is easily saved in case of dense input graphs.

II. RELATED WORK

A lot of research has been done on the problem of mining
all MBs in an undirected graph G. Algorithms for this purpose
belong to one of three categories. Algorithms in the first
category have a constraint that the input graph should be
bipartite. Algorithms of the other two categories do not have
the bipartite-graph constraint. The algorithms in the second
category have a restriction that the components of MBs should
be independent sets. In other words, they only generate
maximal induced bicliques. Algorithms that do not need any
constraints or restrictions belong to the third category.

Various algorithms of the first category were developed in
the past [5, 6]. Makino and Uno [7] proposed an algorithm
whose time complexity is O(n4) time and O(n2) space. Zhang et
al. [8] recently introduced a novel efficient algorithm of time
complexity O(d2n2) where d is the maximum degree of any
vertex. The space complexity is O(min(d,a)b) and a and b are

This research was supported by Basic Science Research Program through

the National Research Foundation of Korea (NRF) funded by the Ministry of

Education (2017R1D1A3B03031855).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

443 | P a g e

www.ijacsa.thesai.org

cardinalities of the two vertex partitions composing the input
bipartite graph G.

Many algorithms have also been developed that belong to
the second category by allowing a general undirected graph as
input. One of them is the algorithm introduced by Dias et al.
which requires O(kn4) time and O(2n) space [9]. However, this
algorithm generates only maximal induced bicliques. If an MB
consists of component sets at least one of which is not an
independent vertex set, the MB is not enumerated. Kloster et
al. [10] pursued improving the algorithm of Dias et al. But their
algorithm is specifically designed for general graphs which are
near to bipartite graphs. Their algorithm has time complexity
of O(knmh23h/3) where h is the cardinality of the vertex set
whose deletion from G makes G a bipartite graph. Sullivan et
al. [11] attempted to even further improve the algorithm of
Kloster et al. and achieved time complexity of O(knmh).

There has been research on developing fully general
algorithms belonging to the third category. Liu et al. [12]
effectively uses the size constraints on both vertex sets to prune
unpromising bicliques and to reduce the search space
iteratively during the mining process. The time complexity of
the proposed algorithm is O(kdn), where d is the maximal
degree of the vertices. But this algorithm has a size constraint
in such a way that only MBs are enumerated whose
components' sizes are above a threshold ms. One of those fully
general algorithms with no constraints was proposed by Alexe
et al. [13] which has O(kn3) and O(kn) as time and space
complexity, respectively. Another general algorithm in this
category is that of Tomita et al. [14] whose time complexity is
O(3n/3). The state of the art algorithm in this category is the one
by Li et al. [4] as mentioned in section I. This algorithm has
time complexity of O(kmn) and space complexity of O(mn).
However, this space complexity does not include the space for
storing the MBs enumerated. When the MBs enumerated need
to be stored to be used later by application tasks, their space
complexity should be O(kn).

III. PRELIMINARY ON MAXIMAL BICLIQUES

We assume that an undirected graph G = (V, E) is given to
the algorithm where V denotes a vertex set and E an edge set.
Let n and m denote the number of vertices and edges in G,
respectively. We use integers between 1 and n to denote

vertices. Thus V = {1,  , n}. An edge is represented by a set
of two vertices (no order between the two). It is said that a
vertex of an edge is adjacent to the other vertex of the edge.
We use an adjacency list representation of G. In this
representation, there is a list L(v) for each vertex v in V which
is an ordered list of vertices which are adjacent to v.

Let V1 and V2 be disjoint subsets of V. If every vertex in V1
is adjacent to every vertex in V2, then V1 and V2 form a biclique

[V1, V2] which is a subgraph of G. Its vertex set is V1  V2. Its
edge set consists of all edges connecting a vertex in V1 and a
vertex in V2. We call V1 and V2 the component vertex sets. A
biclique formed by components V1 and V2 becomes a maximal

biclique (MB) if there is no vertex set X  V1 where X and V2

form a biclique and no vertex set Y  V2 where V1 and Y form a
biclique. If V1 and V2 form an MB, V2 and V1 can form an MB.

Thus [V1, V2] and [V2, V1] is actually the same MB. Later in
this paper, a specific ordering will be enforced for the two
components in writing an MB.

To design our algorithm, we begin with the problem of
finding a maximal vertex set which can form a biclique with a
given vertex set X. This set is called an occurrence set of X,
which is denoted by Oc(X) [4]. Throughout this paper, V and E
denote the vertex and edge set of the input graph G,
respectively.

Definition 1: An occurrence set of X  V is Oc(X) = {v 

V | v  X and v is adjacent to all vertices in X}.

By the definition of Oc(X), it is important to note that
Oc(X) is a maximal vertex set for given X. In other words,

there is no vertex set H where H  Oc(X) and H can form a
biclique with X.

Theorem 1: Let X  V. [X, Oc(X)] is a biclique.

Proof: Let us select any vertex u  X and any vertex v 

Oc(X). By Definition 1, (u, v)  E. Thus X and Oc(X) form a
biclique. Q.E.D.

Note that [X, Oc(X)] is a biclique. We need to know
whether this biclique is a maximal biclique or not. Closure of a
vertex set X , Cl(X), is a maximal vertex set extended from X
which forms a biclique with Oc(X). It is formally defined in
Definition 2. Theorem 2 and 3 provide a method for deciding
whether [X, Oc(X)] is an MB or not.

Definition 2: Closure of a vertex set X  V, Cl(X), is the
occurrence set of Oc(X). I.e., Cl(X) = Oc(Oc(X)).

Theorem 2: Let X  V. [Cl(X), Oc(X)] is an MB.

Proof: Cl(X) = Oc(Oc(X)). Thus Oc(X) and Cl(X)

constitute a biclique by Theorem 1. There is no vertex v 
Oc(Oc(X)) which is adjacent to all vertices in Oc(X) by the
property of an occurrence set.

