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Abstract—In this paper, we investigate the effect of 

dimensionality reduction using Laplacian Eigenmap (LE) in the 

case of several classes of electroencephalogram (EEG) and 

electrocardiographic (ECG) signals. Classification results based 

on a boosting method for EEG signals exhibiting P300 wave and 

k-nearest neighbour for ECG signals belonging to 8 classes are 

computed and compared. For EEG signals, the difference 

between the rate of classification in the original and reduced 

space with LE is relatively small, only several percent (maximum 

10% for the 3 – dimensional space), and the original EEG signals 

belonging to a 128-dimensional space. This means that, for 

classification purposes the dimensionality of EEG signals can be 

reduced without significantly affecting the global and local 

arrangement of data. Moreover, for EEG signals that are 

collected at high frequencies, a first stage of data preprocessing 

can be done by reducing the dimensionality. For ECG signals, for 

segmentation with and without centering of the R wave, there is a 

slight decrease in the classification rate at small data sizes. It is 

found that for an initial dimensionality of 301 the size of the 

signals can be reduced to 30 without significantly affecting the 

classification rate. Below this dimension there is a decrease of the 

classification rate but still the results are very good even for very 

small dimensions, such as 3. It has been found that the 

classification results in the reduced space are remarkable close to 

those obtained for the initial spaces even for small dimensions. 
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I. INTRODUCTION 

Manifold learning is a class of methods aimed at 
evidencing low-dimensional manifolds embedded in a high-
dimensional ambient space. The concept is closely related to 
dimensionality reduction according to the assumption that for 
high dimensional spaces, the data is expected to “live” in a 
(much) lower dimensional space or, in the nonlinear case, on a 
(much) lower dimensional manifold. In other words, whether 
linear manifold learning does not result in a good low-
dimensional representation of high-dimensional data, it might 
happen that data lie on or close a nonlinear manifold so that 
more powerful non-linear dimensionality reduction by 
preserving the local structure of the input data can be applied. 
If data stay on a low-dimensional nonlinear manifold, it has 
been shown that usual methods will adjust automatically, and 
better learning rates may be obtained even if one understands 
little about the manifold form [1-4]. However, even when it is 
known that data are on a nonlinear manifold there are 
circumstances when the algorithms fail to recover the manifold 

[5]. Starting from the above considerations regarding the nature 
of signals, manifolds and supervised learning, we asked the 
question that if for a class of real data we can reduce the size of 
the signals and if a supervised classification obtains similar 
results on the real, original data space and on the reduced 
space [6]. 

In last years, manifold learning methods have grown 
explosively [17-19]. A classification from the point of view of 
preserving the geometry, the methods of manifold learning can 
be classified into two broad categories, namely:  

a) Methods with preserving the local geometry structure:   

locally linear embedding (LLE) [7], Laplacian eigenmaps (LE) 

[1], manifold charting  (MC) [8], Hessian   locally   linear   

embedding   (HLLE) [9]. 

b) Methods with preserve the global characteristics: 

isometric  mapping  (ISOMAP) [10], diffusion  map [11]  

The LE algorithm has been initially applied on real signals 
in the medical field. Without a thorough analysis, in 2007 it 
was tested by Gramfortin and Clerc [12] on MRI images and 
signed EEG. Lashgari and Demircan in 2017 [13] used the LE 
algorithm in Electromyography (EMG) signal classification 
problems. 

For medical signals such as ECG and EEG, in 2016 Erem 
et al. [14] presents the Laplacian Eigenmaps machine learning 
algorithm combined with dynamical systems ideas for analyze 
emerging dynamic behaviours. 

The method chosen in this paper for dimensionality 
reduction of electroencephalogram (EEG) and 
electrocardiographic (ECG) signals is the Laplacian Eigenmap 
[1]. The outcomes reported here extend our previous results 
published in [15 - 16], where the performances of the LE 
algorithm were tested only on ECG time signals and where a 
comparative analysis between the LE and LPP (Locality 
Preserving Projections) algorithms was done. Here we propose 
a more rigorous analysis of the results obtained with LE for 
both ECG and EEG signals. These two classes of signals were 
chosen since they are also the most used 1D signal in the field 
of bio signal processing. 

