
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

67 | P a g e

www.ijacsa.thesai.org

Arduino based Smart Home Automation System
A Simple and Efficient Serial Communication Method

Daniel Chioran1

Technical University of Cluj Napoca

Cluj Napoca, Romania

Honoriu Valean2

Department of Automation

Technical University of Cluj Napoca

Cluj Napoca, Romania

Abstract—Around the World massive quantities of energy are

consumed in residential buildings leading to a negative impact on

the environment. Also, the number of wireless connected devices

in use around the World is constantly and rapidly increasing,

leading to potential health risks due to over exposer to

electromagnetic radiation. An opportunity appears to reduce the

energy consumption in residential buildings by introducing

smart home automation systems. Multiple such solutions are

available in the market with most of them being wireless, so the

challenge is to design such systems that would limit the quantity

of newly generated electromagnetic radiation. For this we look at

several wired, serial communication methods and we successfully

test such a method using a simple protocol to exchange data

between an Arduino microcontroller board and a Visual C# app

running on a Windows computer. We aim to show that if desired,

smart home automation systems can still be built using simple

viable alternatives to wireless communication.

Keywords—Energy consumption; home automation; serial

communication; microcontrollers

I. INTRODUCTION

Home automation started around 100 years ago when
introducing electric power to domestic houses lead to the
introduction of the first automated home appliances, such as
the kettle in 1889 or the washing machine in 1904.

That automation process continues to this day as we need
and also want ever more complex automated systems in our
homes, making our lives easier, safer and more comfortable.
Such systems are good for us and also for the Environment as
they can significantly reduce our energy consumption by
applying intelligent control to lighting, heating or power
outlets in our homes.

It has been observed that in the United States,
approximately 40% of the energy consumed was used in
residential buildings [1] while in Europe the value was lower
(but still significant), at 27% for the year 2017 according to
Eurostat [2].

Multiple devices for controlling only one or two variables
in the house and some complete home automation systems
have already been released to the market. Installing them
allows us to control the access, heating, lighting or the air
conditioning (among others) but one important health related
concern arises. In order to provide long distance control, each
of these devices connects to the internet and to other devices
inside the home mostly via Wi-Fi and Bluetooth.

We see light bulbs, thermostats, alarm systems,
surveillance cameras, IoT hubs and multiple smart home
appliances all interconnected and communicating over
wireless networks, generating electro-magnetic (EM)
radiation.

According to the Statista.com web-site [3], in 2010 the
number of network connected devices / inhabitant, on a
planetary scale was 1.84. By the year 2015 that number rose to
3.47 devices / inhabitant and the estimations showed that by
the end of 2020, each person alive on the planet will own an
average of 6.58 network connected devices.

The concern of over exposure to EM radiation is real,
especially in the case of apartment buildings where in each flat
that accommodates 2-3 people we can expect to find around
10 such devices and at any point in the building we can be
surrounded by countless sources of EM radiation. This topic is
rarely discussed and we tend to neglect the possible long term
implication on our health.

Considering the above, we decided to look at different
wired communication methods and developing one to be used
within such automated systems, with the aim of reducing the
EM radiation generated by the traditional wireless
communication.

As this is a long term research project, in this paper we
will focus on finding a simple and efficient wired and low
radiation communication method between the microcontroller
in charge of the automated system and a monitor and control
app running on a personal computer.

The aim of future research will be to develop the full scale
smart home automation system that will make life easy and
comfortable for the residents, reduce the energy consumed in
the building thus reducing the energy footprint and of course,
limit as much as possible the amount of new EM radiation
generated.

II. LITERATURE REVIEW

According to ABI Research [4] and to a study on
Statista.com [5], in the United States the number of home
automation systems went from 1.5 million in 2012 to 45
million in 2019 and the market value of these systems is
expected to reach 12.81 billion USD by the end of 2020, a
strong appreciation from 5.77 billion USD in 2013.

Such strong public interest towards these systems attracted
multiple companies to finance their development and multiple

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

68 | P a g e

www.ijacsa.thesai.org

research papers were published. Even so, the market is still
fragmented and international standards in this domain are still
being formulated. We studied several of these papers and will
shortly discuss the findings and how our system will differ and
where it will take a similar approach.

A general presentation of smart home automation devices
and an outline of the advantages one has while living in a
smart home is found in [6]. This paper proposes the use of
X10 (wired) and ZigBee, Z-Wave and Insteon (wireless)
technologies to achieve data exchange between the
components of the system within the residence and the use of
Ethernet for long distance access and control of the overall
system. While the wireless communication inside the
residence is something that we try to avoid in our system, the
wired Ethernet connection is a good solution.