If we assume that there is a vertex v  Oc(X) which is
adjacent to all vertices in Oc(Oc(X)), contradiction occurs since
v is adjacent to all vertices in X and thus it should be in Oc(X).
Thus Cl(X) and Oc(X) meet the condition of forming an MB.
The theorem holds. Q.E.D.

Theorem 3: Let X V. Then X  Cl(X).

Proof: X forms a biclique with Oc(X). Cl(X) = Oc(Oc(X))

is a maximal set that forms a biclique with Oc(X). Thus X 
Oc(Oc(X)). Q.E.D.

Theorem 4 states that if a vertex is added to a set, the
corresponding occurrence set may lose some vertices.

Theorem 4: For any vertex set X, and a vertex v  X, if Z =

Oc(X{v}), then Z  Oc(X).

Proof: Z consists of only those vertices in Oc(X) which are
adjacent to v. If there is a vertex u in Oc(X) which is not
adjacent to v, u does not belong to Z. Thus the theorem holds.
Q.E.D.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

444 | P a g e

www.ijacsa.thesai.org

IV. SET ENUMERATION TREE

A. Set Enumeration Tree as a Search Space

A graph with a large number of vertices may have a huge
number of MBs. The basic strategy of enumerating all MBs is

simple as follows: for each Y  V, compute Oc(Y), Cl(Y) and
then enumerate [Y, Oc(Y)] as an MB if Y = Cl(Y). In this
strategy, all subsets of V should be tried as Y. Therefore, the
search space to find MBs is the power set of V. We use a set
enumeration tree as the conceptual model and data structure of
the search space [15].

In a set enumeration (SE) tree for a vertex set V, a unique
node exists for every subset of V. Each vertex is represented by

an integer label. The ith vertex in V is given label i, 1  i  n.
The SE tree for V = {1, ... , 4} is illustrated in Fig. 1. Every
node has a vertex label. Every node represents a unique subset
of V which is formed by including the vertex labels of all nodes
on the path from the root to the node. For example, consider
the orange node with label 4 in Fig. 1. This node represents the
vertex set {1, 3, 4}. All nodes of the SE tree for V covers all
subsets of V. A vertex set and its corresponding node in the SE
tree is used interchangeably in this paper.

Note that a node with label b has children with labels from
b + 1 to n. For a node X, the set of labels on all child nodes is
called its tail set, Tail(X). In Fig. 1, Tail(X) = {2, 3, 4} for the
node X = {1}.

A depth-first search (DFS) traversal scheme is used to visit
all nodes in an SE tree. Fig 2 illustrates the order of node visits
in DFS traversal. When the control arrives at a node for the
first time, this is the visit to the node. After the control leaves a
node, it may return to the node again later by backtracking
from a child node. In this paper, a visit to a node stands for the
first visit and not the return caused by backtracking. During
the (first) visit to a node, the processing related to the node is
performed. This is a kind of preorder traversal. The control at a
node moves to the leftmost unvisited child of the node. If a
node has no more unvisited child, the control backtracks to the
parent of the node.

Definition 3: Relation Prior(X, Y) is true if and only if the
visit to node X comes before the visit to node Y during DFS
traversal of the SE tree. If Prior(X, Y), it is said that X is prior
to Y.

Definition 4: Subtree(Y) denotes the subtree whose root is
the node of vertex set Y.

For a given graph G, our algorithm does not explicitly build
the SE tree of G. It uses a recursive function to implement the
DFS traversal of the implicit SE tree. The basic design of our
algorithm is the recursive function Basic_GenMB. Our
algorithm is started by invoking the recursive function with an

empty set  passed to X.

Algorithm Basic_GenMB (X, Oc(X), Tail(X)):
(1) if [X, Oc(X)] is an MB, mine it;
(2) for each v in Tail(X):

(3) Y  X {v} ; Tail(Y) = { u V | u Tail(X) and u > v};
(4) Compute Oc(Y) using Oc(X) and v;

(5) if (Oc(Y)  )
(6) Basic_GenMB (Y, Oc(Y), Tail(Y));

Fig. 1. Set Enumeration Tree with n = 4.

Fig. 2. Depth-First Search Traversal of the SE Tree.

Though significant pruning of search space is done at step 5
of our basic algorithm, more pruning needs to be pursued to
improve efficiency. In our algorithm, it is assumed that all
vertex sets are ordered sets to improve efficiency in
computation. Assume the two vertex sets X and Y form an MB.
We write the MB as [X, Y] if Prior(X, Y) is true. Otherwise, we
write [Y, X]. In an MB, the component which is prior to the
other is the first component and the other the second
component. In our algorithm, an MB is mined (i.e. discovered
and registered) when its first component is visited. Thus, if [X,
Y] was mined before, it means Prior(X, Y) is true and the node
X was visited already. When the second component of an MB
is visited, the MB is not produced again to avoid duplicate mining.

B. Storing Maximal Bicliques

The techniques for achieving efficiency in our algorithm
are based upon looking up the MBs already mined during the
run of our algorithm. To exploit this idea, it is required to store
MBs as soon as they are identified and mined. Our algorithm
does not construct the SE tree explicitly. Our algorithm uses an
implicit SE tree as the whole search space. When an MB is
detected, it should be stored immediately. Its two component
vertex sets need to be stored. To store a component, its
corresponding node in the SE tree is constructed. The path
corresponding to this node is also constructed. The initial part
of the path is shared with other existing paths as much as
possible.

A tree in which MBs are stored is called an MB tree. The
MB tree is a subgraph of the SE tree. The MB tree has only the
paths for the components of MBs generated so far. The two
nodes representing the components of an MB point to each
other by the component pointer (CP). From a node of a
component of an MB, the node of the other component can be
accessed instantly by using the CP pointer.



2
4

3

2 4

43

3 4 4

4

1

3

4

4



2
4

3

2 4

43

3 4 4

4

1

3

4

4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

445 | P a g e

www.ijacsa.thesai.org

Fig. 3. MB Tree Containing Two MBs: [H, Z] and [A, B].

