(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

Development of an Interactive Tool based on
Combining Graph Heuristic with Local Search for
Examination Timetable Problem

Ashis Kumar Mandal
Faculty of Software and Information Science
Iwate Prefectural University
Iwate, Japan

Abstract—Every university faces a lot of challenges to solve
the examination timetabling problem because the problem is NP-
hard and contains numerous institutional constraints. Although
several attempts have been taken to address the issue, there
are scarcities of interactive and automated tools in this domain
that can schedule exams effectively by considering institutional
resources, different constraints, and student enrolment in courses.
This paper presents the development of a system as a graphical
and interactive tool for examination timetabling problem. To
develop the system, combining graph coloring heuristic and local
search meta-heuristic algorithms are employed. The graph heuris-
tic ordering is incorporated for constructing initial solution(s),
whereas the local search meta-heuristic algorithms are used
to produce quality exam timetables. Different constraints and
objective functions from ITC2007 exam competition rules are
adopted, as it is a complex real word exam timetabling problem.
Finally, the system is tested on the ITC2007 exam benchmark
dataset, and test results are presented. The main aspect of the
system is to deliver an easy-to-handle tool that can generate
quality timetables based on institutional demands and smoothly
manage several key components. These components are collecting
data associated with the enrolment of students in exams, defining
hard and soft constraints, and allocating times and resources.
Overall, this software can be used as a commercial scheduler in
order to provide institutions with automated, accurate, and quick
exam timetable.

Keywords—Examination timetable; graph heuristic; local
search meta-heuristic; ITC2007 exam dataset; interactive tool; NP-
hard problem

I. INTRODUCTION

Solving the examination timetable of an academic institu-
tion induces lots of complicacies due to the intractable nature
of the problem. That is, managing different constraints and pro-
ducing a quality exam timetable, which meets the demand of
the institution, often computationally expensive and laborious
task. The procedure is so complicated that human schedulers
also struggle to produce even a simple feasible solution. Some
viable approaches are operations research (OR) and artificial
intelligence (AI) techniques that handle the problem often
by mathematical programming as well as different heuristics,
meta-heuristic, and hyper-heuristic algorithms [1]. Some of
these procedures are constraint programming [2], integer pro-
gramming [3], graph heuristics [4], great deluge algorithm
[5], hill-climbing [6], tabu search [7], simulated annealing
[8], genetic algorithm [9], particle swarm optimization [10],

artificial bee colony algorithm [11] and memetic algorithm
[12].

It is frequently observed that academic institutions rely on
traditional manual approaches, which take considerable time
on managing the vast amount of student registration data,
conflicting exams, as well as the violation of constraints for
producing a feasible timetable. Although numerous approaches
have been proposed in the literature for creating quality timeta-
bles, the work on interactive software for timetabling problems
is limited. In the examination timetabling survey, Qu et al.
[13] emphasize reducing the gap between research and practice
and highlight the importance of automatic interactive exami-
nation timetable tools for reducing the significant workload of
timetabling staff. There are some software solutions proposed
for university timetabling problems so that the user can easily
interact with the timetable generations. Piechowiak and Kolski
[14] developed interactive tools for supporting University
of Valenciennes and Hainaut-cambresis (UVHC) university
timetabling. The aim was to develop an open, generic tool that
employs distributed architecture for cooperative scheduling
and supports users to monitor modeling of time, resource,
university activities, and constraints for producing a quick
feasible solution. Thomas et al. [15] proposed a visual interface
tool that aids users to quickly find a bottleneck situation and
guide the scheduling system towards a feasible solution. Ayob
et al. [16] proposed an intelligent examination timetabling
software. The aim was to develop an intelligent commercial
scheduler that can replace human decision-makers as well
as produce high-quality solutions for University Kebangsaan
Malaysia (UKM) examination timetabling problem. Chunbao
and Nu [17] developed an efficient exam scheduling system
(ITEESS v1.0) that avoids the traditional direct-clash-checking
approach and schedules a large number of exam papers within
a few minutes. Another recent software solution is solving the
University of Toulouse examination timetabling problem using
integer linear programming [18]. The authors claimed that the
tool can produce quality solutions automatically and give some
flexibility to choose input data and constraints.

Although the above tools are viable in producing quality
exam timetabling, most of them emphasize solely on automa-
tion rather than interaction with users. Besides, interactive tools
for generating student conflicts performed by open registration,
simultaneous execution of different optimization processes,
and handling more complex real-world problems like ITC2007

www.ijacsa.thesai.org

686 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

exam dataset are some issues that have been less highlighted.

