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Abstract—In this paper, the authors present a modified version
of the Partition Ciphering System (PCS) encryption system
previously proposed. The previously developed encryption system
PCS uses the partition problem to encrypt a message. The
goals of newly developed system are avoiding statistical and
frequency attacks, by providing a balance between 0s and 1s,
ensuring a good level of entropy and achieving confidentiality
through encryption. One of the novelties of the new design
compared to its predecessor is the use of cellular automata (CAs)
during the encryption. The use of CAs is justified by their good
cryptographic properties that provide a level of security against
attacks, and better confusion and diffusion properties. The new
design is first presented with details of the encryption and
decryption mechanisms. Then, the results of the DIEHARDER
battery of tests, the results of the avalanche test, a security
analysis and the performance of the system are outlined. Finally,
a comparison between CA-PCS and PCS as well as the AES
encryption system is provided. The paper shows that the modified
version of PCS displays a better performance as well as a good
level of security against attacks.
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I. INTRODUCTION

One of the five pillars of cryptography is achieving confi-
dentiality. This latter comprises two principles: data confiden-
tiality and privacy. Data confidentiality ensures that no data is
accessed or revealed to unauthorized parties. Privacy controls
the access to data and storage of data by concerned parties
[1]. This paper presents a modified version of the Partition
Ciphering System (PCS), which was previously developed by
the authors [2]. It is a symmetrical encryption system based
on the partition problem, more precisely the Card-Partition
version. The use of the partition problem in PCS was motivated
by the fact that it changes the frequency of the appearance
of characters between the plaintext and the ciphertext. Con-
sequently, PCS is robust against frequency cryptanalysis; an
adversary cannot learn any information about the plaintext
from the ciphertext. However, PCS has some limitations to
check the diffusion property and resistance to some attacks like
linear and differential attacks. A cellular automaton (CA) is a
suitable candidate to provide better confusion and diffusion.
Also, the CA cryptographic properties could be studied to
verify the security level. These later are nonlinearity, algebraic
degree, balancedness, resiliency, and correlation immunity. A
CA is a dynamic system involving a network of cells. CAs are
widely used in cryptography and other fields to benefit from
their simplicity, parallelism, and unpredictability. Besides, CAs

make the hardware and software implementations easier [3].
In this paper, a new design called CA-PCS (Cellular Automata
based Partition Ciphering System) is proposed. It consists of
a hybrid CA, with satisfying cryptographic properties, that
evolves multiple iterations to increase resistance to linear and
differential attacks, followed by the insertions of necessary
blocks so that the frequency of all the blocks is the same.
In addition to a random permutation is applied to the results
of the second step. Each layer produces better confusion and
diffusion, and consequently, better resistance to linear and
differential cryptanalysis. Also, the cryptographic properties
of the CA ruleset are studied and display good results. A
high nonlinearity, high algebraic degree, and balancedness are
satisfied. CA-PCS was compared to AES and PCS in terms
of randomness, security, and performance. Thus, the CA-PCS
results are satisfying.

The rest of this article is organized as follows: In Section
2, a brief background on cellular automata is presented. Next,
in Section 3, the related works are included. Then, CA-PCS
is detailed in Section 4. Section 5 provides a brief description
of the PCS and AES encryption systems. Finally, Section 6
presents results and security analysis.

II. BACKGROUND ON CELLULAR AUTOMATA

The history of cellular automata goes back to the 1940s
when Stanislaw Ulam [4] initiated their study by taking interest
in self-replicating automata. Then in the 1960s, John von
Neumann used them in Biology for modeling self-reproduction
[5]. They were later on popularized by John Conway’s game
of life in the 1970s [6]. They were first use in cryptography
by Stephen Wolfram in the 1980s [7]. Simply put, a cellular
automaton is a network of cells, each of which has a state that
changes from a time step t to a time step t+1 according to a
defined local rule and depending on its neighbors. The interest
of the scientific community in cellular automata stems from the
fact that simple local calculations at the cells scale produce a
complex behavior at the automaton scale. Another interesting
aspect of using cellular automata is that both uniformity
and non-uniformity can be modeled. A cellular automaton is
defined as [3] (d, L, S,N, f ), where d represents the cellular
space dimension, L represents the cellular space, S is the finite
set of states, N is the neighborhood vector and f or (f1,f2,...)
is the local rule or ruleset respectively. The global rule of the
cellular automata is designated by Φ.