A snapshot of an MB tree is shown in Fig. 3. One MB, [H,
Z], was stored where H is {1, 3, 5, 10} and Z {2, 4, 8}. Another
MB, [A, B], also exists in the MB tree where A = {1, 3, 6}, B =
{2, 7, 9}. Note that the paths of H and A share a sub-path
consisting of nodes 1 and 3. The paths of an MB tree have the
same structure as those of an SE tree. In making decisions
about pruning search space, our algorithm needs to look up an
MB produced before. Storing and looking up an MB is
efficient by adopting the idea of an MB tree.

V. EXPLOITING PRUNING TECHNIQUES

We will modify Basic_GenMB to improve efficiency by
utilizing MBs stored in the MB tree and pruning search space.
Note that MBs are stored as soon as they are identified during
the run of the algorithm. An MB is constructed and stored as
soon as its first component is visited for the first time during
DFS traversal. In this section we will introduce pruning
techniques exploited by our algorithm. Our algorithm is a
recursive function GenMB. To run our algorithm, the function

is invoked as follows: GenMB(, V, V, 0). The algorithm
starts at the root of the SE tree. The roles of the parameters are
as follows:

 X: a vertex set which is being visited by DFS.

 Oc(X): the occurrence set of X.

 Tail(X): the tail set of X.

 genflag: If this flag receives 1, an MB should be
generated using (extended) X and Oc(X).

If genflag is 1, it means that generation of an MB using X
and Oc(X) is requested. X may not be maximal to form an MB.
So X is extended to its closure Cl(X) on line 2. Tail(X) is
updated by removing vertices added to X. More detailed
explanation for closure extension and update will be provided
later in this section. An MB consisting of Cl(X) and Oc(X) is
generated and stored on line 3. If genflag is 0, it means that an
MB composed of X and Oc(X) was generated previously and
thus the MB should not be generated again to avoid
duplication. But DFS traversal should continue for nodes in
Subtree(X). Action "continue" on line 7 and 11 stands for
"jumping to next iteration".

The loop from line 4 to 14 is to traverse SE nodes in the
subtrees of children of X. On line 5, Y (a child of X in the SE
tree) is proposed to be visited next by DFS. Y was not visited
before. It is visited now. Thus Y cannot be a first component of
an MB generated earlier. It is necessary to compute Oc(Y) (line
6).

A. Pruning scheme 1

Pruning-1: If Oc(Y) is an empty set where Y is the node
to visit next on line 7 of GenMB, Subtree(Y) can be
pruned.

The first strategy of pruning search space, Pruning-1, is

applied on line 7 of GenMB. If Oc(Y) is an empty set , there
is no need of visiting nodes in the subtree of Y. This pruning is
possible since the occurrence set of nodes in those subtrees will

be  by Theorem 5. The action of “continue” on line 7 makes
the algorithm to ignore the remaining part of the loop and start
the next iteration (as in C language). This has the effect of
ignoring or pruning Subtree(Y) during DFS traversal.

Definition 5: If X can be obtained by taking zero or more
consecutive elements starting from the first element of an
ordered set Z, Prefix(X, Z) is true. Otherwise, Prefix(X, Z) is
false.

B. Pruning scheme 2

Pruning-2: If Oc(Y) exists in the MB tree as a second
component of an MB stored already on line 8 of GenMB,
then Subtree(Y) can be pruned.

Let us consider a situation to which Pruning-2 can be
applied. Fig. 4 has an example. By Theorem 3, Cl(Y) is the first

component of the MB. Y  Cl(Y) by Theorem 2. Cl(Y) was
visited already before Y, which can be derived by the existence
of Oc(Y) in an MB discovered already. Thus Prior(Cl(Y), Y).

Thus Prefix(Y, Cl(Y)). Symbol  denotes negation. In this
case, Subtree(Y) can be pruned safely (on line 8 of GenMB).
Theorem 5 proves that this pruning is safe.

Theorem 5: Pruning-2 is safe (This action will not prevent
any MB from being generated.)

Proof: Cl(Y) forms a biclique with Oc(Y) by Theorem 3. Y

 Cl(Y). Y  Cl(Y) since Cl(Y) was visited already and Y is

being visited now. Thus Y  Cl(Y). Let v  (Cl(Y) – Y). Note

that v is adjacent to all vertices in Oc(Y) since v  Cl(Y).

Y and Oc(Y) form a biclique by definition of an occurrence
set. However, Y cannot form a maximal biclique with Oc(Y)



1 2

73

10

65

4

9
8

Root

A
Z

B

H
CP CP

Algorithm GenMB (X, Oc(X), Tail(X), genflag):

(1) if (genflag 1 and X  ) {
(2) Closure_extension (X, Oc(X), Tail(X)) ;
(3) Generate and store MB [X, Oc(X)];
 } // end if
(4) for each v in Tail(X) do {

(5) Y  X  {v} ; Tail(Y)  {u | u  Tail(X) and v  u} ;
(6) Compute Oc(Y) using Oc(X) and v;

(7) if (Oc(Y) = ) continue; // Pruning-1
(8) if (Oc(Y) = 2nd component of MB stored already)
 continue; //Pruning-2
(9) if (Oc(Y) = 1st component of MB stored already) {
(10) Obtain Cl(Y) from node of Oc(Y) using CP link;
(11) if (Prior(Cl(Y), Y)) continue; // Pruning-3
(12) else { Extend Y to Cl(Y) and update Tail(Y);
(13) GenMB(Y, Oc(Y), Tail(Y), 0); // Pruning-4
 } // end if
 } // end if
(14) GenMB(Y, Oc(Y), Tail(Y), 1); // Pruning-5

 } // end for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

446 | P a g e

www.ijacsa.thesai.org

since a bigger set (Y {v}) can form a biclique with Oc(Y).
This argument can be applied to any node in Subtree(Y).

