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Abstract—The aim of the work presented in this paper is to 

analyze the effectiveness of recurrent neural networks in 

imputation processes of meteorological time series, for this six 

different models based on recurrent neural networks such as 

Long Short-Term Memory (LSTM) and Gated Recurrent Unit 

(GRU) are implemented and it is experimented with hourly 

meteorological time series such as temperature, wind direction 

and wind velocity. The implemented models have architectures of 

2, 3 and 4 sequential layers and their results are compared with 

each other, as well as with other imputation techniques for 

univariate time series mainly based on moving averages. The 

results show that for temperature time series on average the 

recurrent neural network achieve better results than the 

imputation techniques based on moving averages; in the case of 

wind direction time series, on average only one model based on 

RNN manages to exceed the models based on moving averages; 

and finally, for wind velocity time series on average, no RNN-

based model manages to exceed the results achieved by moving 

averages-based models. 

Keywords—Recurrent neural network; long short-term 

memory; gated recurrent unit; univariate time series imputation 

I. INTRODUCTION 

The imputation of time series is a very important activity 
within the stage of homogenization of data, it is typical of the 
processing of meteorological time series. This will allow a 
subsequent time series to be used in forecasting processes. 

There are many reasons why NA values are found: values 
may not have been measured, values may be measured but lost 
or values may be measured but erroneously [1]. Missing values 
can cause problems, since complete data is usually needed for 
proper processing and analysis. 

It’s very known that the accuracy of the imputation 
techniques will allow better results in forecasting or prediction 
processes [2]. Thus, a good selection of the imputation 
technique presented a certain problem is very important. 

There is not a very large number of imputation techniques 
for univariate time series, among them can be mentioned those 
based on moving averages such as: Simple Moving Average 
(SMA) [3], Linear Weighted Moving Average (LWMA) [3], 
Exponential Weighted Moving Average (EWMA) [3], 
Autoregressive Integrated Moving Average (ARIMA) [4] 
among others. 

Nowadays, recurrent neural networks (RNN) such as Long 
Short-Term Memory (LSTM) [5] and Gated Recurrent Unit 
GRU) [6] have become the most commonly used in prediction 
or forecasting models today for the accuracy of the results they 
offer in different fields such as machine translation, robot 
control, speech recognition, time series prediction among 
others. However, despite the benefits described, in the state of 
the art it is very difficult to find works that use recurrent neural 
networks for univariate time series imputation, which was one 
of the main motivations for the realization of the present study. 

Thus, this paper presents the results of the implementation 
of six different models for hourly time series imputation based 
on recurrent neural networks. The analyzed time series 
correspond to temperature, wind direction and wind velocity 
and they were obtained from the Moquegua1 meteorological 
station of SENAMHI in southern Peru. The gap-sizes analyzed 
correspond to short-gaps (1 to 2 NAs), medium-gaps (3 to 10 
NAs) and large-gaps (11 to 30 NAs) [7]. Fig. 1 shows a 
graphical view of the 3-time series for 24 hours. 

 

Fig. 1. Hourly Temperature, wind Direction and wind Velocity. 

The content of the paper has been organized as follows: In 
the second section the related work is briefly described as 
proposed in this study. In the third section, the theoretical 
concepts and bases that will allow a better understanding of the 
content of the paper are described. In the fourth section, the 
models based on recurrent neural networks implemented in this 

                                                           
1 SENAMHI Lat. 17°10’9” Lon. 70°55’54” Alt. 1450 masl. 

https://www.senamhi.gob.pe/?&p=estaciones 

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

TEMP

DIR

VEL



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

483 | P a g e  

www.ijacsa.thesai.org 

study are described and detailed. In the fifth section, the results 
achieved by the six different models in the time series are 
explained in detail. In the sixth section, the results achieved by 
the proposed models are compared and discussed with other 
models and techniques of the state of the art. In the seventh 
section, the arrived conclusions are explained according to 
study results. Finally, it describes the future work that can be 
done to improve the achieved results. 

II. RELATED WORK 

This section shows a brief review of the works related to 
this study which are described below: 

The first methods of imputation consisted of the use of 
parameters such as mean, median or mode [8], due to its 
simplicity there was a risk of inserting bias into the time series. 