In order to evaluate the effect of dimensionality reduction 
in both cases, EEG and ECG, we compare the classification 
rates obtained with the original data with those obtained on the 
EEG and ECG segments on which various degree of 
dimensionality reduction were obtained using Laplacian 
Eigenmaps (LE). 
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Next, we will analyze the effect of reducing the 
dimensionality of the data. For this we will calculate the 
classification rate in the initial space and the classification rate 
in the reduced space. If the two classification rates are close, it 
means that close neighbours remain close, meaning the 
geometry is preserved, at least the local geometry. For this we 
will use two types of signals, namely, ECG and EEG signals. 
For each signal type we will choose a classification problem 
specific to this one with which we have worked and we have 
obtained good results. Then we will reduce the dimensionality 
of the signals and using the same classifier we will compare the 
classification rates obtained in the initial space and those 
obtained in the reduced space. In Section II the theoretical part 
of the Laplacian Eigenmaps algorithm is presented, in 
Section III we will present the segmentation method and the 
classifier chosen for EEG signals (EEG signal acquired by 
Hoffmann and collaborators in their laboratory and the 
Gradient boosting classifier) and for type signals. ECG (MIT-
BIH Arrhythmia database and segmentation with / without R 
wave centring and a KNN classifier with Euclidean distance 
and the nearest neighbour membership decision). 

II. LAPLACIAN EIGENMAPS 

The target of the LE algorithm is to find a low-dimensional 
data representation but to conserve the local geometry of the 
data. This preservation of the geometry is based on the 
distances between the pairs of near neighbours on the 
manifold.  

The LE algorithm associates the data with a graph with 
weights. These weights are calculated based on the distances 
between neighbours.  The weights thus found are used to 
minimize a cost function that finds a mapping from the initial 
data to a small dimensional space [1] [13-14]. 

The explanation of the weights calculated based on the 
neighbourhoods is that the distance in the low-dimensional 
data representation between a data point and its first nearest 
neighbour contributes more to the cost function compared to 
the distance between the data point and its second or the other 
nearest neighbour. The minimization of the cost function is 
defined as an eigenproblem [6].  

The LE algorithm [1] construct a neighbourhood graph G 
in which every data point xi is connected by an edge to its k 
nearest neighbours. In our case, for all points xi and xj in G 
that are connected by an edge within a neighbourhood Ni, a 
weight is computed using the Gaussian kernel function, 

wij = w(xi − xj) = {
exp {−

‖xi − xij‖
2

2σ2
} , 𝑖𝑓 𝑥 ∈ Ni;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

where σ  is a constant called heat kernel parameter, leading 
to a sparse matrix W  that is symmetric adjacency. It is desired 
that points xi, xj that are close to the initial spatial map are 
mapped to points yi, yj to remain close and in the small space. 
This can be achieved by minimizing the cost function 

∅(Y) =  ∑‖yi − yj‖
2

ij

wij 

where large weights wij correspond to small distances 
between the high-dimensional data points xi and xj. Hence, the 
difference between their low-dimensional representations yi 
and yj highly contributes to the cost function. As a result, the 
close points of the high-dimensional space are placed as close 
as possible in the low-dimensional space [1-2]. 

Then follows the last stage of the LE algorithm, namely, 
the calculation of eigenvalues and eigenvalues for the general 
eigenvector problem, 

Lf = λDf,               (1) 

where D = (dij) is an (n×n) diagonal matrix with elements  

dii = ∑ wij

j∈Ni

 

and matrix L is calculated based on matrices G and D, 
namely, L = D − W is the Laplacian matrix which is symmetric 
and positive semidefinite. The L matrix can be thought of as an 
operator on functions defined on the vertices of G. 

Mapping in the low-dimensional space is done by 
eliminating the eigenvector f0 corresponding to eigenvalue 0 
and using the next m eigenvectors corresponding to the next 
eigenvalue. The embedding in an m dimensional Euclidean 
space is: 

xi → (f1(i), . . . , fm(i)). 

where f0, . . . , fk−1 are the solutions of equation (1), in 
ascending order of their eigenvalues [1]. 

III. EXPERIMENTAL RESULTS 

In what follows we will present several classification 
results for EEG and ECG signals seen only as a measure of the 
conservation of the spatial geometry on manifolds and not of 
the quality of the classifier. In other words we will use the 
classification rate as a measure of preserving geometry, i.e. 
find how much the classification rate decreases when reducing 
the space dimension with the LE algorithm. 