Consider any node L (other than Y) in Subtree(Y). L is
obtained by adding one or more vertices to Y. (For example,
consider L in Fig. 4.) L forms a biclique with Oc(L). By

Theorem 4, Oc(L)  Oc(Y). Thus v  (Cl(Y) – Y) is adjacent

to all vertices in Oc(L). Therefore, L{v} is completely
connected with Oc(L). Thus L and Oc(L) can form a biclique

but not a maximal biclique because a bigger set L{v} can
form a biclique with Oc(L). Thus no node in Subtree(Y) can be
a component of a maximal biclique. Q.E.D.

C. Pruning scheme 3

Pruning-3: If Oc(Y) exists in the MB tree as a first
component of an MB and Prior(Cl(Y), Y) is true on line
11 of GenMB, then Subtree (Y) can be pruned.

Let us consider a situation to which Pruning-3 is applicable.
Fig. 5 gives an example of such a situation. Cl(Y) exists in the
MB tree as a second component of an MB stored already. Line
11 of our algorithm implements this pruning by executing
“continue”. Theorem 6 below proves that Pruning-3 is safe.

Theorem 6: Pruning-3 is safe (This action will not prevent
any MB from being generated.)

Proof: An MB [Oc(Y), Cl(Y)] was stored before. Since

Prior(Cl(Y), Y), Cl(Y) was visited before Y. Y  Cl(Y) by
Theorem 3. Y and Cl(Y) cannot be equal since Cl(Y) was

visited before and Y is now being visited. So Y  Cl(Y).

If Prefix(Y, Cl(Y)) is assumed, Prior(Y, Cl(Y)), which is a

contradiction. Thus Prefix(Y, Cl(Y)). There should v 

(Cl(Y) – Y) since Y  Cl(Y). (Y {v}) can form a biclique
with Oc(Y). So Y and Oc(Y) cannot form an MB.

We can apply the same argument used in the proof of
Theorem 5 to conclude that Subtree(Y) can be pruned without
missing any MBs. Q.E.D.

D. Pruning scheme 4

Pruning-4: If Oc(Y) exists as a first component of an

MB stored already and Prior(Cl(Y), Y) (line 12 of
GenMB), then the DFS traversal visits a node W in
Subtree(Y) and all nodes in Subtree(W) if and only if

Cl(Y)  W. This leads to the fact that any Subtree(W)

contained in Subtree(Y) will be pruned if [Cl(Y) 

(WTail(W))].

Fig. 6 shows a situation to which Pruning-4 can be applied.
Since Prior(Cl(Y),Y) is false, Y is being visited now but Cl(Y)
has not been visited yet. But Cl(Y) exists as a second

component of an MB in the MB tree. Note that Y  Cl(Y) by

Theorem 3. Thus Prefix(Y, Cl(Y)). Y = Cl(Y) or Y  Cl(Y). For
example, node W in Fig. 6 will be pruned since Cl(Y) = {2, 4,
6, 8} is not a subset of W = {2, 4, 7} and Tail(W) = {8, 9, 10}.
Subtree(W) will be pruned since any node in it can contain
Cl(Y). Note that R is not visited since R = {2, 4, 5}. But, since
Tail(R) = {6, 7, 8, 9, 10}, some nodes in Subtree(R) can
contain Cl(Y) and thus can be traversed. For example, Z = {2,
4, 5, 6, 8} in Subtree(R) will be visited since Z contains Cl(Y).

S in Subtree(R) and all nodes in Subtree(S) will be pruned since
they cannot contain Cl(Y).

Theorem 7: Pruning-4 is safe (This action will not prevent
any MB from being generated.)

Proof: Let W be a node in Subtree(Y). Assume that 

[Cl(Y)  W]. Let v be a vertex in Cl(Y) but not in W. Thus v is

adjacent to all vertices in Oc(Y). Oc(W)  Oc(Y) by Theorem
4. Thus v is adjacent to all vertices in Oc(W) because v is
adjacent to all vertices in Oc(Y).

Let Q = W  {v}. Oc(Q) = Oc(W) because v is adjacent to
all vertices in Oc(W). Cl(W) = Oc(Oc(W)) = Oc(Oc(Q)) =

Cl(Q). Cl(W)  Q. Thus Cl(W)  W. Therefore, W cannot
form a maximal biclique with Oc(W).

Instead, Cl(W) forms an MB with Oc(W). W needs not to

be visited. If  [Cl(Y)  (WTail(W))], then no node Z in

Subtree(W) can satisfy Cl(Y)  Z and thus Subtree(W) can be
pruned. Q.E.D.

Fig. 4. Situation where Pruning-2 is Applicable.

Fig. 5. Situation where Pruning-3 is Applicable.

Fig. 6. Pruning-4 is Possible at Y; n =10, T:Tail.



1

8

3

6

2

4

3

10

4

Root

Cl(Y)

Y CP

Oc(Y)

L



2

4

5

6

4

5

Root

Y

Oc(Y)

CP
Cl(Y)



2

4

6

8

Root

Cl(Y)

Y
Oc(Y)

5

7

7
R

W

S

prune

T={5,6,7,8,9,10}

T={8,9,10}

T={8,9,10}

T={6,7,8,9,10}

6

CP pointer

T={9,10}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

447 | P a g e

www.ijacsa.thesai.org

To implement Pruning-4, our algorithm executes the
operations on lines 12, 13 implemented by the next procedure.

Procedure for Pruning-4:
(i) // Extend Y to Cl(Y) and update Tail(Y) by using next for loop.
 for each v in Tail(Y):
 if (v in Cl(Y)) { add v to Y; remove v from Tail(Y); }
(ii) GenMB(Y, Oc(Y), Tail(Y), 0) ; // recursive invocation of itself

This procedure accomplishes pruning search space as stated
in Pruning-4. Let us use a simple example in Fig. 7 to
understand how our algorithm works related with Pruning-4.
Let n = 10. After extension and update operations applied to
Fig. 6, Y = {2, 4} becomes Y' = {2, 4, 6, 8} as in Fig. 7. Tail(Y')
= {5, 7, 9, 10}. Note that Tail(Y') has extra vertices 5 and 7 in
addition to {9, 10}, the normal tail set of Y'. Thus the tail set
becomes unorthodox. GenMB(Y', Oc(Y), Tail(Y'), 0) is called.
Zero is passed to genflag to suppress MB generation using Y'
and Oc(Y). This call results in visiting only nodes Z in

Subtree(Y) where Z  Cl(Y) and all nodes in Subtree(Z). The

nodes W (in Subtree(Y)) and Subtree(W) will be pruned if 

[Cl(Y)  (WTail(W))].