By modifying the tuple (d, L, S, N, f), different kinds
of cellular automata can be obtained. One interesting type of
cellular automata was introduced by Wolfram in [8]. This kind
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TABLE I. AN EXAMPLE OF A LINEAR AND NONLINEAR ECA RULE

Rule 105 135

Linear? Yes No

Algebraic Normal Form 1⊕ xi−1 ⊕ xi ⊕ xi+1 1⊕ xi.xi+1 ⊕ xi−1

Truth table

111 0 111 1
110 1 110 0
101 1 101 0
100 0 100 0
011 1 011 0
010 0 010 1
001 0 001 1
000 1 000 1

of CAs is called Elementary Cellular Automata (ECAs). They
are one-dimensional, two-state (0 or 1), 3-neighborhood CAs.
They are of particular interest in cryptography as their simple
implementation, both in hardware and software, their good
cryptographic properties and the small number of possible
rules (22

3

= 256) are well suited in this field as they can be
thoroughly studied. The local rules can be either linear (only
XOR operator ⊕ in their Boolean expression) or nonlinear
(AND(·)/OR(+) operators as well in their Boolean expression).
Table I shows an example of a linear and nonlinear rule.

III. RELATED WORK

The partition problem or Equal Piles Problem, which is
the source of inspiration for this work, was first studied by
Jones and Beltramo in [9], where they defined a challenging
instance. They tried nine standard genetic algorithms, but with-
out finding an optimal solution. To solve this instance of the
problem, Falkenauer [10] and William [11] proposed particular
types of genetic algorithms. Concretely, Falkenauer [10] tried
to adjust the grouping genetic algorithm that he designed
previously using specific crossover and mutation operators
suited for similar problems. William [11]used a particular
approach in the design of the Eager Breeder genetic algorithm,
which makes the manipulation of genetic materials easier and
produces better results compared to the previous algorithms.
However, their results are not that good for this article’s
proposed design.More recently, evolutionist algorithms were
also used to come up with a solution to the partition problem
as in the works of Trichni [12], Bougrine [13] and Kaddouri
[14].

The first use of cellular automata in cryptography goes
back to Wolfram in [7]. He applied rule 30 to design a
pseudorandom number generator (PRNG) and a stream cipher.
A more recent example of the use of CAs in an encryption
algorithm is the design of Das et al. [15] who proposed a
block cipher using one dimensional programmable CAs. Other
works using one dimensional uniform CAs include Bhaumik
[16] and Roy [17]. Non uniform one-dimensional CAs were
studied by Mehta [18] and Bouchkaren [19]. Two dimensional
uniform CAs were used by Bouchkaren [20] and Faraoun [21].
CAs were also used for image encryption by Li in [22], who
made use of two dimensional non-uniform CAs. Other image
encryption schemes can be found in [23] and [24].

IV. CA-PCS DESIGN

A. CA-PCS Encryption Algorithm

The CA-PCS encryption scheme goes through three steps:

1) CA Evolution: The first step includes the hybrid
CA evolving of the binary message using the rules
{90, 150, 30, 180, 45, 90, 150, 30}. Linear rules 90 and 150
provide better diffusion property and high cycle length [25].
While nonlinear rules 30, 45, and 180 provide better confusion
property [26]. Moreover, these rules provide resistance to
linear attacks and differential attacks. Because of the high
nonlinearity met after a few iterations and the significant
algebraic degree.

2) Blocks Insertion: The second step consists of represent-
ing the first step’s result as a partition and add some blocks at
random positions to get the same appearance frequency for all
blocks. At first, the CA output is split into blocks of a randomly
chosen size 2 ≤ k ≤ 16. Then the ideal cardinality IC is
computed IC = max{Card(L1), Card(L2), ..., Card(Lm)}.
Next, for each block Bi, the cardinality of the corresponding
Li, representing the positions of Bi in the CA output, is
compared to the IC. Accordingly, if Card(Li) < IC, then Bi

is inserted in a random position 1 < Pij < size(CAoutput)
where 0 < j < IC − Card(Li). Next, the Pij is inserted in
the ListOfInsertedBlocksPositions.