Another technique used later than the first was to use the 
last data observed before the missing one. This was called Last 
Observation Carried Forward (LOCF). 

We also have the Hot-Deck [9]  technique that consisted of 
randomly using existing data to replace the Not Available (NA) 
value. 

Another group of techniques widely used are those based 
on moving averages including Simple Moving Average (SMA) 
[3], Linear Weighted Moving Average (LWMA) [3], 
Exponential Weighted Moving Average (EWMA) [3] which 
basically consisted of using the average of the data around the 
missing data assigning a weight according to its proximity to 
the NA value. This set of techniques are implemented in the 
present study to compare the results achieved by the imputation 
models based on recurrent neural networks. 

An improved technique based on moving averages is what 
is known as Autoregressive Integrated Moving Averages 
(ARIMA) [4], which is a statistical technique that works with 
variations and regressions in a series of time to find patterns 
that will later serve to make predictions. This work also 
compares the results of ARIMA with those achieved by the 
imputation models based on recurrence neural networks. 

Another technique used for imputation of time series is 
known as Local Average of Nearest Neighbors (LANN) [2], 
this technique is quite simple and consists only of using the 
prior and next values around an NA value, producing very 
good results at the level or better than those based on moving 
averages. 

Two new imputation techniques inspired by Case Based 
Reasoning [10] are CBRi [11] and CBRm [8] which, like 
LANN, use only the prior and next values of an NA value, 
completing the missing values from the average of the 
historical data similar to the prior and next. The difference 
between the two is that CBRi is designed for short-gaps and 
CBRm for medium-gaps. 

Another new technique is known as Average of Historical 
Vectors (AHV) [12] that uses only values similar to the prior 
value of the NA value to calculate the missing data. This 
technique is complemented by an adjustment algorithm (iNN) 
[12] and a smoothing algorithm (LANNf) [12]. 

III. BACKGROUND 

A. Time Series Imputation 

The time series imputation refers to the process of 
calculating and completing the missing data or Not Available 
(NA) values in a series of time. For this it is very important to 
determine how the NA values originated, so they can be 
Missing Completely at Random (MCAR), Missing at Random 
(MAR) or Not Missing at Random (NMAR) [1]. It is also very 
important to determine the characteristics of the time series, so 
it can be very useful some characteristics such as: trend, 
seasonal or non-seasonal cycles, pulses, etc. 

B. Recurrent Neural Networks (RNN) 

An RNN is a type of neural network [13] that allows 
modeling different kind of problems such as time series for 
prediction. 

The architecture of this neural network is very similar to 
the architecture of a Multilayer Perceptron (MLP) with the 
difference that an MLP allows connections between hidden 
units associated with a time delay. These connections allow the 
RNN to retain and remember information from the past [14], in 
this way it can find temporary correlations between facts that 
can be very separated in time. Fig. 2 shows the unfolded 
structure of an RNN. 

Training an RNN is very difficult to implement [13] due to 
the vanishing and exploding gradients, This led to the 
implementation of a special type of RNN that is known as 
LSTM (Long Short-Term Memory) and that solves the above 
problems. 

C. Long Short-Term Memory (LSTM) 

As mentioned above, the LSTM networks were created to 
solve the problem of the vanishing and exploding gradients of 
the first recurrent neural networks. The LSTM networks work 
with special hidden units, whose objective is to remember 
input data for a long time [3], so LSTM networks are better 
than conventional RNN [5]. LSTM networks have several 
layers for each time step. Fig. 3 shows the LSTM architecture. 

 

Fig. 2. Architecture of Recurrent Neural Network. 

 

Fig. 3. Architecture of LSTM Network. 
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D. Gated Recurrent Unit (GRU) 

GRUs are an activation mechanism in RNNs and were 
introduced by K. Cho et al. [6] in 2014. GRUs are a variation 
of LSTM networks, since both have a very similar architecture. 
However, unlike LSTM networks, GRUs have fewer 
parameters, since they lack an output gate. In many studies, 
LSTM networks have proven to be stronger than GRUs, since 
they can easily perform unlimited counting, while GRUs do 
not, so GRUs do not learn certain languages that LSTM can do 
[15]. Fig. 4 shows a very common architecture of GRU. 