A. EEG Signals 

Starting from the results obtained in our paper [20], in 
which we used the EEG signal to verify the preservation of the 
neighbourhoods in the reduced space with compressed sensed 
(CS), using the same test data we check if the reduced 
dimensionality data with LE keeps its neighbours.  

In paper [20] we used compressed sensed algorithm to 
reduce the EEG data size. The common point of the paper [22] 
with the present paper is that the same EEG data is used to test 
the methods (in fact the same EEG database) and the same 
classifier, namely gradient boosting. The difference between 
these papers is that the method of decreasing the 
dimensionality of the data is distinct. 

For testing the method there were used EEG signals 
acquired by Hoffmann and collaborators in their laboratory - a 
reduced database is available on the internet at [21]. The 
database includes EEG signals collected for 32 channels, which 
are grouped in 942 vectors for classification and lasting 1 sec 
each. The Gradient boosting classifier from [22] was used. It 
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should be noted that the used software was developed by the 
authors as a machine learning method and creates a powerful 
algorithm from several poor classifiers. 

In the above work, the authors described a simple and 
powerful method to detect the P300 from single EEG trials 
which have been used to build a P300 based spelling device for 
BCI. To compute from training data a function that detects 
P300s from single EEG trials, boosting has been used to 
stepwise maximize the Bernoulli log-likelihood of a logistic 
regression model.  

We mention that we kept the configuration parameters for 
gradient boosting method were kept the same as in [22]. Thus 
the maximal number of iterations is Mmax = 200, the best M 
was 30×10 cross-validation loop, and    = 0.05(same setting 

as in [22]). The results are presented in Table I and, in more 
detail, in Fig. 1 and Fig. 2.  

Fig. 1 shows three EEG signals in the 128 dimensional 
space and their mapping on the space spanned by the first 30 
eigenvectors. It happens that with the reduction of the spatial 
dimensions the signal waveforms change, but the relative 
distances are preserved as it will be illustrated in Fig. 3. 

  

  

Fig. 1. EEG Signals in a 128 and 30 Dimensional Space (First/Red and 

Second/Blue, Respectively). 

TABLE I.  MAXIMUM CLASSIFICATION RATE FOR ORIGINAL EEG 

SIGNALS AND EEG SIGNALS WITH REDUCED SPACE (WITH LAPLACIAN 

EIGENMAPS ALGORITHM) FOR GRADIENT BOOSTING FOR SEVERAL 

CONFIGURATIONS OF CHANNELS 

 

23 channels 

(CP1, CP5, P3, Pz, PO3, 

PO4, P4, C4, FC6, FC2, 

F4, AF4, Fp2, Fz, Cz, Fp1, 
AF3, F3, Fc1, Fc5, C3, 

CP6, CP2) 

8 channels 

(Fz,Cz,Pz,Oz, 

P7, P3, P4, 
P8) 

4 channels 

(Fz,Cz,Pz, 

Oz) 

Original EEGs 

(128 dimensional 
space) 

86% 85% 80% 

3 D 78% 80% 73% 

5 D 79% 81% 76% 

15 D 83% 82% 77% 

30 D 84% 83% 79% 

Table I shows a very small difference in the classification 
between original EEGs - 128 dimensional space and EEG with 
30 - dimensional space - the classification rate decreases by 
only 1 or 2 percent. The decrease of the classification rate from 
30 to 15 dimensional space is also about 1%. 

Fig. 2 show the accuracy obtained after the cross-validation 
loop for configurations with 23, 8 and 4 channels for original 
EEGs and for 3, 5 or 15-dimensional spaces obtained with LE. 
As it can be seen, the gradient boosting algorithm converges to 
an optimal solution. The difference between the rate of 
classification in the original and reduced space with LE is 
relatively small, only several percents (maximum 10% for the 
3 – dimensional space), and the original EEG signals belonging 
to a 128-dimensional space. 

 

 

 

Fig. 2. Classification Performance for different Values of M for Several 
Space Dimensions for the Reduced EEG Signals (23, 8 and 4 Channels). 
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This result confirms that the global data structure is 
preserved and that a classification can be made in the small 
space with results very close to the classification in the initial 
space. This result is kept regardless of the channel 
configuration. 