3) Permutation: Finally, a random permutation is applied
to the set {L1, L2, ..., Lm}. This permutation is useful to
change the blocks’ occurrence lists Lis. It is denoted formally
by π : S → S where S is a set of m elements. m! permutation
of {L1, L2, ..., Lm} are possible. A possible example of a
random permutation for m=10, π :{L1, L2, L3, L4, L5, L6, L7,
L8, L9, L10} → {L2, L4, L1, L6, L3, L9, L7, L10, L8, L5}.
Following this example, L1 → L2, L2 → L4, L3 → L1,
L4 → L6, L5 → L3, L6 → L9, L7 → L7, L8 → L10,
L9 → L8, L10 → L5. Accordingly, B1 will appear in the
positions of B2, B2 will appear in those of B4, and so on.

4) Key generation: The secret key comprises four
elements:
SK = {k,CASeq, ListOfInsertedBlocksPositions, PSeq}
The random integer k is the blocks size. The CASeq binary
sequence where CASeq = M ⊕ M ′ where M is the
plaintext, and M’ is the output of the CA evolution step.
The ListOfInsertedBlocksPositions which comprises the
positions where blocks are inserted. the PSeq binary sequence
PSeq = M” ⊕ C where M” is the output of the blocks
insertion step and C is the ciphertext. Fig. 1 summarizes the
encryption process of CA-PCS.

B. CA-PCS Decryption Algorithm

The CA-PCS decryption process, as Fig. 2 displays, is as
follows, given the ciphertext C and the secret key
SK = {k,CASeq, ListOfInsertedBlocksPositions, PSeq}:
At first, the PSeq sequence is XORed with the ciphertext
to get M”. Then, M” is split into blocks of size k.
Next, inserted blocks are removed from M” using the
ListOfInsertedBlocksPositions to get M’. Then M’ is XORed
with the CASeq to get the plaintext.
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Algorithm 1 CA-PCS Encryption Algorithm
Input: The message M
Output: The ciphertext C and the secret key K
Begin
it← 64
size← sizeOf(M)
k ← random(2, 16) . random integer2 < k ≤ 16
ruleSet← {30, 90, 150, 30, 180, 45, 90, 150}
for 0 < j ≤ it do

for 0 < i ≤ size do
x← i− 1 mod sizeOf(ruleSet)
if (x == 0)||(x == 3) then . 30

M ′[i]←M [i− 1]⊕ (M [i] +M [i+ 1])
else if (x == 1)||(x == 6) then . 90

M ′[i]←M [i− 1]⊕M [i+ 1]
else if (x == 2)||(x == 7) then . 150

M ′[i]←M [i− 1]⊕M [i]⊕M [i+ 1]
else if x == 4 then . 180

M ′[i]←M [i− 1]⊕ (M [i].(1⊕M [i+ 1]))
else . 45

M ′[i]←M [i− 1]⊕ (M [i] + (1⊕M [i+ 1]))
end if

end for
end for
CASeq ←M ⊕M ′

M”← DivideIntoBlocks(M ′, k)
n← sizeOf(M”)
m← NumberOfDifferentBlocks(M”)
Partition← ToPartition(M”)
ListOfBlocks← DifferentBlocks(M”) . {B1, ..., Bm}
IC ← ComputeIdealCardinality(PlaintextPartition)
for 1 ≤ i ≤ m do

while Card(Li)< IC do
M”← insert(Bi,M”, randomPosition)
Insert(ListOfInsertedBlocksPositions, randomPosition)
Insert(Li, randomPosition)

end while
end for
permutation← generateRandomPermutation({1, 2, ...,m})
Ciphertext← applyPermutation(M”, permutation)
PSec← Ciphertext⊕M”
secretK ← {k,CASeq, ListOfInsertedBlocksPositions, PSec}
End

Algorithm 2 Decryption algorithm
Input:The secret key SK and the ciphertext C
Output: The message M
Begin
M”← C ⊕ PSec
M (3) ← DivideIntoBlocks(M”, k)
for i from sizeOf(ListOfInsertedBlocksPositions) to 1 do

M ′ ← Remove(M (3), ListOfInsertedBlocksPositions[i])
end for
M ←M ′ ⊕ CASeq
End

V. THE PCS AND AES DESCRIPTION

This section presents a brief description of a previously
developed scheme Partition Ciphering System (PCS) and the
Advanced Encryption Standard (AES).