 

Fig. 4. Architecture of GRU. 

According to Fig. 3 the following equations can be 
obtained and some parameters are described: 

𝑍𝑡=𝜎𝑔(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧)            (1) 

𝑟𝑡=𝜎𝑔(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟)            (2) 

ℎ𝑡=(1 − 𝑧𝑡) o ℎ𝑡−1 + 𝑧𝑡  o σℎ(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡  o ℎ𝑡−1) + 𝑏ℎ   (3) 

Where: 

xt : input vector 

ht : output vector 

zt : updated gate vector 

rt : reset gate vector 

W,U and b : matrix parameters and vector 

σ𝑔 : sigmoid function 

σℎ : hyperbolic tangent 

IV. MODELS FOR EXPERIMENTATION 

In the present study, six models based on recurrent neural 
networks were implemented, which are described below: 

As can be seen in Table I of the six models implemented, 
three correspond to LSTM and three to GRU, the process 
followed to implement each of them is described below. 

A. Time Series Selection 

The hourly time series chosen for experimentation 
corresponds to temperatures, wind direction and wind velocity 
obtained from the SENAMHI repository. The data used for the 
training stage corresponds to 6000 hours from 2019-05-20 
00:00:00 to 2020-01-24 23:00:00. The same period was used 
for all three-time series. 

Likewise, the data between 2020-01-25 00:00:00 and 2020-
01-31 23:00:00 was chosen as testing data (168 hours). 

TABLE. I. RNN MODELS 

Model Name RNN Number of layers 

1 LSTM LSTM LSTM 2 

2 LSTM LSTM LSTM LSTM 3 

3 LSTM LSTM LSTM LSTM LSTM 4 

4 GRU GRU GRU 2 

5 GRU GRU GRU GRU 3 

6 GRU GRU GRU GRU GRU 4 

B. Inserting NA Values 

NA Values were inserted in the three testing time series 
according to what is shown in Table II. 

C. Implementation of Models 

Once the time series and training data were selected, the 
first model was implemented, as shown in Fig. 5. 

This model was trained with the data of the three-time 
series predicting 168 values for each time series. 

Next, the remaining five models were implemented, 
predicting 168 values for each time series in every model. 
Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10 show the architecture of 
these models. 

D. Evaluating Predictions 

The results of six models are evaluated through Root Mean 
Squared Error (RMSE) according equation (4): 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖−𝑅𝑖)2𝑛−1

𝑖=0

𝑛
             (4) 

The results achieved are described in the next section. 

TABLE. II. NUMBER OF NA VALUES 

 Temperature Wind Direction Wind Velocity 

Short-Gaps 76 76 76 

Medium-Gaps 124 124 124 

Large-Gaps 155 155 155 

 

Fig. 5. Architecture for First LSTM Model in Python. 

 

Fig. 6. Architecture for Second LSTM Model in Python. 
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Fig. 7. Architecture for Third LSTM Model in Python. 

 

Fig. 8. Architecture for First GRU Model in Python. 

 

Fig. 9. Architecture for Second GRU Model in Python. 

 

Fig. 10. Architecture for Third GRU Model in Python. 

V. RESULTS 

This section shows the results achieved. Table III shows the 
corresponding RMSE values for imputation in hourly 
temperature time series. 

According to what is shown in Table III and in Fig. 11 for 
the imputation process in the temperature time series on an 
average, the best model is LSTM LSTM LSTM (RMSE 
0.5565), this model was also the one that produced the best 
results for all the gap-sizes. 

Likewise, it can be seen that the GRU models were in 
second, third and fourth place, with the best GRU model being 
the GRU GRU (RMSE 0.5898) on average. So for this type of 
time series, the most recommended models would be the 
LSTM LSTM LSTM and the GRU GRU. 

According to what is shown in Table IV and in Fig. 12 for 
the imputation process of wind direction time series, on 

average the best model was LSTM LSTM LSTM LSTM and 
this model was the best for each gap-size. 