Fig. 8 illustrates nodes in Subtree(Y={2,4}) in the MB tree
of Fig. 7 that will be visited by the algorithm. So the parts of
Subtree(Y) not covered by traversals in this figure are pruned.
First, node Y of Fig. 8(a) and its subtree will be traversed.
Secondly, Y of Fig. 8(b) and its subtree will be traversed. Then
Y of Fig. 8(c) and its subtree will be traversed. Finally, Y of
Fig. 8(d) and 8(e) and their subtree will be traversed.

Theorem 8: Procedure for Pruning-4 accomplishes pruning
suggested by Pruning-4.

Proof: Let Y be a node at which Pruning-4 condition is
met. We need to verify that Pruning-4 operations achieve the
effect that Subtree(W) for any node W in subtree(Y) is pruned

if  [Cl(Y)  (WTail(W))].

Extension operation updates Y and Tail(Y) accordingly
(see step i). Let Y' and Tail(Y') denote the updated results.
Thus Y' = Cl(Y). Tail(Y') contains all elements of Tail(Y)
except those added to Y'. Then GenMB(Y', Oc(Y), Tail(Y'), 0)
is invoked.

All nodes W that will be visited as a result of this

invocation satisfy that Cl(Y)  W since Y' = Cl(Y) and W is
obtained by adding some nodes in Tail(Y') to Y'. Q.E.D.

E. Pruning scheme 5

Pruning-5: If neither Y nor Oc(Y) exist as a component
of an MB stored already in the MB tree, the same type of
pruning as Pruning-4 should be done. The algorithm will
visit a node W in Subtree(Y) and all nodes in Subtree(W)

if and only if Cl(Y)  W. As a result, any Subtree(W)

contained in Subtree(Y) is pruned if [Cl(Y) 

(WTail(W))]

If the conditions required by the pruning strategies
introduced so far are not satisfied by Y, our algorithm will
arrive at line 14. This happens when neither Y nor Oc(Y) does
exist as a component of an MB stored already in the MB tree.
(Note that Y cannot be a first component of a stored MB since
Y is being visited now and thus was not visited before.) In this

case, it is guaranteed that Y is a prefix of Cl(Y), which is
proved by Theorem 9. Thus the situation of this Y is quite
similar to that of pruning case 4. In both cases, Y is a prefix of
Cl(Y). In the current case, Cl(Y) will be a first component
while, in case 4, Cl(Y) is a second component of an MB. In the
current case, [Cl(Y), Oc(Y)] was not generated and thus will be
generated. In case 4, an MB [Oc(Y), Cl(Y)] was generated
already. For the current Y, Pruning-5 will be carried out which
is similar to Pruning-4.

Note that Oc(Y) was not visited yet. Otherwise, it should
exist as a component of an MB in the MB tree. Thus Prior(Y,
Oc(Y)) is true. Fig. 9 shows an example of Y on line 14. An
MB [Y, Oc(Y)] cannot be proposed as an MB because it is not

known yet if Y = Cl(Y) or not. Oc(Y)   (determined on line
7). Thus Cl(Y) and Oc(Y) form an MB. But the algorithm is
visiting node Y. The algorithm invokes a recursive call:
GenMB(Y, Oc(Y), Tail(Y), 1). At the start of new instance of
GenMB invoked by this call, the two operations are carried out
(lines 2, 3 of GenMB): extending Y to Cl(Y) by executing
procedure Closure_extension shown below, and generating and
storing MB [Cl(Y), Oc(Y)].

Procedure Closure_extension performs the same task of
step i of "Proceudre for Pruning-4" shown before. The only
difference is that Cl(Y) is not known in this case and thus needs
to be computed in using steps (1) and (2). Subtree(W) for any

node W in subtree(Y) can be pruned if [Cl(Y) 

(WTail(W))] where Y here is before being extended by
Closure_extension.

Procedure Closure_extension (Y, Oc(Y), Tail(Y)):

(1) Scan all adjacency lists of vertices in Oc(Y);

(2) By scanning, occurrence count is obtained for each vertex;

(3) for each v in Tail(Y):

(4) if (Count of v = |Oc(Y)|)

 { Add v to Y; Remove v from Tail(Y); }

 end for;

Fig. 7. Extension and update of Y and Tail (Y) to Y' and Tail (Y').

Fig. 8. More Examples of nodes visited while Pruning-4 is Done.



10

2

4

6

8

Root

Y T={5, 6, 7, 8, 9, 10}

1

3

CPOc(Y)

Extend Y to Y’

Y’ =Cl(Y)

T(Y’)=(5,7,9,10)



2

4

6

8

Root

Y

5

7



2

4

6

8

Root

T={10}



2

4

6

8

Root

Y

7

(a) (b) (c)

Y



2

4

6

8

Root

5

T={9, 10}
T={9, 10}

Y

(d)

T={9, 10}
9



2

4

6

8

Root

T={ }

Y

(e)

10

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

448 | P a g e

www.ijacsa.thesai.org

An example of pruning caused by Pruning-5 is shown in
Fig. 9 by red line segments. Fig. 10 illustrates additional
examples of pruning caused by Pruning-5. Green nodes and
their subtrees are traversed; red lines indicate pruning of
subtrees. Justifying Pruning-5 can be done using the same
arguments used to justify Pruning-4.

Theorem 9: If neither Y nor Oc(Y) exists as a component
of an MB stored already, Y is a prefix of Cl(Y).