This paper has proposed an interactive tool for addressing
the examination timetabling issue for universities. The system
initially produces conflicting exams automatically from course
enrollment data. Then it facilitates in managing various hard
and soft constraints and allocating times and resources. Based
on that configuration, the initial solution module, which uses
a saturation degree graph heuristic (SD), produces a feasible
solution. Users can monitor the solution quality with different
configurations and even further improve the solution vector
with employing an improvement module. This module con-
tains three local search algorithms: Great Deluge Algorithm
(GDA), Simulated Annealing (SA), and Late Acceptance Hill
Climbing (LAHC). A user can select different algorithms, tune
parameters, and inspect the progression of the solution. In
addition, another facility is the execution of concurrent run
with selected local search algorithms. The improvement phase
finally produces a solution vector along with a quality metric
within specific stopping criteria. The proposed system has been
tested successfully using ITC2007 exam benchmark dataset,
which covers the majority of the hard and soft constraints
of many real exam timetables. The goal in this paper is to
provide an effective interactive examination timetable software
such that it can generate computationally inexpensive quality
timetable solutions and reduce both context-dependencies and
involvement of human expertise as much as possible.

The rest of this paper is organized as follows: Section II
describes the examination timetabling problem formulation.
Section III highlights the algorithms employed for building the
system. The proposed system architecture and software com-
ponent for addressing examination timetabling problems have
been presented in Section IV. Section V presents simulation
results and discussion. Finally, some conclusions are drawn in
Section VI.

II. PROBLEM DESCRIPTION AND FORMULATIONS

An examination timetabling is a scheduling problem where
a set of examinations is allocated into a limited number of time
slots and rooms subject to a set of constraints. Generally, two
different types of constraints encompassing hard constraints,
and soft constraints must be addressed. Satisfying all hard con-
straints leads to a feasible solution, whereas the minimization
of soft constants results in a quality solution. Frequently these
soft constraints are associated with objective functions. All
hard and soft constraints vary from one institution to another
based on institutional requirements and resources.

Examination timetable problems can be categorized as
capacitated and un-capacitated problems. In an un-capacitated
branch, room capacity is not considered. In a capacitated vari-
ant, however, room capacity is considered as a hard constraint.
For instance, Toronto dataset is a un-capacitated problem,
whereas the Second International Timetabling Competition
(ITC2007) exam dataset is a capacitated problem [13].

In this section, ITC2007 exam dataset is described here be-
cause it is the most recent real-world examination timetabling
problem, which has lots of hard and soft constraints. Besides,
the proposed system has been developed with ITC2007 exam
timetabling problem in mind. ITC2007 exam dataset consists
of eight problem instances. The comprehensive characteristics

Vol. 11, No. 3, 2020

such as number of students, number of exams, number of
slots, number of rooms, period hard constraints, room hard
constraints, and conflict density are presented in Table I.

All hard and soft constraints involved with the examination
timetabling problem reported in ITC2007 exam dataset are
given below:

Hard Constraints

e HI. Any student cannot sit more than one exam at the
same time.

e H2. The exam capacity should not exceed room ca-
pacity.

e H3. The exam length should not violate the period
length.

e H4. Three ordering of exams must be respected.
- Precedences: exam 7 will be scheduled before exam
j-
- Exclusions: exam ¢ and exam j must not be
scheduled at the same period.
- Coincidences: exam 7 and exam j must be scheduled
at the same period.

e HS5. Room exclusiveness must be maintained. For
example, an exam ¢ must take place only in room
number 206.

Soft Constraints

e S1. Two exams in a row(C2®): Avoid the number of
occasions where a student sits consecutive exams on
the same day.

e S2. Two exams in a day (C’SzD): Avoid the number
of occasions where a student sits two exams in a
day. Note that when exams are one after another,
this is counted as Two Exams in a Row for avoiding
duplication.

e S3. Spreading of exams (CP¥): Exams should be
spread as evenly as possible over time periods.

e S4. Mixed duration (CVMP). Avoid the number of
occasions where exams with different durations are
scheduled into the same room.

e S5. Scheduling of larger exams (CFZ): Avoid the
number of occasions where the largest exams are
assigned later in the timetable.

e S6. Room penalty:(C®) Avoid the number of occa-
sions where certain rooms with an associated penalty
are used for scheduling.

e S7. Period penalty (CT): Avoid the number of occa-
sions where certain periods with an associated penalty
are used for scheduling.