Likewise, it can be seen that similar to the temperature time 
series, the 4-layer LSTM model is the only one that managed 
to outperform the three GRU models and it is shown that the 
GRU models present more homogeneous results, while the 
LSTM models present results more heterogeneous that is, there 
is a greater dispersion among them. 

According to Table V and Fig. 13 on average, the best 
model for imputation of the wind velocity time series was 
LSTM LSTM LSTM LSTM as well as for each gap-size. 

TABLE. III. TEMPERATURE TIME SERIES RESULTS 

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg. 

LSTM LSTM 0.7080 0.6934 0.6905 0.6973 

LSTM LSTM LSTM 0.5696 0.5592 0.5407 0.5565 

LSTM LSTM LSTM 
LSTM 

0.5830 0.6191 0.6177 0.6066 

GRU GRU 0.5848 0.5906 0.5942 0.5898 

GRU GRU GRU 0.6095 0.5920 0.5781 0.5932 

GRU GRU GRU GRU 0.5894 0.5943 0.5961 0.5933 

 

Fig. 11. Top 3 RNN Models for Temperature Time Series Imputation. 

TABLE. IV. WIND DIRECTION TIME SERIES RESULTS 

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg 

LSTM LSTM 191.1086 190.4177 189.3457 190.2906 

LSTM LSTM LSTM 186.5753 186.6744 185.5497 186.2664 

LSTM LSTM LSTM 

LSTM 
150.4429 150.7271 151.1934 150.7878 

GRU GRU 161.7409 162.4947 161.2719 161.8358 

GRU GRU GRU 163.6514 164.7290 164.7170 164.3658 

GRU GRU GRU GRU 164.0155 164.2335 164.3080 164.1856 

0.5696

0.5592

0.5407

0.5565

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Short-Gaps Medium-Gaps Large-Gaps Avg

R
M

SE

LSTM LSTM LSTM GRU GRU GRU GRU GRU



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

486 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 12. Top 3 RNN Models for Wind Direction Time Series Imputation. 

TABLE. V. WIND VELOCITY TIME SERIES RESULTS 

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg 

LSTM LSTM 4.2175 4.2011 4.2451 4.2212 

LSTM LSTM LSTM 2.7628 2.8512 2.8832 2.8324 

LSTM LSTM LSTM 

LSTM 
2.3773 2.5066 2.5097 2.4645 

GRU GRU 3.5715 3.6008 3.6502 3.6075 

GRU GRU GRU 3.6009 3.6276 3.6752 3.6345 

GRU GRU GRU GRU 3.5501 3.5335 3.5599 3.5478 

 

Fig. 13. Top 3 RNN Models for Wind Velocity Time Series Imputation 

Unlike previous time series, for this type of time series two 
LSTM models present the best results: LSTM LSTM LSTM 
LSTM (RMSE 2.4645) and LSTM LSTM LSTM (RMSE 
2.8324), while GRU models occupy the third, fourth and fifth 
place. Likewise, it is important to highlight that, like the 
previous time series, GRU models present more homogeneous 
results while LSTM models present more heterogeneous 
results. 

VI. DISCUSSION 

Next, the results achieved for the implemented models are 
compared with other univariate time series imputation 
techniques. 

According to what is shown in Table VI, on average, the 
best technique for univariate time series imputation of 
temperatures is the recurrent neural network of 3 layers LSTM 
LSTM LSTM. However, performing an individual analysis for 
each gap-size, it is noted that this model is the best for 
medium-gaps (RMSE 0.5592) and large-gaps (RMSE 0.5407), 
but for short-gaps this is surpassed by the ARIMA-Kalman 
model (RMSE 0.4931). 

According to Table VII, it is appreciated that on average 
the best technique for univariate time series imputation of wind 
directions is the recurrent neural network of 4 layers LSTM 
LSTM LSTM LSTM surpassing the different techniques based 
on moving averages in each gap-size. 

According to Table VIII, it can be seen that on average the 
best imputation technique for wind velocity time series is the 
recurrent neural network of 4 layers LSTM LSTM LSTM 
LSTM. However, it is appreciated that this only exceeded the 
other techniques in large-gaps (RMSE 2.5097) while in Short-
Gaps the best technique is Linear Weighted Moving Average 
(RMSE 1.1995) and for medium-gaps the best technique is 
Local Average of Nearest Neighbors (RMSE 1.6532). 

