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Abstract—Abnormal or excessive excess of intraperitoneal fat 

at different anatomical sites (heart, kidneys, liver, etc.) alters the 

metabolic profile by generating diseases causing cardiovascular 

complications. These include hepatic steatosis, which requires 

being increased surveillance before its severe progression to 

cirrhosis and its complications. Our objective in this study (in-

vivo) was to propose a new approach to characterize and quanti-

fy hepatic fat. Then, differentiated patients with metabolic dis-

eases, obesity, Type 2 diabetes (T2D), metabolic syndrome and 

healthy subjects. This distinction was not only according to tradi-

tional measurement tools such as body mass index (BMI) and 

waist circumference, but also according to the amount of fat from 

magnetic resonance imaging (MRI) DIXON image and T1-

mapping at 1.5 Tesla (T). The evaluation results show that our 

proposed approach is reproducible, fast and robust. The distri-

bution of the amount of hepatic fat in a cohort of data composed 

of four groups shows that hepatic fat is able to differentiate the 

metabolic population on the study chest. Relationship study of 

hepatic fat and cardiovascular parameters shows that hepatic fat 

is able to differentiate the metabolic population on the study 

chest. The relationship study of hepatic fat and cardiovascular 

parameters shows that hepatic fat has a negative influence on the 

heart if the amount it increases. 
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I. INTRODUCTION 

Nonalcoholic fatty liver disease (NAFLD) is one of the 
most common cause of chronic liver disease, its prevalence is 
rising worldwide and is estimated to affect 30% of adults and 
10% of children in the United States [1]-[2]. Its rates are rising 
internationally alongside the growing epidemics of diabetes, 
obesity, and metabolic syndrome [3]–[4]. 

NAFLD is encompasses a range of liver histology severity 
in the absence of chronic alcohol use [5]-[6], it is commonly 
classified into two phenotypes, non-alcoholic fatty liver 
(NAFL) and non-alcoholic steatohepatitis (NASH). The most 
form is simple steatosis in which triglyceride accumulates 
within hepatocytes. A more advanced form of NAFLD, nonal-
coholic steatohepatitis, includes inflammation and liver cell 
injury. The development of NASH is associated with an in-

creased risk for morbidity and mortality through hepatic (fibro-
sis, cirrhosis, hepatocellular carcinoma) and non-hepatic (car-
diovascular disease and cancer) complications [7]–[8]. 

The underlying cause of NAFLD, insulin resistance, leads 
to intracellular accumulation of triglycerides in hepatocytes 
(steatosis) [9]-[10]. Currently, therapeutic trials in NASH re-
quire medical imaging techniques that have greatly contributed 
to the detection of liver steatosis such as biopsy, ultrasound, 
computed tomography (CT) and recently Magnetic Resonance 
Imaging (MRI). The gold standard for establishing diagnosis as 
well as severity of NAFLD is liver biopsy, but it is invasive, 
poor patient acceptance, requires of a hospitalization, not ex-
empt of complications and suffers from tremendous sampling 
variability [11]. 

Diana Feier, Ahmed Ba-Ssalmah and al. estimated that only 
a tiny fraction of the liver (roughly 1/50.000), leading to sam-
pling errors [12]. They also showed that liver biopsy samples 
contain at least 11 portable triads and measure at least 2.0 cm 
to reduce sampling variability. Other studies have also shown 
similar sampling variability [13]-[14]. 

Therefore, in clinical practice, ultrasound is often used to 
assess NAFLD. However, the lack of sharpness due to noise 
limited its role in the classification of the degree of steatosis 
[15]-[16]. 

Parficio and al. [5] classified ultrasound images were grad-
ed independently for presence and the severity of steatosis by 
two radiologists. Steatosis was defined by an appearance of 
hepatic parenchymal in which the liver was considered be 
normal if there was normal liver echo texture with clear visual-
ization of the internal vascular system. The severity of steatosis 
was classified as mild, moderate or severe according to previ-
ously defined criteria. In fact, mild steatosis was recognized by 
a slight increase in the echogenicity of the liver parenchymal or 
no posterior beam attenuation. 