A. Partition Ciphering System (PCS)

The Partition Ciphering System PCS [2] is a symmetric
enryption schemme that encrypts a plaintext in three steps. the
first step consists of the construction of a partition from the
plaintext, which is initially split into blocks of size k>2. Each
block is associated with a list of occurrences. This partition un-

Fig. 1. CA-PCS Encryption

dergoes some transformations in a way to make the ciphertext
resistant to frequency cryptanalysis. Next, the ideal cardinality
IC is computed : let c = n

m , where n is the number of blocks
in the plaintext, and m is the number of different blocks in
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Fig. 2. CA-PCS Decryption

the plaintext. If c ∈ N then IC = c else IC = dce. This
cardinality defines the number of occurrences of each block
in the ciphertext. In the last step, the blocks Bis are inserted
or deleted according to the cardinal of the corresponding list
of appearances Li. When the Card(Li) < IC, then the block
Bi is appended to the message. When the Card(Li) > IC,
then the block Bi is deleted from a random position.

B. Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) [27] is a symmetric
cipher that encrypts 128-bit blocks using keys of size 128 bit,
192 bit, or 256 bit. It comprises N rounds, where N changes
according to the length of the key: 10 for a 128-bit key, 12 for
a 256-bit key, and 14 for a 192-bit key. In the first step, the
plaintext is XORed by the first 128 bit of the key. Next, for N-1
iteration, four operations are performed: SubBytes, ShiftRows,
MixColumns, and AddRoundKey. [27] provides a detailed
description of these operations. Finally, the last round consists
of only SubBytes, ShiftRows, and AddRoundKey operations.

VI. RESULTS AND SECURITY ANALYSIS

This section displays the statistical tests and the confusion
and diffusion properties of CA-PCS compared to the AES.

A. Dieharder Test

The battery of tests Dieharder was designed by Robert G.
Brown to check out the behavior of PRNGs and cryptographic
primitives like encryption systems, hash functions, and MACs.
It involves tests from diehard, some NIST tests, and other tests
developed by Brown and Bauer [28]. The authors generated
three files of 10 Mb using PCS, CA-PCS, and AES ciphers.
Then, they run the battery overs these files. Table II displays
the results. The P-values are the probability that the generated
sequences are random. If 0.005<P-value<0.995, then the sys-
tems pass the test. Since 0.10<P-values(PCS)<0.91, 0.2<P-
values(CA-PCS)<0.92, and 0.005<P-values(AES)<0.95, then
all the systems pass all the tests. Also, the P-values of the

TABLE II. DIEHARDER RESULTS OF CA-PCS, AES, AND PCS

Tests names P-values CA-PCS P-values AES P-values PCS
Diehard birthdays 0.5357 0.0836 0.8625