Proof: A prefix of a node in the SE tree is visited before
the node in DFS traversal because of the structure of SE tree.

Oc(Y)   since the test on line 7 was false. Thus Cl(Y) and
Oc(Y) can constitute an MB.

If Cl(Y) had been visited already, Oc(Y) should exist as a
component of an MB since Cl(Y) and Oc(Y) can form an MB
(by Theorem 2). Because Oc(Y) does not exist as a component

of an MB in the MB tree, Cl(Y)  Y was not visited yet.
Therefore, Y is a prefix of Cl(Y). Q.E.D.

F. Correctness of our algorithm

Theorem 10 proves the correctness of our algorithm as an
MB enumerator. In other words, there is no MB that is not
generated by our algorithm.

Theorem 10: Our algorithm GenMB enumerates all MBs
in a graph given as input.

Proof: DFS traversal implemented by GenMB visits all
subsets of V in an SE tree if there is no pruning. Y proposed on
line 5 of GenMB is the vertex set being visited.

Fig. 9. Situation to which Pruning-5 is Applicable.

Fig. 10. More Examples for Pruning-5.

Fig. 11. Decision Tree to Decide Processing for Y.

In GenMB, a decision tree shown in Fig. 11 is used to
select a case for Y. This Y will be assigned to one of 5 cases at
the leaf in the decision tree. It is necessary to verify that there
is no loss of MB after performing actions in any case.

We verified above that the pruning actions for each case are
safe and thus no MB is lost from being generated. So the
theorem holds. Q.E.D.

VI. PERFORMANCE EVALUATION

In this section, we determine computational complexity of
our algorithm GenMB. The result of experimental comparison
with current state of the art algorithm is also provided. Let n =
|V|, and m = |E|. Let k be the total number of MBs in the given
graph.

A. Theoretical Performance Evaluation

Our algorithm uses a recursive function named GenMB.
Let TGenMB(X) denote the amount of time required for executing
function GenMB when it is invoked with X passed to the first
input parameter. The time complexity of our algorithm, T(n,

m), will be equal to that of TGenMB() which is the time taken

by the initial invocation GenMB(, V, V, 0) to finish. An

analytical solution for TGenMB() is hard to obtain since
systematic progression cannot be formulated for the case of
GenMB.

GenMB is invoked in two places in its procedure as
follows: (i) line 13 (X receives a second component of an MB
generated already), and (ii) line 14 (X will be a first component
of an MB immediately by closure extension.) For each MB,
GenMB is called twice (when DFS is visiting its two
components). Thus the number of invocations of GenMB is
equal to 2k. We first compute the time taken by one instance of
GenMB, Tinstance, which does not include the time to wait for
the return from the recursive call issued during the run of the
instance. Then T(n, m) can be obtained from the result of
multiplying Tinstance and 2k.

Obtaining Tinstance requires to compute the time taken by
each step of the function. It takes O(m) to perform procedure
Closure_extension on line 2, which is shown by Theorem 11.
Storing an MB involves storing two components in the MB
tree and connect them by a CP pointer. By Theorem 12, it takes
O(n) time to store an MB (on line 3).



1

3

5

7

Root

Cl(Y)

Y

Oc(Y)

Not traversed or constructed yet.

76

98

prune

closure_extension

CP



2

4

6 8

Root

10

5

7

9

Y

6 7 8 9 10

7

8

9 10

prune

Cl(Y)

7

8

8

9

9

Prune-2

(line 11)

Is Oc(Y) 2nd cmpt of MB stored?

Is Oc(Y) 1st cmpt of MB stored?

Prior(Cl(Y),Y)?

Yes

Yes

Yes

No

No

No

Prune-3

(line 13)

Prune-4

(line 14,15)

Prune-5

(line 16)

Is Oc(Y) empty?

Prune-1

(line 10)

Yes No

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

449 | P a g e

www.ijacsa.thesai.org

To represent a vertex set, say X, a bit-sequence array can be
used for fast processing. Let A be the bit-sequence array used

to represent X. It has n elements. If v  X, A[v] =1. Otherwise,
A[v] = 0. It takes a constant time to check if a vertex v is in X,
since it is needed just to check the value of A[v].

Theorem 11: It takes O(m) time for executing
Closure_extension (on line 2).

Proof: Let us consider function Closure_extension. At step
1, adjacency lists of vertices in Oc(Y) are scanned. We prepare
an array Ar[1..n] of n integers (initialized to 0) for storing
counts of vertices. Ar[i] has the count of vertex i encountered
during scanning. During scanning, if an element with value of
v is encountered, Ar[v] is incremented. It takes O(m) time for
this scanning and counting since the number of elements in
adjacency lists is 2m.

Y and Tail(Y) are represented by bit-sequence arrays. Thus

step 4 takes O(1) time. Since |Tail(Y)|  n, step 3 and 4 of
Closure_extension take O(n) time. Thus time complexity of
Closure_extension is O(m + n). Since m is usually much bigger
than n, it can be said that Closure_extension takes O(m) time.
Q.E.D.

Theorem 12: It takes O(n) to store an MB in the MB tree.

Proof: Let X be a component of an MB to be stored in the
MB tree. Note that the MB tree is a subgraph of the SE tree.
Only the nodes in the paths for components of MBs generated
are actually constructed. Let X = {a1, a2, ... , ar}.

Assume that the prefix (a1, ... , aj-1) of the path for X already
exists in the MB tree and aj-1 does not have a child with label

aj. Let a pointer P point to the root node  of the MB tree at
first. Locate a child of P whose label is a1. This takes a1

operations at most since node  may have children with all
labels from 1 to a1. Let P point to a1 node.

Among children of a1, a node with label a2 should be

identified. This may take (a2  a1) operations at most since the
node with label a1 may have children with labels from a1 + 1,
... , a2. Let P point to a2 node. By proceeding in this way, P
will point to a node of label aj-1 eventually. Then searching for
node with aj among children of node with aj-1 will be tried but

fail, which takes (aj aj-1) operations at most.