Severe steatosis was recognized by coarsely increased he-
patic parenchymal echotexture and subsequently marked beam 
attenuation. Moderate steatosis was recognized by ultrasound 
characteristics of liver ultrasound texture, and beam attenuation 
between light and severe parameters. 
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CT is an x-ray imaging technique, Given its imprecision in 
detecting mild hepatic steatosis and potential radiation risk, 
computed tomography is not suitable for the evaluation of 
hepatic steatosis in the general population, but can be effective 
in specific clinical situations, such as assessing donor candi-
dates for liver transplantation [17]. 

Disease assessment within clinical practice for NAFLD is 
currently done with MRI. In contrast to other imaging tech-
niques such as ultrasound and computed tomography, which 
use proxies to assess hepatic steatosis (i.e., attenuation and 
echogenicity), Seung Soo Lee and Seong Ho Park in [17] and 
Parambir S.Dulai, Claude B.Sirlin, Rohit Loomba in [18] 
shows that magnetic resonance spectroscopy (MRS) and mag-
netic resonance imaging are the most accurate and reliable 
methods of quantifying liver fat. In our article, we are focused 
on magnetic resonance imaging. 

Several MRI methods have been introduced to quantify he-
patic fat, including chemical-shift imaging (CSI) to differenti-
ate protons in fat from those in water, that is, the difference in 
MRI frequency between protons in fat and water [19]. Other 
methods used fat saturation, and fat-selective excitation ap-
proaches [20]-[21]. The CSI approach is most widely used 
because of its easy applicability and higher accuracy. Indeed, 
CSI techniques separate magnetic resonance (MR) signals into 
water (W) and fat (F) components based on the chemical shift 
between fat and water. 

The diagnosis of fatty liver often involves the use of con-
ventional measurement tools, But these methods remain inap-
propriate, therefore, other criteria must be taken into diagnostic 
hepatic steatosis, MRI, non- invasive examination, provide 
multi parametric information, a high-resolution image with an 
absence of completely harmless radiation. 

In this paper we will propose a new approach for non-
invasive quantification of intraperitoneal fat. Therefore, we 
wish to evaluate our study on cohort of data composed of four 
groups in order to prove that hepatic fat is able to differentiate 
patients with metabolic diseases' obesity, T2D, metabolic syn-
drome and healthy subjects. This distinction is according to the 
amount of fat from segmentation of MRI DIXON and T1-
mapping images at 1.5T in the first heading. In the second 
heading, this study investigates the relationship between the 
correlation of hepatic fat and cardiovascular disorders. Finally, 
we will predict cardiovascular complications for these patients. 

II. PROPOSED SOLUTION 

To quantify the hepatic fat, we treated the water cards ob-
tained from a specific DIXON sequence; Indeed Dixon image-
ry is based on the chemical displacement between water and fat 
protons, in order to separate their signal. In-Phase (IP): the total 
signal corresponds to the water signal to which is added that of 
the fat like Eq. (1). Out-of-Phase (OP): in Eq. (2) the total 
signal corresponds to the water signal from which the fat signal 
subtracts. It consists of making two spin echo acquisitions: the 
first for which the water and fat protons are in phase and the 
second signal for which the water and fat protons are out of 
phase. In Eq. (3) by adding the two signals, only that of water 
is displayed; by subtraction, we erase the water signal in favor 
of that of fat as presented in Eq. (4), results are shown in Fig. 1. 

  
Fig. 1. Dixon Imaging. 

Dixon imaging is based on the chemical displacement be-
tween water and fat protons, in order to separate their signal. 

IP = W + F              (1) 

IP = W – F              (2) 

½[IP + OP] = ½ [(W + F) + (W - F)] = ½ [2W] = W           (3) 

Water only image 

0½[IP - OP] = ½ [(W + F) - (W - F)] = ½ [2F] = F           (4) 

Fat only image 

III. SOLUTION 

MRI acquisitions including DIXON imaging were per-
formed at 1.5T in 117 individuals (60 women, 50 men, age 
47.5 ds): 15 obese patients, 25 metabolic syndrome patients, 40 
type 2 diabetes patients and 19 healthy controls. 40 axial slices 
with 3 mm thickness, and in-plane resolution of 1.18 mm were 
acquired for each subject using a two-point Dixon sequence. 