The objective function is formularized as in Eq. 1. It
attempts to minimize the violation of soft constraints (penalty)
as much as possible for producing good quality solutions
without violating the hard constraints.

www.ijacsa.thesai.org

687 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

TABLE I: Features of ICT2007 exam dataset

Instances | No. of No. of | No. of | No. of | Period hard | Room hard | conflict

students | exams | slots rooms | constraints constraints density
Exam_1 7,891 607 54 12 0 5.05%
Exam_2 12,743 870 40 12 2 1.17%
Exam_3 16,439 934 36 170 15 2.62%
Exam_4 5,045 273 21 40 0 15.00%
Exam_5 9,253 1018 42 27 0 0.87%
Exam_6 7,909 242 16 23 0 6.16%
Exam_7 14,676 1096 80 28 0 1.93%
Exam_8 7,718 598 80 20 1 4.55%

min Yy (W2RCH + W2PC2P + whSols)+
seS (D
WNMDCNMD +WFLCFL +OR +CP

In this equation, W (with different subscriptions) stands
for the related weight for each of the soft constraints, and S
indicates a set of students. Table II shows weights of ITC2007
exam dataset. Note that associated weights are not included
in CF and C* in the equation as these associated weights
are already added in the definition. Explaining all constraints,
instances, mathematical models of the ITC2007 exam tracks
are so wordy that details explanation will be found in [19] and
the website at http://www.cs.qub.ac.uk/itc2007.

TABLE II: Weights of ITC2007 exam dataset

Instances | W22 | w2B | wPS | wNMD WFL
Exam_1 5 7 5 10 5
Exam_2 5 15 1 25 5
Exam_3 10 15 4 20 10
Exam_4 5 9 2 10 5
Exam_5 15 40 5 0 10
Exam_6 5 20 20 25 15
Exam_7 5 25 10 15 10
Exam_8 0 150 15 25 3

III. OVERVIEW OF ALGORITHMS
A. Graph Heuristics

A simple Examination timetabling can be represented as a
graph coloring problem. It is an undirected graph comprising a
set of n vertices and a set of edges E, with vertices indicating
exams while exams with common students indicate an edge.
For example, If Exam_1 and Exam_2 have a common student,

there will be an edge E. There are a predefined limited number
of colors that signify time slots. The exams have to be assigned
into time slots (i.e., coloring the graph) in such a way that no
exams with a common student have the same timeslots (i.e.,
color). Graph heuristics are based on ordering strategies where
examination with most difficulty is chosen for scheduling first
so that finally, a feasible solution can be obtained. Various
graph heuristic techniques measure examination difficulty.
These are the largest degree (LD), largest weighted degree
(LWD), Largest enrolment degree (LE), and saturation degree
(SD) [20], [21]. The heuristics are described as follows:

e Largest degree (LD): This technique orders the exams
based on the largest number of conflicting examina-
tions.

e Largest weighted degree (LWD): This heuristic is
similar to the largest degree except the exams are
ordered based on the number of students in conflict.

e Largest enrolment (LE): The exams are ordered based
on the number of registered students in the exams.

e Saturation degree (SD): The exams are ordered based
on the number of remaining timeslots available; exams
with the least number of available timeslots in the
timetable are given priority to be scheduled first. SD
is a dynamic heuristic where the ordering of exams is
updated as the exams being scheduled.

B. Local Search Approaches

Graph heuristics can generate an initial solution that is
not optimum enough to consider a quality timetable. Hence
local search meta-heuristics are frequently used to reduce
the soft constraint violations as much as possible to get a
quality solution from the initial solution. In this paper, three
meta-heuristics are presented as they have been used for the
proposed systems.

1) Late acceptance hill-climbing: Burke and Bykov [22]
proposed late acceptance hill-climbing(LAHC) for escaping
local optima produced by a greedy hill-climbing approach. In
greedy hill-climbing, the candidate solution is compared with
the immediate current one, but LAHC uses a delay comparison

www.ijacsa.thesai.org

688 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

mechanism where the candidate solution is compared with the
solution of several iterations earlier. The algorithm starts with
an initial feasible solution, and a new candidate solution is
checked for acceptance in each iteration. A list of a specific
length is used for memorizing the previous values of the
current cost function used for acceptance criteria. Each time
the candidate solution is compared with the last value of the
list, and if better, it is accepted. When the acceptance procedure
activates, the new cost is added at the beginning of the list,
and the last element is deleted. The procedure is performed
base on v = I'modL formula, where L is the length of the
frame, I is the i*" iteration, and v is the position.