Remarkably, the classification rate decreases very little 
with the reduction of the signal space and that the trend of 
evolution according to the number of iterations is kept the 
same for all space dimension. Another interesting result is that 
the sigma parameter in the Gaussian distribution has almost no 
influence on classification rate performances as shown in 
Table II where it can be seen that the classification rate is 
slightly affected with the modification of sigma, the maximum 
difference being 3%. 

TABLE II.  INFLUENCE OF THE SIGMA PARAMETER ON THE 

CLASSIFICATION RATE FOR NEIGHBOURHOOD K = 5 AND 15- DIMENSIONAL 

SPACE 

Sigma Classification rate % 

1 81% 

4 81% 

7 81% 

10 81% 

13 83% 

16 82% 

19 80% 

22 80% 

25 82% 

28 82% 

 

 

Fig. 3. EEG Data Mapped into a 3 Respectively 2-Dimensional Space for 

Sigma = 5, Nearest Neighbours k = 7 and a Classification Rate = 78,37% (Fz 

Channel). 

To make an intuitive image on data, in Fig. 3 we present 
two examples of EEG signal data in reduced spaces with 3 and 
2 dimensions using the LE algorithm. 

B. ECG Signals 

In the case of ECG signals, the starting point are the results 
presented in [15] where the results obtained with Laplacian 
Eigenmaps (LE) and Locality Preserving Projections(LPP) are 
analyzed and compared to reduce the dimensionality of the 
signal space. In [15] it was found that for small sizes LE offers 
better results. In this paper, we analyze whether the centring of 
the R wave brings significant improvements for very low-
dimensional space (such as 2D and 3D). 

For ECG signals, we have used 44 ECG from the MIT-BIH 
Arrhythmia database. The ECG signal was acquired at a 
sampling frequency of 360Hz, with 11 bits / sample [23]. In 
addition to the ECG signals, the database also comprises 
annotation files with the index of the R wave and the class for 
each ECG beats. In the database were identified 8 major 
classes of pathologies (from which 7 classes of pathological 
beats. 

We used two different methods of segmenting ECG 
signals, namely: 

 Segmentation with re-sampling (301 samples per 
signal)  

 Segmentation with re-sampling as above and R waves 
centred. 

a) Segmentation with re-sampling: A cardiac beat 

begins in the middle of the RR interval and ends in the middle 

of the next RR interval. 

b) Segmentation with re-sampling and R waves centred: 

For the second splitting up method, to increase the 

classification rate we used the method reported in [24], namely, 

starting with ECG signals for which the position of the R-wave 

has been exactly determined. A cardiac beat begins in the 

middle of the RR interval and ends in the middle of the next 

RR interval as before and in the cardiac beats thus obtained, the 

R wave will be positioned in the middle by resampling the 

waveforms on both sides of R. In this way patterns with the 

centred cardiac R wave have been obtained. In this case, all 

cardiac patterns are of size 301 as before, the R wave being 

positioned on the 150th sample. 

The database thus constructed contains 5608 patterns, each 
class having 700 such patterns (7 pathological and 1 normal). 
The results are presented in Table III and Fig. 4. 

For classification, the KNN classifier with Euclidean 
distance and the membership decision was based on the nearest 
neighbour was used. 

Table III shows a small difference in the classification rate 
of original cardiac patterns - 301 dimensional space and 
cardiac patterns with 30 - dimensional space. The classification 
rate decreases by approximately 3 percent. The decrease of the 
classification rate from 30 to 15 dimensional space is only 1%. 
These proportions are similar no matters if the R wave is 
centred or not. 
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Fig. 4. Samples of Segmentation ECG Signals from each of the Eight 

Pattern Classes (up - Segmentation with re-Sampling; down - Segmentation 
with re-Sampling and R waves Centred). 

TABLE III.  CLASSIFICATION RATE FOR ORIGINAL ECG SIGNALS AND 

ECG SIGNALS IN REDUCED SPACES 

 
Segmentation with 

R centred 

Segmentation without 

R centred 

ECG originals 

(301 dimensional space) 
92.33% 90% 

2 - D  75,67% 72,56% 

3 - D  85,27% 83,61% 

5 - D  86,85% 85,36% 

15 - D  88,32% 86,50% 

30 - D  89,32% 86,97% 

In Fig. 5, we present classification rates vs. space 
dimension for LE (for sigma = 5 and neighbourhood k = 9) for 
ECG segments without R wave centred (blue) and 
segmentation with R wave centred (red). It can be observed 
that there is a slight decrease in the classification rate for both 
original signals (in 301 dimensional space) and in the reduced 
space. Thus, for the original signals a 90.36% classification 
rate is obtained if there is no R wave centring compared to 
92.5% for segmentation with centred R wave. In the above 
conditions, for the initial ECG signals the classification error 
for the 8 classes was found to be 2%, this small difference 
being significantly the result of the R-wave centring. 