Another approach to smart home automation is presented
in [7] and published in 2017. It is suggested to use an Android
mobile phone that communicates via Bluetooth to an Arduino
board in charge of switching the lights, air conditioning,
smoke detectors and others. The main thing missing is the
system’s ability to act independently of the user and to make
its own decisions. Further still, the use of Bluetooth
technology and the need to keep the mobile phone close to the
user even while indoor is something that we try to avoid with
the system we develop. On the other hand, the use of an
Arduino board is a good decision that makes for a cost
efficient and scalable system.

As seen before, Bluetooth is a very popular technology in
home automation. It is also used in [8] where a Bluetooth
based client server network with its own custom built
communication protocol is presented. The HAP- Home
Automation Protocol is at the core of this system where a PC
acts as server and the other sensors and electric devices are
connected as slaves. Even though Bluetooth emits less
radiation and communicates over shorter distances than Wi-Fi,
it is still generating new EM radiation, something that we try
to avoid. In addition to that, the system proposed in this paper
lacks the ability to interact with the user over long distances,
something that in our vision is compulsory.

Closer to our vision is the system presented in [9], where
an Arduino Uno board is used to control the automated system
and all the sensors and actuators are wired to the Arduino thus
avoiding wireless communication. Even so, the system does
have a mobile phone component, an app that connects via
Bluetooth to the Arduino, something we have seen in most of
the papers reviewed. Long distance communication with the
system is in this case also not implemented.

All IoT devices do offer long distance monitoring and
control. Philips Hue intelligent light bulbs or Fibaro smart
power outlets, along with smart TVs, ACs and video
monitoring devices can be connected to a hub such as
Amazon’s Alexa, Apple’s Siri or the Google Nest Hub. Some
people may be concerned however regarding how safe these
devices are to cyber-attacks, as they are always connected to
the internet. In [10] the issues associated with the security,

privacy, safety and ethics of IoT devices are widely discussed
and commented.

After reviewing the sources above, it was decided that an
efficient smart home automation system can be built around
an Arduino Uno board. This will make the system highly
scalable and modular while keeping cost very low. All the
sensors and actuators will be connected to the board by wires,
thus limiting the amount of new EM radiation generated.

Most of the actions of the Arduino will be performed
autonomously and instead of Bluetooth, for monitoring and
configuration purposes we will connect to the board via the
USB cable from a personal computer , which is of course the
main topic of this paper and will further be discussed.

III. SYSTEM DESIGN AND THE COMMUNICATION METHOD

Building a smart home automation system around an
Arduino makes the task of adding, removing and
communicating with sensors and actuators straight forward
through the I/O pins. The challenge however, is establishing
an efficient and reliable way to communicate with a control
and configuration app running on a personal computer.

Arduino boards already connect via the USB port to the
Arduino IDE (running on the PC). This is how new software is
uploaded to the board. It is through the same USB cable and
through the same ports that we will establish a serial
communication between the Arduino board and a C# app, as
outlined next in Fig. 1.

A. Arduino Uno

We will assume that the Arduino boards, and mainly the
Uno board is already familiar to the reader and will focus only
on the communication aspects related to the Arduino Uno. The
board itself has a built in type B USB port and connects
through cable to a type A USB port on the personal computer.
If needed, communication to other devices is possible using
built-in pins.

As seen in Fig. 2, the Arduino Uno can communicate to
other peripherals using UART, I2C and SPI dedicated pins as
it will be discussed next.

Unlike peripheral devices on traditional computers, on
microcontroller boards peripherals are not necessarily
independent devices, they can also be parts of the board itself
that are dedicated to a specific tasks. These specific tasks are
unrelated to the central processing unit itself and run
independent of it. (E.g. a real time clock module may be
integrated and run independently of the CPU but physically be
part of the same board). Other peripherals may be connected
as separate boards through the I/O pins. As with traditional
computer peripherals, the ones on microcontroller boards have
the same purpose: to make specialized tasks easier.

B. I2C – Inter Integrated Circuit

I2C is an asynchronous, multi-master, multi-slave serial
communication protocol especially designed for
microcontrollers in 1982 by Philips Semiconductor.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

69 | P a g e

www.ijacsa.thesai.org

Fig. 1. Overview of the basic Data Flow between Components.

Fig. 2. The Communication Pins on Arduino Uno R3.