2) Simulated annealing: Simulated annealing (SA) is a
local search meta-heuristic technique based on a physical
annealing process that probabilistically accepts some worst
solutions to escape from the local optimum [23]. SA starts with
a randomly generated initial solution, and in each iteration, it
tries to improve the solution quality. If the neighboring solution
is better than or equal to the current solution, it is replaced with
the current one. Otherwise, acceptance of neighboring solution
is decided on a probability function exp(—w), where
f(s*) is a neighboring solution, f(s) is the current solution,
and T is a parameter known as temperature. Initially, the
algorithm starts with a high 7" and periodically decreases the
value using a cooling schedule until the temperature is zero or
any terminal condition.

3) Great deluge algorithm: Great deluge (GDA) algorithm
was proposed by Dueck [24]. The inspiration of this algorithm
originated from the behavior in which a hill climber seeks a
higher place to avoid the rising water level during the deluge.
Like SA, this algorithm devises a mechanism to avoid local op-
tima by accepting the worst solutions. SA uses a probabilistic
function for accepting the worst solutions, whereas GDA uses
a more deterministic approach for that purpose. It is also found
that GDA depends less on parameter tuning compared to SA.
The only parameter in the GDA algorithm is the decay rate,
which is used for controlling the boundary or acceptance level.
In the minimization problem, the initial boundary level (water
level) usually starts with an initial solution. During the search,
a new candidate solution is accepted if it is better than or equal
to the current solution. However, the solution worse than the
current one will be accepted if the quality of the candidate
solution is less than or equal to a predefined boundary level B.
The boundary level then is lowered by subtracting a parameter
called decay rate (AB). This parameter is vital because the
speed of the search depends on the decay rate.

IV. SYSTEM ARCHITECTURE AND SOFTWARE
COMPONENT

Fig. 1 depicts the overall system architecture of the ex-
amination timetabling scheduler. It consists of four different
components: planning module, scheduling module, reporting
module, and user interface.

A. Planning Module

Planning module deals with all the input data required for
generating the solution. Here following steps are performed.

Vol. 11, No. 3, 2020

1) Constraints manager: Constraints manager handles all
the hard and soft constraints associated with exam timetabling.
Constraints can be modified according to user choice. Besides,
another important function handled by this module is to com-
pute the penalty cost of an exam solution. Here the objective
function is employed for generating the penalty value of a
given solution. This objective function can be predefined or it
might be varied from one problem to another.

2) Exam conflict matrix: After all the necessary data are
loaded into the system and constraints are defined, analysis of
exam confliction is performed using a data structure named
conflict matrix. The examination conflict matrix is a square
matrix of dimension equal to the examination number. Each
entry of the matrix indicates the number of students conflicting
between the two examinations. Entry value of zero indicates no
conflict between two exams, whereas a positive number means
the existence of at least one conflict. This matrix facilitates
managing different hard and soft constraints associated with
timetabling and tracking the number of student enrolments in
any pair of examinations.

B. Scheduling Module

This module is the central part of the overall system, aiming
to generate a complete exam timetabling. Previous module
passes necessary inputs so that scheduling module can produce
appropriate exam timetabling based on user requirements. The
scheduling of exams involves two steps. The first step is an
initial feasible solution generation using an SD graph heuristic
algorithm. In the second step, the quality of the solution is
improved using local search algorithms. These include LAHC,
SA, and GDA algorithms. Although not guaranteeing optimal
solutions, they usually able to produce near-optimal solutions.
Users can choose either of the steps for generating timetables
and select desire algorithms with the appropriate parameters
before execution. Note that improvement step does not execute
independently, and it requires the solution vector of the first
step. For example, improvement with the GDA algorithm phase
is activated to produce a timetable when parameters such as
decay rate and the number of iterations are properly defined,
and initial feasible solutions produced by the graph heuristic
algorithm are provided.

C. Reporting Module

Reporting module determines whether scheduling module
is successfully generating the timetable or not according to
the configuration assigned by users. Users can monitor the
progress of the scheduling process, current penalty cost, exe-
cution time, and warning messages (if any) when scheduling
module starts executing a timetable procedure. Once schedul-
ing module produces a timetable, reporting module represents
the final solution in a tabular form for the comprehension of
everyone. Besides, subsidiary information such as total penalty
costs (i.e., solution quality), execution times are also presented.
At the end of the scheduling process, the document generator
can be evoked to store final exam solutions (as an excel
spreadsheet or pdf file format) in a disk for further uses.