TABLE. VI. TEMPERATURE IMPUTATION WITH ANOTHER TECHNIQUES  

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg 

LSTM LSTM LSTM 0.5696 0.5592 0.5407 0.5565 

GRU GRU 0.5848 0.5906 0.5942 0.5898 

LANN 0.6343 2.0919 4.5210 2.4157 

SMA 1.1208 1.8176 4.1515 2.3633 

LWMA 0.8859 1.6868 3.9481 2.1736 

EWMA 0.7262 1.6778 3.9348 2.1129 

ARIMA-KALMAN 0.4931 1.13418 10.0067 3.8779 

TABLE. VII. WIND DIRECTION IMPUTATION WITH ANOTHER TECHNIQUES 

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg 

LSTM LSTM LSTM 

LSTM 
150.4429 150.7271 151.1934 150.7878 

GRU GRU 161.7409 162.4947 161.2719 161.8358 

LANN 161.7666 169.3388 209.8176 180.3076 

SMA 150.8792 153.2905 180.5009 161.5568 

LWMA 150.4605 154.1056 184.2365 162.9342 

EWMA 153.0640 161.0724 196.3272 170.1545 

ARIMA-KALMAN 192.7941 233.8457 236.6198 221.0865 
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TABLE. VIII. WIND VELOCITY IMPUTATION WITH ANOTHER TECHNIQUES 

Technique 

RMSE 

Short-

Gaps 

Medium-

Gaps 

Large-

Gaps 
Avg 

LSTM LSTM LSTM 

LSTM 
2.3773 2.5066 2.5097 2.4645 

GRU GRU GRU GRU 3.5501 3.5335 3.5599 3.5478 

LANN 1.2291 1.6532 4.0342 2.3055 

SMA 1.4195 1.7944 3.6377 2.2838 

LWMA 1.1995 1.6765 3.5758 2.1506 

EWMA 1.2691 1.6852 3.5984 2.1842 

ARIMA-KALMAN 1.2518 2.3963 3.3447 2.3309 

As noted in the previous tables, the small difference 
between the RMSEs obtained by the models based on recurrent 
neural networks for short-gaps, medium-gaps and large-gaps 
should be highlighted. That is, the RMSE varies very little and 
it costs almost the same to impute 1 or 2 values than 30. 

Likewise, it is also important to highlight that for short-
gaps the imputation techniques of the state of the art offer very 
good results, while their performance is diminished in medium-
gaps and much more in large-gaps, where RNN models offer 
the best results. 

VII. CONCLUSIONS 

The effectiveness of six models based on recurrent neural 
networks in nine case studies was analyzed, and in seven of 
them at least one model based on recurrent neural networks 
outperformed other imputation techniques of the state of the 
art, so we conclude that models based on recurrent neural 
networks are highly recommended to be implemented for 
univariate time series imputation especially for medium and 
large gap-sizes. 

The results achieved show that not all models achieve 
optimal results, so it is important to implement not only one 
model but several in such a way that the most appropriate 
model can be chosen for the problem to solve. 

In the three time series analyzed, the LSTM-based models 
show greater heterogeneity in their results compared to GRU-
based models whose results are more homogeneous. 

VIII. FUTURE WORK 

In the present work it was experimented with models based 
on recurrent neural networks, differentiating them only by the 
number of layers and the number of neurons in each layer, for 
future works it would be important to be able to implement 
hybrid models that contain both LSTM and GRU layers, since 

it has been seen in different works that hybrid models for 
certain time series produce better results than non-hybrid 
models. Likewise, it can be experimented with other 
parameters such as the number of epochs, the batch-size, the 
training data size, the optimizer, etc. 

Likewise, the results achieved by the RNN-based models 
for the wind direction and wind velocity time series, despite 
exceeding the state-of-the-art techniques, are not optimal (they 
have a high RMSE) so they could be improved by increasing 
the size of the training data or adding more variables to the 
model. 
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