A node with label aj should be created and attached to node
aj-1. For each element in the sequence (aj+1, ... , ar), a node is
created and attached to its predecessor's node. So the number

of operations required is a1 + (a2  a1) + (a3  a2) + ⋯ + (aj 

aj-1) + (r  j) = aj + r  j. All aj, r, j is upper-bounded by n. It
takes O(n) to store a component of an MB. Creating a CP link
takes O(1). Storing an MB involves storing two components
and creating a CP pointer. Thus it takes O(n) to store an MB.
Q.E.D.

It takes O(n) time to execute line 5 since scanning Tail(X)
can be done in O(n) time. Theorem 13 shows that it takes O(n)
to compute Oc(Y) from Oc(X) on line 6.

Theorem 13: Let Y = X  {v} and v  V. Oc(X) is given.
It takes O(n) to compute Oc(Y).

Proof: Oc(Y) = Oc(X)  L(v) where the adjacency list

L(v) = {u  V | u is adjacent to v}. Since Oc(X) and L(v) are
ordered lists, intersection of them can be done in this way. We
use two pointers p1 and p2 to point to elements of Oc(X) and
L(v), respectively. Initially they are made to point to the
leftmost element of their set. The next loop is repeated until
either p1 or p2 falls off the end of their set:

 Use p2 to scan L(v) left to right to find a next element
which is not less than the element of p1,

 If the elements of p1 and p2 are the same, the element
of p1 is added to the intersection result,

 p1 is made to point to the next element of Oc(X).

Thus computing intersection can be done in |Oc(X)| + |L(v)|
steps. Since n is the upper bound of |Oc(X)| and |L(v)|, Oc(Y)
can be computed in O(n) time. Q.E.D.

It takes O(1) to carry out the empty-set test on line 7.
Theorem 14 shows that it takes O(n) for the look-up operations
on lines 8 and 9.

Theorem 14: It takes O(n) time to look up a component of
an MB stored already.

Proof: It is needed to find a path corresponding to Y in the
MB tree. Let Y = {a1, ... , ar}. It is certain that ar  n. As assumed
before, Y is ordered. To locate the nodes for all vertices in Y,
the number of nodes to be probed depends only on the final
element ar because of the characteristics of the SE tree.

For example, let Y = {2, 5, 8}. The path for Y can be found
in this way: we try to find a node with 2 among children of the
root, which may require scanning 2 nodes at most (labels 1 and
2); then we try to find a node with label 5 among children of 2

which may require scanning of (5  2) nodes at most (with
labels 3, 4, 5); we try to find a node with 8 among children of

5, which may require scanning of (8  5) nodes at most. In

total, the maximum number of operations required is 2 + (5 

2) + (8  5) = 8.

The maximum number of nodes to scan is equal to ar. Thus
the number of operations required is of the order of ar. Note

that ar  n. Thus O(n) time is taken at most to locate a node of
a vertex set. Finally the node with ar is checked if it has a CP
pointer, which takes O(1) time. Q.E.D.

It takes O(1) time to obtain Cl(Y) on line 10 via CP pointer
in the node of Oc(Y). It takes O(n) to test Prior(Cl(Y), Y) since
the two lists are scanned using two pointers to find the first
position at which the elements do not match. Thus it takes O(n)
to execute line 11. Theorem 15 shows that it takes O(n) to do
extension and update on line 12.

Theorem 15: It takes O(n) to carry out extension and
update operations on line 12.

Proof: The operations to perform is step i of Procedure for
Pruning-4. The bit-sequence array representations introduced
above are used to implement vertex sets Y, Tail(Y) and Cl(Y).

Thus it takes O(1) to test if v  Cl(Y).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

450 | P a g e

www.ijacsa.thesai.org

TABLE. I. EXPERIMENTAL RESULTS

Input graphs R1 R2 R3 B1 B2

graphsp

ec.

n 100 100 300 992 3,890

m 496 2,476 8,971 1,138 7,729

k 721 696,000 2.38106 52 5,165

Exec.

time

(sec)

Li [4] 0.043 269 3,130 1.48 186

Ours 0.036 99.8 1,474 1.47 65

Adding v to Y takes O(1) since it can be done by setting the
corresponding element of the array of Y to 1. Similarly,
removing v from Tail(Y) takes O(1). The number of iterations
of the loop is not more than |Tail(Y)|. Thus it takes O(n) to
execute the loop. Q.E.D.

The amount of time taken to invoke a function on line 13
and 14 requires O(1) time (since the time to wait for the return
from the called function is not included).

By adding the amounts of time for lines from 5 to 14, it is
found out that one iteration of the loop of line 4 requires O(n)

time. This loop iterates |Tail(X)| number of times. |Tail(X)|  n.
It takes O(1) time for line 1, O(m+n) for line 2 and O(n) for
line 3. Therefore, Tinstance = c1n + c2m + c3n

2 for some constants
c1, c2 and c3. By multiplying 2k and Tinstance, we obtain time
complexity of our algorithm which is T(n) = O(kn2).

The number of nodes used to store a component of an MB
is less than or equal to n. Thus O(n) space is required for
storing an MB. So O(kn) space is required to store all MBs.
Each active instance of GenMB uses storage for the variables
such as X, Oc(X), Y, Oc(Y), Tail(X), Tail(Y), Cl(Y). However,
each of them requires O(n) space. The maximum number of
instances of GenMB existing in memory at the same time is
equal to the height of the SE tree. Thus it is n. So it needs O(n2)
space to store variables used by all active instances of GenMB.
Therefore, it requires O(kn+n2) space by our algorithm. It can
be approximated to O(kn) because usually n is much smaller
than k.

As a conclusion, we obtain T(n) = O(kn2) and S(n) = O(kn)
as time and space complexity of our algorithm, respectively.