D. User Interface

There is a graphical user interface that works at the top
level. Users (e.g., students, teachers, human scheduler) can

www.ijacsa.thesai.org

689 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Planning Module

Scheduling Module

Vol. 11, No. 3, 2020

Reporting Module

Conflict Matrix Manger

A

Constraints Manger

Initial Solution

Saturation Degree
Graph Heuristic

Schedule Monitor

A

v

Formated Data <

Preprocessing

Improvement
+ Algorithm

External Data stores

a) Simulated Annealing
b) Late Acceptance Hill
Climbing

c) Great Deluge

{

= @L

users Administrators

User Interface

Fig. 1: Overview of system architecture

interact with all the modules using this interface. For example,
visualizing the data, controlling the settings, and flow of the
process can be done efficiently using this interface. Note that
the whole system is developed using Java SE 1.7, and its swing
library is deployed for GUI implementation.

1) Description of the system interface: The interface is
designed in a straightforward way so that a user can operate
the system with minimal effort and get better user experience.
In addition to the graphical user interface, a command-line
interface is provided for advanced users. As it is hard to
illustrate all the options of the user interface, some selected
screenshot of the GUI of automated exam timetabling is
presented in Fig. 2, Fig. 3, and Fig. 4. The system window
contains different key components, including a menu bar,
toolbar, and tab panels. The menu bar at the top is used to load
the dataset. Below the menu bar is a toolbar which provides
important options such as construction and improvement phase
of timetable. Different tab panels are associated with each tool,
with each tab being used for performing different actions. For
instance, the Data file tab of the construction tool contains
data sets used for scheduling. Here users can customize a
dataset, impose different constraints by six command buttons,
and update other relevant information (see Fig. 2). A sample
execution of an exam timetable process is shown in Fig. 3.
There are two different types of components on the GUI
that are used to monitor the status of the execution process.
The text area shows the successful allocation of exams into
the time slot and rooms (quality of the solution), and the
progress bar indicates the percentage of progression of an

exam timetable. The left side of the window contains some
input fields (drop-down combo boxes, text boxes, etc.), which
are used to select a search algorithm, tune parameters, and
set stopping criterion. For example, for a sample execution
with a GDA algorithm, users have to set the decay rate and
the number of iterations. One may change the configuration
and even run multiple executions simultaneously, as every
execution of the scheduling process is an independent thread.
Fig. 4 shows the presentation of the final examination timetable
results in the data grid. Some performance measures, such as
penalty cost (i.e., quality of timetabling) and the execution time
are also displayed on the left side of data grid, and users can
save and retrieve exam schedules for further uses.

V. RESULTS AND DISCUSSION

Whether the timetabling system is viable in solving ex-
amination timetabling correctly, it has been tested with eight
instances of ITC2007 exam dataset. In the experiment, graph
heuristic SD is used for producing the initial solution, and
three local search meta-heuristics are used individually for
optimizing the initial solutions in the improvement phase.
Three variations of the neighbourhood structures have been
employed within an improvement algorithm. Their explanation
is outlined as follows:

e N1: An examination is selected randomly and moves
it to a random time slot.

e N2: Two examinations are selected randomly and
swapping is occurred between their time slots.

www.ijacsa.thesai.org

690 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

improvement ~ Partial Solution | %‘ MNote

[Examination Choice T DataFile T ConflictMatrix T Graph Heuristic Construct TTlmeTable]

Row Delete

Column Add

i

Column Delete

reset

D

Row Add 0 1 2 3 4 5
20:05:2005 |14:00:00 210 0
21:05:2005 |09:30:00 210 (1]
23:05:2005 |09:30:00 210 0
[Rooms:7]
260 0
100 0
129 50
60 50
77 0
65 0
111 0
[PeriodHar...
11 AFTER 10
26 AFTER 25
4 »

A

nfo:srciresources/itc2007/exam_comp_setl.exam.ixt

Fig. 2: Input with various entities

File Exit
P : . S
-~ Construction improvement ~ Partial Solution = _»~ Note
[Algorithm | TimeTable |
- Option ##.Count231completeS74timeslot31randomrooms =
Enter Search Method ## Count232complete 105timesiotd Trandomroome
##. Count233complete109times|ot24randomroom2
|Gre atDeluge | = | ## Count234 complete504timesiot8randomrooms
##. Count235complete156timeslot27randomroome
Enter Graph Heuristic ##_ Count236 complete162timeslot46randomroomo
Count237 completeS34timesiot36randomroomO
|Saturatior| Degree (SDLD) | s | ## Count238 complete540timeslotd2randomrooms
Enter ##.Count239completeS533timeslot29randomroomo |
e ead ##.Count240completeS35timeslotS1randomroom0
I., 2345] ## Count241complete24 1timeslotddrandomrooms
Count242complete240timeslot7randomrooms
Maximum Iteration ## Count243 complete95timeslot31randomroom3
Count244complete563timeslotS0randomroom5S
| 100 ‘ ##. Count245completeS66timeslot25randomrooms
Count246completeS94timeslot24randomroom3
##.Count247 complete93timeslotd0randomroomo
##. Count248completeS81timesiot37randomrooma3
##. Count249complete293timeslot24randomroom&
- ||[##.Count250complete300timesiotd9randomroome6
(Start) ||## count251 complete516timesiot3irandomroom3 | |
e q -
| Stop] -
= | 1%
¢ Show timetable i s
— = |