The segmentation process developed for liver fat quantifi-
cation consists of three steps. 

A first preprocessing step is needed to improve the quality 
of the MRI-DIXON-water map image. The second step is to 
segment the liver by combining different image processing 
methods (active contour Federal Trade Commission (FTC) 
with a double cycle of smoothing and regulation, a K-means 
machine learning method and mathematical morphology). The 
last step is to classify the liver into three classes. A class corre-
sponds to liver fat, a class contains the vessels are presented in 
Fig. 2. 

A. Pretreatment 

To get better liver segmentation, the pretreatment step is 
essential before the segmentation process. In this step, we 
proposed the use of a morphological filter called “top hat”. The 
principle consists in calculating the opening of the image by a 
very specific structuring element then to subtract the result 
obtained from the original image. The morphological operation 
‘opening’ consists in eroding the image followed by dilation by 
the same structuring element. Using the top hat in this study 
makes it possible to fill in the holes and correct the intensity 
inconsistency in the T1 card. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 3, 2020 

494 | P a g e  
www.ijacsa.thesai.org 

 
 

 

Fig. 2. Diagram of the Proposed Approach to Liver Segmentation: A: Fat 
Map; B: Pretreatment; C: T1-Mapping;D: Classification of the Water Map 

Into 2 Classes; E: Background of the Image; Liver Class; J: Distribution of the 

Image into Objects; H: the Largest Object Area; Mathematical Morphology 
Applied on (H); G: Active Contour on the Water Map; L: Superposition of the 

Liver Obtained on the T1-Mapping; M: Vessel; N: Liver Fat; O: Partial 

Volume. 

Thus, we normalize and enhance the contrast of the image 
by adjusting the initial histogram values. This increases the 
contrast of the fat in relation to the background of the image 
and eliminates the shadow effects linked to the acquisition 
artifacts and to always have the same threshold. 

B. Normalization 

Normalization of an image consists in dividing each value 
of the histogram by the total number of pixels of the image to 
obtain a normalized histogram. This histogram corresponds to 
an empirical probability distribution (all values are between 0 
and 255). In Eq. (5) the formula used is as follows: 

I(x,y)=255*I(x,y)/max(I(x,y))            (5) 

With I the original image, x and y the coordinates of a pix-
el. 

C. Adjustment 

Is to increase the contrast of the image, we were able to bet-
ter distinguish fatty liver (in cases). The MATLAB function 
used is “Imadjust” with the default parameters. Thanks to this 
function, the image contrast is enhanced and the liver is more 
visible. 

D. Liver Segmentation 

This step consists in segmenting the liver from a water card 
obtained by the DIXON method by K-means (three classes) 
and choosing the liver class. To do this we distribute the image 
into objects. We get a card in which each object is labeled. The 
MATLAB function used is “bwlabel” with the default parame-
ters (4 connections). Then the object with the largest area (the 
first part of the fat) as shown in Fig. 2 will be removed from 
the image. It is this object which corresponds to the mark of the 
liver. 

Then, we used the mask of this object as an initialization of 
FTC and finally superimpose the mask obtained on the T1-
mapping card to have only the liver and quantify the hepatic 
fat. The principle of an active contour consists in positioning 
the image, more precisely in the vicinity of the shape to be 
detected, an initial contour which will undergo a deformation 
under the effect of several forces such as: An internal energy E 
internal allowing to regularize the contour a potential energy E 
image linked to the image; An external energy E external 
linked to the particular constraints that can be added. These 
energies will allow the active contour to evolve to explore the 
minimum energy position which will thus be an arrangement 
between the various constraints of the problem. 

E. Quantification of Hepatic Fat 

For the fat quantization part, we classify the pixels of the 
time by the k-means algorithm into two classes. 

K-means is a data partitioning algorithm (the pixels of the 
image in our case). The principle is as follows: given a set of 
pixels in the image (x1, x2,…, xn), we seek to partition the n 

pixels into sets S = {S1, S2,…, Sk} (k ≤ n) by minimizing the 

distance between the pixels inside each partition. In this case, 
the number of partitions is equal to two. The formula used to 
quantify hepatic fat from T1-mapping and DIXON- MRI im-
ages is the average of all the pixels of the fat class. 