Diehard operm5 0.4946 0.0967 0.8971

Diehard rank 32x32 0.5887 0.7711 0.1402

Diehard rank 6x8 0.7192 0.6936 0.3240

Diehard bitstream 0.4615 0.6593 0.4530

Diehard opso 0.5559 0.7204 0.3559

Diehard oqso 0.5092 0.6363 0.1898

Diehard dna 0.5686 0.3142 0.2811

Diehard count 1s str 0.4114 0.8797 0.8988

Diehard count 1s byt 0.6995 0.8451 0.7611

Diehard parking lot 0.2622 0.8514 0.773

Diehard 2dsphere 0.4555 0.5370 0.7910

Diehard 3dsphere 0.6735 0.3863 0.2487

Diehard squeeze 0.6888 0.8732 0.7991

Diehard sums 0.9130 0.0058 0.1779

Diehard runs 0.2342 0.3810 0.7702

Diehard craps 0.7063 0.8630 0.9093

Marsaglia tsang gcd 0.6682 0.7107 0.4046

Sts monobit 0.5815 0.6915 0.54319

Sts runs 0.4394 0.4656 0.1070

Sts serial 0.6616 0.5643 0.6388

Rgb bitdist 0.6689 0.5724 0.4844

Rgb minimum distance 0.5515 0.3475 0.4441

Rgb permutations 0.6639 0.6588 0.4145

Rgb lagged sum 0.5074 0.5363 0.6067

Rgb kstest test 0.2840 0.4934 0.1025

dab bytedistrib 0.5920 0.4758 0.2636

dab dct 0.8842 0.9448 0.8735

dab filltree 0.4757 0.4721 0.5212

dab filltree2 0.8987 0.7090 0.3727

dab monobit2 0.8994 0.0507 0.6055

ciphers are uniformly distributed in the range [0, 1], to con-
clude, CA-PCS displays good results regarding the statistical
tests compared to PCS and AES.

B. Confusion and Diffusion Tests

This section presents the confusion and diffusion properties
of the CA-PCS system in comparison with AES. A secure
encryption system from statistical analysis, as stated by Shan-
non [29], has good confusion and diffusion properties (e.g.,
AES is a secure system). If the relation between the ciphertext
and the secret key is hidden, then the confusion property is
verified. In other terms, replacing one bit in the secret key has
an impact on most of the bits in the ciphertext. If the relation
between the plaintext and the ciphertext is masked, then the
diffusion property is checked. In other words, changing one
bit in the plaintext affect almost all the bits of the ciphertext.
Fig. 3 shows the confusion property for CA-PCS compared to
the AES. According to Fig. 3, the percentage of the changed
bits in the ciphertext is approximately 50% for CA-PCS and
AES. Concretely, the values for CA-PCS are between 0.40%
and 0.61%, while the values for AES are between 0.36% and
0.61%. These values confirm that CA-PCS has better confusion
property. Fig. 4 illustrates the diffusion property of CA-PCS
and AES. The mean value of the percentages of changed bits
in the ciphertext is nearly 50%. The values for CA-PCS are
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Fig. 3. Confusion Test of CA-PCS and AES

Fig. 4. Diffusion Test of CA-PCS and AES

Fig. 5. Encryption and decryption time of CA-PCS, PCS and AES

between 41% and 61%, and the values for AES are between
37% and 67%. Consequently, CA-PCS has better diffusion.

C. Encryption and Decryption Time of CA-PCS, AES and PCS

This part (Fig. 5) compares the encryption and decryption
time of CA-PCS with the previously developed scheme PCS
and AES. Fig. 5 shows that CA-PCS requires less time in
the encryption process compared to PCS and AES. While the

Fig. 6. Frequency of blocks before and after encryption for CA-PCS and
PCS

TABLE III. NONLINEARITY

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 0 0 2 2 2 0 0

2 8 8 8 8 8 8 8 8

3 32 48 48 48 28 44 48 48

PCS and AES take the same time to encrypt. The time of
decryption is approximately the same for CA-PCS, PCS, and
AES. To conclude CA-PCS displays good results.

D. Frequency Analysis

This part presents the frequency analysis of the outputs
of CA-PCS and PCS. As mentioned in [2], the purpose was
to have a ciphertext with blocks appearing with the same
frequency, so that frequency analysis does not reveal any
information about the plaintext. As CA-PCS is an improved
version of PCS, the same objective persists. CA-PCS is differ-
ent from PCS in all steps. The CA evolution is the first step
of CA-PCS. Next, the ideal cardinality computation. Later, the
insertion of blocks follows. The resulting intermediate output
undergoes a permutation. While in PCS, the ideal cardinality
is computed in a way to have blocks to add or remove. The
objective of CA-PCS design is to provide better confusion
and diffusion, in addition to resistance to some attacks like
linear and differential attacks. Fig. 6 represents the frequency
analysis performed on the outputs of CA-PCS and PCS for the
same plaintext. Fig. 6 shows that frequency analysis will never
divulge any information. As a result, frequency cryptanalysis
is impossible.