Fig. 3: Executing of a timetabling with given parameters

www.ijacsa.thesai.org

691 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 3, 2020

.~ Automated System for constructing the exam timetable (ASET) - O X
File Exit
{g': Construction improvement U Partial Solution . __/f. Mote
| Algorithm | TimeTable
Result Period Room:0 Room:1 Room:2 Room:3 Room:4 Room:5 Room:6
Total Cost: 0 | [507] [414] | [245] [339].. [469] [589] |[580] [494] [378) |[140] [34] |-
28413 1 | [438) [41] [195] | [455] [550] [182) [201] (501] (219) |[385) [251)
Time: 2 |[425) [239] [262] [66] | [590] [305] [167] [426] [301)
270 3 | [422] (111] |[248] [477] [396] 1562 [475)] 282]
4 | [53] 128] .. [138] [355] [186] [120] [160) |[549) [583)
E?i save 5 [479] [43] |[423] [447] [71] | 1591] [303] [277] |[112) [252] [415]
6 [0] [127] [300] | [353] [25] [84] 520 (223] |(17)
7 | [447] [513] | [224] [221] | [490] [154] |[121] 521 [405] [468]
8 | [85]1 [114] ..|[473] [409] | [14] [458] | [432] [44] [439] [362] [330] |
9 | [448] [506] [174] [351] [542] [80] |[482]
10 | [5] [522] [75] [364] | [299] [326] [556] [178] [142] [91] [196]
11 | [534] [133].. [36] [348] [150] [315] [214] 621 [176] ...
12 | [389] [280]... [359] [227] | [412] [492] [92] 512] [213] (220] |[266]
13 | [350] [40] .| [209] [548].. [7] [421] [486] [148] (406] |7
14 | [2) [88] [3.. | [416] [393] [152] | [518] [495] 578
15 | [535] [295] | [429] [255] [90] [(189] [282]...| (407] (193] |[63] [226] ...
16 | [169) [69] .| [46] 156] [417] [463] |[175] [163] |[386] [524] | [470]
17 | [(572) [381].. [290] [480] @ [390] 1271 [499] [457] |[135] [445]
18 | [568] [320] [525] | [448] [488] . [228] [545] [496] [554)
19 | [528] [438] [235] [529] [328].. 371] (153] (569] (58]
20 | [3] [403] [281) [349)] [294] [504] [297] [497] -
e e

Fig. 4: Desired exam timetable

e N3: Two time slots are selected randomly and all
examinations between the two time slots are swapped.

The termination criteria for the improvement phase are
fixed at 10000 iterations. Besides, 30 individual run is also
performed for each instance. The following parameters are set
for the local searches that are shown in Table III. Note that
other setting of parameters could have been selected, but these
parameter values have been selected according to the values
used in the scientific literature.

TABLE III: Parameter Setting for experiments

Algorithm Parameter Value(s)
SA Cooling rate 0.1
Temperature 5000
LAHC Frame size 500
GDA Decay rate 0.1

From the experimental results in Table IV, it can be
deduced that the proposed system can solve the ITC2007 exam
benchmark dataset effectively. For all of the instances of the
dataset, the best and the average values are highlighted after 30
individual runs. Graph heuristic SD produces feasible solutions
for all of the instances, and local search approaches further
improve the quality of the solutions. Among these three local
search algorithms, 5 out of 8 cases (e.g., Exam_1, Exam_3,
Exam_5, Exam_6, and Exam_7) LAHC performed the best

results followed by GDA with instances Exam_2 and Exam_38,
and SA with Exam_4. It is apparent that graph heuristic
does not produce quality results because it considers only
hard constraints. On the other hand, local search optimization
algorithms produce better results compared to graph heuristics
because the local search can improve the solution by reducing
the soft constraint violations. Note that this paper does not
aim to find the performance of the algorithms that suite the
best. Instead, it shows the capabilities of graph heuristic and
some local search algorithms for solving the exam timetable
interactively. It is up to users to decide what will be the
most useful algorithm in their particular circumstances. The
advantages of the proposed interactive system are highlighted
below:

e As the system has been developed using Java, it can
run on a computer running both Windows and Linux
(i.e., platform independence). Moreover, the incorpo-
ration of multi-thread assists the user to execute and
analyze more than one exam instance simultaneously.