For the evaluation of my approach, metrics will be calcu-
lated to demonstrate the strengths of my application, such as 
inter / intra-operator reproducibility, the Dice coefficient, the 
coefficient of variation (CV) and the segmentation speed. 

IV. RESULT AND DISCUSSION 

Our objective in this study (in-vivo) is to propose a new 
approach to characterize and quantify hepatic fat and differen-
tiate patients with metabolic diseases' obesity, T2D, metabolic 
syndrome and healthy subjects not only according to conven-
tional measurement tools but also according to the amount of 
fat from the segmentation of DIXON MRI images and T1-
mapping at 1.5 T. This first step should then make it possible 
to predict and assess the cardiovascular risks in these patients. 

As a result, in Fig. 3, we evaluate the distribution of the 
quantity of hepatic fat on a cohort of data made up of four 
groups metabolic syndromes (n = 31), obese (n = 10), T2D (n = 
48) and healthy subjects (n = 19). 

P: value for quantifying the statistical significance of a re-
sult under a hypothesis 
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Fig. 3. Distribution of Hepatic Fat. 

In the study of liver fat distribution in a population of four 
patient groups, significant differences were reported. The big-
gest difference was between obese and type 2 diabetics. 

In Fig. 3, we also observe significant differences between 
metabolic and obese syndromes and between obese and con-
trol. 

A. Assessment Metric 

To assess the robustness and reproducibility of our segmen-
tation approach, we calculated the intra-operator reproducibil-
ity by repeating the segmentation process on all groups of 
patients; it is defined as the absolute difference between two 
measurements divided by the average of two measurements. 
For inter-operator reproducibility, an operator who had not 
previously read patient data segmented the fat maps of the two 
groups of patients. 

1) Inter-operator reproducibility: For patients with 

metabolic syndrome, the correlation between the fat 

measurements of the two operators is very good as presented 

in Table I. the Pearson correlation coefficient is 0.99. The 

inter-operator reproducibility is 4.9 ± 0.29%. For the obese, 

the correlation between the fat measurements of the two 

operators is also very good. We obtained a Pearson correlation 

coefficient of 0.98. The inter-operator reproducibility is 3.9 ± 

0.20%. For type 2 diabetics, the correlation between the two 

operators' fat measurements is good. We obtained a Pearson 

correlation coefficient of 0.97. The inter-operator 

reproducibility is 8.3 ± 2.22%. Concerning healthy subjects, 

the correlation between the fat measurements of the two 

operators is good. We obtained a Pearson correlation 

coefficient of 0.963. The inter-operator reproducibility is 5.7 ± 

0.16. 

2) Intra-operator reproducibility: For metabolic 

syndromes, we obtained a Pearson correlation coefficient of 

0.998 as shown in Table II. between the two measures. The 

intra-operator reproducibility is 3.5 ± 1.08%. Concerning 

T2D, we obtained a Pearson correlation coefficient of 0.973. 

 

3) The intra-operator reproducibility is 1.1 ± 0.04%. For 

the obese, the correlation between the two measures is very 

good. The Pearson correlation coefficient is 0.999. The intra-

operator reproducibility is 1.5 ± 0.11%. As for healthy 

subjects, we obtained an excellent correlation. The Pearson 

correlation coefficient is 0.999. The intra-operator 

reproducibility is 1.6 ± 0.075%. 

4) Coefficient of variation: we calculated the coefficient 

of variation for each group, I always obtained values lower 

than 14% as presented in Table III. 

5) Dice index: we also calculated the Dice coefficient as 

shown in this Table IV. 

6) Speed of the segmentation: As for the speed of 

segmentation, our approach is very fast in the segmentation of 

the liver and the quantification of hepatic fat, it allows the 

detection of hepatic steatosis in a time less than 5 s / section as 

presented in Table V. 