B. Empirical Performance Evaluation

We performed experimentations to confirm the time
complexity analysis results of our algorithm. We implemented
our algorithm and measured its speed. The current state of the
art algorithm is that of Li et al. [4]. This algorithm was
implemented to compare its efficiency with ours. We compared
the amounts of time required by the two algorithms as shown
in Table I. We used five graphs to test the algorithms.

Graphs were generated randomly (marked with R's in Table
I) to be used as input. In addition to these artificial graphs, real
life protein interaction networks were obtained from the
biological repository, BioGrid (marked with B's in Table I) and
used as input to test the algorithms [16]. The experimental
result shows that our algorithm takes less amount of time than
that of Li et al. [4]. This conforms to the theoretical analysis of
our algorithm given in the previous subsection. However, if the

total number k of MBs is small, efficiency of our algorithm is
not manifested fully.

C. Discussions

As far as theoretical time complexity is concerned, our
algorithm is superior to any fully general algorithms. The
algorithm of Li et al. [4] has been state of the art for more than
a decade and a half. Eventually we propose a new state of the
art algorithm described in this paper. Another advantage of our
algorithm is that a lot of space can be saved by storing all MBs
by using paths in a set enumeration tree.

VII. CONCLUSION

In this paper, a new efficient algorithm is proposed for
mining all maximal bicliques in an arbitrary undirected graph
with n vertices, m edges and k maximal bicliques. The time
complexity of ours is O(kn2) which is a significant
improvement over O(kmn) the current state of the art
performance [4]. This improvement is made possible by
pruning search space extensively in our method. To be able to
apply pruning techniques, maximal bicliques are stored as soon
as they are discovered. They are looked up to make pruning
decisions. Our algorithm requires O(kn) space which is used
for storing all MBs. If the MBs need to be loaded into memory
after generation to be available for application tasks, any
algorithm cannot but require O(kn) space. Because the paths
for components of maximal bicliques share a lot of nodes, the
actual amount of storage used by our algorithm is less than that
expected by theoretical analysis.

Nowadays the networks appearing in the fields of social
networks and protein networks have a huge size. Parallelizing
the MB-mining algorithms is vital to achieve practical systems
[17]. This topic is included in our near future research.

REFERENCES

[1] A. Z. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. L. Wiener, "Graph structure in the web,"
Computer Networks, 33(1-6) pp. 309–320, June 2000.

[2] D. Bu, Y. Zhao, L. Cai, H. Xue, X. Zhu, H. Lu, J. Zhang, S. Sun, L.
Ling, N. Zhang, G. Li, R. Chen, "Topological structure analysis of the
protein interaction network in budding yeast," Nucleic Acids Research,
vol. 31, no. 9, pp. 2443–2450, May 2003.

[3] C. G. Akcora, M. F. Dixon, Y. R. Gel, M. Kantarcioglu, "Bitcoin risk
modeling with blockchain graphs," Economics Letters, vol. 173 pp.
138-142, Dec. 2018.

[4] J. Li, G. Liu, H. Li, L. Wong, "Maximal biclique subgraphs and closed
pattern pairs of the adjacency matrix: a one-to-one correspondence and
mining algorithms," IEEE Trans. on Knowledge and Data Engineering,
vol. 19, no. 12, pp. 1625–1637, Dec. 2007.

[5] M. J. Zaki, C. Hsiao, "Charm: An efficient algorithm for closed itemset
mining," In Proceedings of 2nd SIAM International Conference on Data
Mining, Arlington, Virginia, pp. 398–416, April 2002.

[6] M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, S. Langley,
"Obtaining maximal concatenated phylogenetic data sets from large
sequence databases," Molecular Biology Evol., vol. 20, no. 7, pp. 1036–
1042, May 2003.

[7] K. Makino, T. Uno, "New algorithms for enumerating all maximal
cliques," In Proceedings of 9th Scandinavian Workshop on Algorithm
Theory (SWAT 2004), Springer-Verlag, pp. 260-272, July 2004.

[8] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler, M. A.
Langston, "On finding bicliques in bipartite graphs: a novel algorithm
and its application to the integration of diverse biological data types,"
BMC Bioinformatics, vol. 15, no. 110, April 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

451 | P a g e

www.ijacsa.thesai.org

[9] V.M. Dias, C.M. de Figueiredo, J.L. Szwarcfiter, "Generating bicliques
of a graph in lexicographic order," Theoretical Computer Science, vol.
337, pp. 240-248, June 2005.

[10] K. Kloster, A. van der Poel, B. D. Sullivan, " Mining Maximal Induced
Bicliques using Odd Cycle Transversals," In Proceedings of the 2019
SIAM International Conference on Data Mining, pp. 324-333, 2019.

[11] B. D. Sullivan, A. van der Poel, T. Woodlief, "Faster biclique mining in
near-bipartite graphs," Analysis of Experimental Algorithms, Springer
International Publishing, pp 424-453 , Nov. 2019.

[12] G. Liu, K. Sim, J. Li, "Efficient mining of large maximal bicliques," In
Proceedings of the 8th international conference on Data Warehousing
and Knowledge Discovery, pp. 437-448, Sep. 2006.

[13] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone,
"Consensus algorithms for the generation of all maximal bicliques,"
Discrete Applied Mathematics, vol. 145, no. 1, pp. 11-21, Dec. 2004.

[14] E. Tomita, A. Tanaka, H. Takahashi, "The worst-case time complexity
for generating all maximal cliques and computational experiments,"
Theoretical Computer Science, vol. 363 pp. 28–42, Oct. 2006.

[15] R. Rymon, "Search through systematic set enumeration," In Proceedings
of 3rd International Conference on Principles of Knowledge
Representation and Reasoning, Cambridge, MA, pp. 539-590, Oct.
1992.

[16] C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M.
Tyers, "Biological general repository for interaction datasets
(BioGRID)," http://thebiogrid.org/download.php.

[17] A. P. Mukherjee, S. Tirthapura, "Enumerating maximal bicliques from a
large graph using mapreduce," IEEE Transactions on Services
Computing, vol. 10 , no. 5, pp. 771-784 , May 2017.