e This interactive tool is able to construct a complete
timetable within a short time compared to the hu-
man scheduler, which usually takes long preparation
in advance. It is also notable that maintaining hard
constraints strictly and minimization of soft constraint
violations for a large number of exams are challenging
for the human scheduler. In contrast, an automated
scheduler can perform the tasks firmly and effectively.

e This tool is useful as it can efficiently utilize institu-
tional resources (i.e., room and timeslot utilization) as
well as fulfill the major requirements requested by the

www.ijacsa.thesai.org

692 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 3, 2020

TABLE IV: Performance (penalty values) comparison between SD, LAHC, SA and GDA on ITC2007 exam dataset

Instances SD LAHC SA GDA
Measure Best Avg Best Best Avg Best Avg
Exam_1 25980 | 26,769.45 | 12421 | 13,048.88 | 12,537 | 14,04237 | 12,483 | 13,858.68
Exam_2 | 30960 | 32,135.67 | 2,807 | 3,766.79 | 2911 | 355326 | 2,789 | 3,578.79
Exam_3 85356 | 8837443 | 43,008 | 47,160.20 | 44,173 | 48,060.62 | 43,241 | 47,560.63
Exam_4 | 41,702 | 4232338 | 34241 | 34937.07 | 34,152 | 34.834.18 | 34417 | 34,744.46
Exam_5 | 132,953 | 133.873.50 | 15,643 | 16,773.46 | 15816 | 16,891.51 | 15,690 | 16,612.17
Exam_6 | 44,160 | 48,729.67 | 29,630 | 33,880.08 | 30,116 | 34.910.16 | 29,845 | 34,150.38
Exam_7 | 53405 | 56366.08 | 19,080 | 21,612.42 | 20,071 | 21,518.31 | 19,178 | 21,821.75
Exam_8 92,767 | 9646532 | 23,315 | 25002.29 | 23411 | 25801.79 | 22,891 | 25,152.65
students and invigilators. Institutional personnel can ACKNOWLEDGMENT

easily use and maintain the software without having
prior programming knowledge.

e Flexibility in changing of input settings (e.g., con-
straints, exams, resources), support of interactive pa-
rameters tuning, and selection of different execu-
tion methods (either initial feasible solution with
graph heuristic or initial solution followed by a near-
optimum solution using local searches) are some
salient features of the system, which makes it a robust
interactive tool. Users can observe the effects of the
different configurations on the output quality of the
timetable.

e Although the system includes predefined eight in-
stances of ITC2007 dataset, a provision has been kept
for the users to modify or add new user-defined exam
instances.

VI. CONCLUSIONS

This paper aims to generate an easy to use interactive
examination timetabling software whereby graph heuristics
and different local search algorithms are employed as solution
methods. SD graph heuristic generates an initial feasible solu-
tion, whereas local search algorithms such as SA, GDA, and
LAHC work as an optimizer for producing near-optimum solu-
tions for the exam dataset. This proposed system is developed
using Java and tested successfully on real-world dataset named
ITC2007 exam dataset. The software is flexible and robust that
outweighs the manual approaches. Users can automatically
produce dataset from student registrations, select preferred
hard and soft constraints, employ different improvement al-
gorithms with desirable parameters and eventually produce a
quality timetable within a reasonable time frame. The system
could be scaled up by including different population-based
search algorithms, which could provide more efficiency in the
improvement phase. The usability of the software can also be
enhanced to attain a satisfactory user experience.

This research is supported by Ministry of Posts,
Telecommunication and Information Technology, Govern-
ment of People’s Republic of Bangladesh (Memo no:
56.00.0000.28.33.042.15-509)

REFERENCES

[1] J. Johnes, “Operational research in education,” European Journal of
Operational Research, vol. 243, no. 3, pp. 683 — 696, 2015.

[2] P. Boizumault, Y. Delon, and L. Peridy, “Constraint logic programming
for examination timetabling,” The Journal of Logic Programming,
vol. 26, no. 2, pp. 217 — 233, 1996.

[3] A. Cataldo, J.-C. Ferrer, J. Miranda, P. A. Rey, and A. Sauré, “An integer
programming approach to curriculum-based examination timetabling,”
Annals of Operations Research, vol. 258, no. 2, pp. 369-393, 2017.

[4] N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring
constructive hyper-heuristic for examination timetabling problems,”
Applied Intelligence, vol. 37, no. 1, pp. 1-11, 2012.