TABLE. I. INTER-OPERATOR REPRODUCIBILITY: CORRELATION BETWEEN 

THE FAT MEASUREMENTS OF THE TWO OPERATORS ON PATIENTS WITH 

METABOLIC SYNDROME AND OBESE PATIENTS STYLES 

Groups Pearson Correlation Coefficient 

Metabolic syndromes 0.994 

Obese 0.986 

Type 2 diabetes 0.974 

Control 0.963 

TABLE. II. INTRA-OPERATOR REPRODUCIBILITY: CORRELATION 

BETWEEN THE FAT MEASUREMENTS OF THE TWO OPERATORS ON PATIENTS 

WITH METABOLIC SYNDROME AND OBESE PATIENTS 

Groups  Pearson Correlation Coefficient 

Metabolic syndromes  0.998 

Obese 0.999 

Type 2 diabetes 0.973 

Control 0.999 

TABLE. III. COEFFICIENT OF VARIATION  FOR PATIENTS WITH METABOLIC 

SYNDROME, OBESE, T2 AND HEALTHY SUBJECTS 

Groups CV (%) 

Metabolic syndromes  13.388 

Obese 7.512 

Type 2 diabetes 13.006 

Control 7.905 

TABLE. IV. DICE INDEX % 

Groups Liver Fat% 

Metabolic syndromes  0.988 

Obese 0.974 

Type 2 diabetes 0.969 

Control 0.985 
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TABLE. V. SPEED OF SEGMENTATION OF OUR APPROACH: THE METHOD IS 

VERY FAST 

Segmentation speed (s/slice)  

Groups 
Liver from 

Dixon 

Liver from T1-

mapping (s) 

Liver 
Quantification 

(s) 

Total time 

Metabolic 
syndrome 

2.45 1,87 0.780 5.10 

Obese 2.53 1,66 0.877 5.06 

Type 2 

diabetes 
2.35 1,87 0.890 5.11 

Controls 2.7 1,98 1.020 5.70 

B. Statistical Study 

In this part, risk factors will be correlated with liver fat to 
study the metabolic links that may exist. 

1) Relationship between liver fat and age: In the statistical 

study, we observed a significant relationship between the 

amount of fat and age. The amount of fat increases 

significantly with age for patients with metabolic syndrome 

(P=0.04) and obese patients (P=0.045) and also type 2 

diabetics (P=0.033). 

As for the holy subject this quantity has no significant con-
nection with age (P=0.54) as shown in Fig. 4. 

2) Relationship between liver fat and BMI: We also 

studied the correlation between the amount of fat and the body 

mass index. Indeed, the amount of fat tends to increase with 

BMI but not significantly for all groups, namely patients with 

metabolic syndrome (P = 0.28), obese (P = 0.55), type 2 

diabetics (P = 0.08) and healthy subjects (P = 0.89) as shown 

in Fig. 5. 

3) Relationship between liver fat and BSP: The amount of 

fat increases significantly with systolic brachial pressure for 

patients with metabolic syndrome (P = 0.049). However, it 

did not significantly for type 2 diabetics (P = 0.9) as shown in 

Fig. 6. 

 

Fig. 4. Change in the Amount of Liver Fat as a Function of Age. 

 

Fig. 5. Liver Fat and BMI. 

 

Fig. 6. Liver Fat and Brachial Systolic Pressure. 

4) Relationship between liver fat and BDP: The amount 

of fat increases significantly with systolic brachial pressure for 

patients with metabolic syndrome (P = 0.01). However, it 

significantly reduced for type 2 diabetics (P = 0.04) as you 

can see in Fig. 7. 

 

Fig. 7. Liver Fat and Brachial Dystolic Pressure. 
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V. CONCLUSION 

In conclusion, the precise classification and quantification 
of hepatic fat is crucial for metabolic studies and the detection 
of fibrosis where they serve as good indicators of the associat-
ed metabolic and cardiovascular disorders. They can serve as 
an effective and precise tool for the diagnosis and differentia-
tion of risk profiles of patients with metabolic diseases and 
could be considered in the future to predict cardiovascular 
complications. Relationship study of hepatic fat and cardiovas-
cular parameters shows that hepatic fat has a negative influence 
on the heart if the amount it increases. 

The perspectives of this work are many; first we want to 
segment the liver by deep learning algorithms. Then we also 
want to detect and quantify hepatic fibrosis from the T1 map-
ping. 
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