Because LE offers very good results for the very small size 
of the space, the method can be used for data represented in 2D 

or 3D to give us a visual idea of the spatial distribution of data 
in classes. This visualization can be very useful to understand 
the spatial arrangement of some data, an arrangement that can 
sometimes be very twisted and the choice of the classifier or 
some parameters of the classifier is related to the spatial 
arrangement of the data. 

In Fig. 6(a and b) the ECG signal data in 3D (normal and 
zoom for the central zone) mapping are shown. 

 

Fig. 5. Classification Rate vs. Space Dimension for Laplacian Eigenmaps 

(Sigma = 5, Neighbourhood k = 9) for Segmentation with Centred and not-

Centred R wave (red = not-Centred and Blue = R Centred). 

 

 

Fig. 6. ECG Data Mapped into a 3-Dimensional Space with LE for Sigma = 
5, Nearest Neighbours k = 7 and a Classification Rate = 85% for 

Segmentation with R Centred (Left = 3D Plot and Right = Zoom from Central 

Region). 
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IV. DISCUSSIONS 

For EEG signals it has been found that the gradient 
boosting algorithm converges to an optimal solution. The 
difference between the rate of classification in the original and 
reduced space with LE is relatively small, only several percent 
(maximum 10% for the 3 – dimensional spaces), and the 
original EEG signals belonging to a 128-dimensional space. 
This means that, for classification purposes the dimensionality 
of EEG signals can be reduced without significantly affecting 
the global and local arrangement of data. Moreover, for EEG 
signals that are collected at high frequencies, a first stage of 
data pre-processing can be done by reducing the 
dimensionality. Another observation for EEG signals is that the 
classification rate decreases very little with the reduction of the 
signal space and that the trend of evolution according to the 
number of iterations is the same for all space dimensions. It is 
also observed that the sigma parameter in the Gaussian 
distribution has almost no influence on classification rate 
performances. 

For ECG signals, for segmentation with and without 
centring of the R wave, there is a slight decrease in the 
classification rate at small data sizes. It is found that for an 
initial dimensionality of 301 the size of the signals can be 
reduced to 30 without significantly affecting the classification 
rate. Below this dimension there is a decrease of the 
classification rate but still the results are very good even for 
very small dimensions, such as 3 (classification rate decreases 
from 92.33%% for initial ECG signals with 301 dimensionality 
to 89.32% for dimensionality 3). 

At present, we are not aware of studies similar to the 
application of the LE algorithm for both EEG and ECG time 
signals thus a comparison of our results obtained with this 
algorithm with other authors is not possible. However, below 
we present in Table IV with results reported in [25] with PCA, 
LDA, KPCA, Isomap and LE only for ECG signals. It can be 
observed in Table IV that our results with LE in spaces with 
reduced dimensionalities are similar with the observation that 
they were not obtained on the same database. 

TABLE IV.  CLASSIFICATION RATE FOR ECG SIGNALS IN DIMENSIONS 5 

AND 10 PRESENTED IN [15] AND OUR RESULTS 

 10 dimensions 5 dimensions 

PCA [25] 75,25 75,83 

LDA [25] 69,84 65,72 

KPCA [25] 85,04 84,35 

Isomap [25] 83,39 85,67 

Laplacian Eigenmaps (LE) [25] 88,04 86,69 

Our results with LE 88,24 86,85% 

V. CONCLUSIONS 

The remarkable result reported in this paper is the fact that 
dimensionality reduction for EEG and ECG signals using LE 
does not affect significantly the classification rate even for 
rather small dimensions. This proves not only that the 
neighbourhoods are preserved by LE but also that the signals 
have a significant robustness regarding classification when 

mapped on low dimensional manifolds. This allows having an 
intuitive image of the spatial distribution for the case of 2D or 
3D when it is possible to plot the data. 

In the future, we aim to use the advantages offered by the 
LE algorithm for classification problems and to find solutions 
for new data (i.e. so that we would not need a new 
recalculation whenever we have a new data). 
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