[S] M. Mohmad Kahar and G. Kendall, “A great deluge algorithm for a real-
world examination timetabling problem,” Journal of the Operational
Research Society, vol. 66, no. 1, pp. 116-133, 2015.

[6] Y. Bykov and S. Petrovic, “A step counting hill climbing algorithm
applied to university examination timetabling,” Journal of Scheduling,
vol. 19, no. 4, pp. 479-492, 2016.

[71 P. Amaral and T. C. Pais, “Compromise ratio with weighting functions
in a tabu search multi-criteria approach to examination timetabling,”
Computers & Operations Research, vol. 72, pp. 160-174, 2016.

[8] M. Battistutta, A. Schaerf, and T. Urli, “Feature-based tuning of single-
stage simulated annealing for examination timetabling,” Annals of
Operations Research, vol. 252, no. 2, pp. 239-254, 2017.

[9] N. Pillay and W. Banzhaf, “An informed genetic algorithm for the
examination timetabling problem,” Applied Soft Computing, vol. 10,
no. 2, pp. 457467, 2010.

[10] O. Abayomi-Alli, A. Abayomi-Alli, S. Misra, R. Damasevicius, and
R. Maskeliunas, “Automatic examination timetable scheduling using
particle swarm optimization and local search algorithm,” in Data,
Engineering and Applications, pp. 119-130, Springer, 2019.

[11] A. L. Bolaji, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, “A
hybrid nature-inspired artificial bee colony algorithm for uncapacitated
examination timetabling problems,” Journal of Intelligent Systems,
vol. 24, no. 1, pp. 37-54, 2015.

[12] H. Babaei, J. Karimpour, and A. Hadidi, “A survey of approaches

for university course timetabling problem,” Computers & Industrial
Engineering, vol. 86, pp. 43-59, 2015.

www.ijacsa.thesai.org

693 |Page

[13]

[14]

[15]

[16]

(17]

(18]

(IJACSA) International Journal of Advanced Computer Science and Applications,

R. Qu, E. K. Burke, B. McCollum, L. T. Merlot, and S. Y. Lee, “A
survey of search methodologies and automated system development for
examination timetabling,” Journal of scheduling, vol. 12, no. 1, pp. 55—
89, 2009.

S. Piechowiak and C. Kolski, “Towards a generic object oriented deci-
sion support system for university timetabling: an interactive approach,”
International Journal of Information Technology & Decision Making,
vol. 3, no. 01, pp. 179-208, 2004.

J. J. Thomas, A. T. Khader, B. Belaton, and E. Christy, “Visual interface
tools to solve real-world examination timetabling problem,” in 2010
Seventh International Conference on Computer Graphics, Imaging and
Visualization, pp. 167-172, IEEE, 2010.

M. Ayob, A. R. Hamdan, S. Abdullah, Z. Othman, M. Z. A. Nazri,
K. A. Razak, R. Tan, N. Baharom, H. A. Ghafar, R. M. Dali, et al.,
“Intelligent examination timetabling software,” Procedia-Social and
Behavioral Sciences, vol. 18, pp. 600-608, 2011.

Z. Chunbao and T. Nu, “An intelligent, interactive & efficient exam
scheduling system (iieess v1. 0),” Proceeding of the Practice and Theory
of Automated Timetabling (PATAT), Norway, pp. 437-450, 2012.

I. Ober, “A variant of the high-school timetabling problem and a

[19]

[20]

[21]

[22]

(23]

[24]

Vol. 11, No. 3, 2020

software solution for it based on integer linear programming,” 2016.

T. Miiller, “Itc2007 solver description: a hybrid approach,” Annals of
Operations Research, vol. 172, no. 1, p. 429, 2009.

B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and R. Qu,
“A new model for automated examination timetabling,” Annals of
Operations Research, vol. 194, no. 1, pp. 291-315, 2012.

A. K. Mandal and M. Kahar, “Solving examination timetabling problem
using partial exam assignment with great deluge algorithm,” in 2015
International Conference on Computer, Communications, and Control
Technology (I4CT), pp. 530-534, IEEE, 2015.

E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing
for exam timetabling problems,” in PATAT 2008 Conference, Montreal,
Canada, pp. 1-7, 2008.

K. Bouleimen and H. Lecocq, “A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and
its multiple mode version,” European journal of operational research,
vol. 149, no. 2, pp. 268-281, 2003.

G. Dueck, “New optimization heuristics: The great deluge algorithm and

the record-to-record travel,” Journal of Computational physics, vol. 104,
no. 1, pp. 86-92, 1993.

www.ijacsa.thesai.org

694 |Page