E. Cryptographic Properties of the Ruleset Used in the CA
Evolution

This section presents the cryptographic properties,
namely, nonlinearity, algebraic degree, correlation immu-
nity, resiliency, and balancedness, of the CA ruleset
{30, 90, 150, 30, 180, 45, 90, 150}. It is applied alternately on
the CA cells in the evolution step. In this section, to study
the ruleset, an example of 8 cells is considered. Tables III to
VII shows the variation of the cryptographic properties with
iterations.

Nonlinearity and algebraic degree increase significantly
within iterations. Also, balancedness persists. The resiliency
and the correlation immunity decrease with iterations because
high nonlinearity affects the level of resiliency and correlation
immunity. Most of the cryptographic systems require high
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TABLE IV. ALGEBRAIC DEGREE

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 2 1 1 2 2 2 1 1

2 3 2 2 3 3 3 2 2

3 4 3 3 4 5 4 3 3

TABLE V. RESILIENCY

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2

2 0 2 2 0 1 0 2 2

3 0 0 0 0 0 0 0 1

TABLE VI. CORRELATION IMMUNITY

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1 0 1 2 0 0 0 1 2

2 0 2 2 0 1 0 2 2

3 0 0 0 0 0 0 0 1

TABLE VII. BALANCEDNESS

Iterations x0 x1 x2 x3 x4 x5 x6 x7

1

2

3

TABLE VIII. BRUTE FORCE ATTACK OF AES, PCS AND CA-PCS

Encryption
schemes

AES-128 AES-192 AES-256 PCS CA-PCS

Key length 128 bit 192 bit 256 bit ≥ 256 bit ≥ 256 bit

# possible keys 2128 2192 2256 ≥ 2256 ≥ 2256

Security level near term near term long term long term long term

nonlinearity, and algebraic degree as well as balancedness.
These cryptographic properties are important to avoid attacks,
particularly linear attacks, differential attacks, and statistical
cryptanalysis.

F. Brute-Force Attack

In a brute-force attack, the attacker tests each possible key
to get a comprehensible plaintext from the transformation of
the ciphertext [1]. The key length is considered the security
parameter that provides the security level of the studied system.
This attack needs more time and resources to get the right
key when the key length is high. It can be impossible unless
an attacker has a quantum computer. If the level of security
desired is for the near term, then a symmetric key of at least
128 bit is used. The key should be of at least 256 bit to reach
long term security. Since the AES has three versions, AES-128,
AES-192, and AES-256, both security levels can be satisfied.
PCS, from [2], has a secret key of size greater than 256 bit.
Also, CA-PCS has a secret key of at least 256 bit. Unless an
attacker has a quantum computer, he cannot get the secret key
to decrypt to an intelligible plaintext. Table VIII summarises
the security level of AES, PCS, and CA-PCS.

G. Linear and Differential Attacks

Linear attack analyzes the linear approximations of the
plaintext, the ciphertext, and the secret key [30]. It is a known-
plaintext attack, while differential attack studies the differences
between plaintexts and ciphertexts [31]. It is a chosen-plaintext
attack. A cipher should be robust against the linear and
differential attacks. The confusion property, which is satisfied
using the nonlinear parts of the system, is necessary to resist
these types of attacks. In general, S-Boxes are responsible
for this purpose. But, other primitives, like nonlinear cellular
automata, can lead to the same results. In CA-PCS, the ruleset
used to evolve the CA has high nonlinearity, and maintain the
balancedness. These features make these attacks difficult for a
cryptanalyst.

VII. CONCLUSION

In this article, an enhanced version of PCS, a previously de-
veloped encryption scheme, is proposed. The proposed system,
called CA-PCS, makes use of cellular automata to increase
the security level of the design. Precisely, the ruleset used
provides satisfying results in terms of cryptographic properties,
randomness tests, confusion, and diffusion properties. Linear
and differential attacks are difficult to achieve because of the
high non-linearity and the high algebraic degree provided by
the ruleset. Also, the balancedness and the randomness produce
resistance to statistical cryptanalysis. Moreover, CA-PCS is
robust against brute force attacks. Besides, the performance
of CA-PCS is better than PCS and AES. In future work, the
authors will extend the proposed scheme to ensure authentica-
tion.
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