It is used for attaching lower speed peripherals to
microcontrollers. It is very popular with modules and sensors
in short-distance and often intra-board communication.
Theoretically, using I2C communication it is possible to
connect up to 128 devices to an Arduino board, more than
enough for most projects, including ours.

When connecting a large number of modules to a
microcontroller board, it is useful to consider the main
controller board as the “master” and the other devices (sensor /
actuator modules) as “slaves”. Because all these devices
(masters and slaves) are connected to the same wires,
maintaining clear communication among them is essential and
such a task is possible by implementing an address system on
the shared bus.

It is easy to understand why, in this configuration, all
communication starts with specifying the unique address of
the recipient device before sending data. The simplicity of the
wiring used to implement this system comes with a slower
communication speed trade-off, in comparison to SPI.

C. SPI – Serial Peripheral Interface

SPI was developed by Motorola in the mid ‘80s and
similar to I2C, it is also a serial communication protocol.
However, the similarities end there as SPI is a synchronous
communication interface, developed for high-speed data
exchange between one master device and up to four slaves.

As SPI is much faster than I2C, it is used in applications
such as data logging on memory cards and displaying data on
dedicated liquid crystal displays. The trade-off for this higher
speed is the need to use dedicated wires for the four slave
devices.

D. UART – Universal Asynchronous Reception and

Transmission

The first thing to know about UART is that it is not a
communication protocol. UART refers instead to the physical
specialized integrated circuits found on the board and that
allow for serial data to be send and received. This is the way
our Arduino board communicates with the Windows app
running on a PC so it will be presented in greater detail.

In UART communication, two devices exchange messages
directly between each other while being physically connected
by 2 wires. The first device converts the data to be sent from a
parallel to a serial format and then it sends it towards the
UART receiver. The receiver converts the received data from
serial back to a parallel format so that it can be used by the
device requiring the information. The two wires linking the
UART circuits are connected as follows: the Tx pin of the
transmitter connects to the Rx pin of the receiver, as seen in
Fig. 3.

As UART asynchronously transmits data, there is
obviously no clock to synchronize the transmission and
reception of data packages between the two circuits. To
overcome this drawback, the transmitter adds start (low state)
and stop (high state) bits to each data package it transmits.
These bits mark the beginning and the end of the data
packages so that the UART receiver knows when to begin and
finish reading data.

When a receiver detects a start bit, it begins reading the
transferred data at a specific frequency known as “baud rate”,
or transfer rate. This baud rate is a measure of the speed at
which data is being transmitted between devices, measured in
bits per second. Both UART devices, transmitter and receiver
must use the same baud rate and the same structure of the data
package. If the two devices use baud rates more than 10%
apart, the communication between them is no longer possible.

As seen in [11], the baud rate between UART devices is
generally set at 9600 bps, but it is possible to increase it up to
115000 bps.

Regarding the detection of errors during data transfer, this
task is performed by including a parity bit in the data package.
Factors such as the presence of strong electro-magnetic
radiation, the use of different baud rates in the transmitter and
receiver or simply the use of extremely long connection wires
may affect the integrity of the data packages, leading to the
occurrence of errors in the data. In such cases, the presence of
the parity bit allows the UART receiver to verify if errors have
occurred during data transfer and request a resend.

Fig. 3. Wired Connections between Two UART Devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

70 | P a g e

www.ijacsa.thesai.org

The way this is done is quite simple. When a data package
is received, the UART device counts how many bits in “high
state” or “logic 1” it has received and checks if this number is
odd or even. Then the parity bit is checked. If the total number
of high state bits in the data package is an even number and
the parity bit is zero (also indicating an even number), the
UART receiver determines that no errors have occurred during
the transfer of that particular data package. If this is not the
case and a disparity between the number of high state bits and
parity bit is identified, the receiver determines that an error
has occurred during transfer and the data in that particular
package is corrupt.

In a similar way, if there is an odd number of high state
bits in the data package and the parity bit is 1 (also indicating
an odd number), the receiver will again determine that no
errors have occurred during transfer. As conclusion: errors
have occurred when the parity bit does not match the odd or
even nature of the number of counted high state bits in the
data package.

To ensure a correct transmission of data, UART
implements another check in addition to the parity bit. If the
communication line is held in “logic 0” or “low state” for
longer that the time needed to send a character, this fact will
be registered as a break condition by the devices.

UART is a master-slave communication system that does
not allow for multiple master devices or multiple slave devices
to coexist in the same network. This constitutes a drawback in
the case of complex systems but in the case of our project, it
will do just fine. It should be noted that there is no perfect
communication system or protocol, and UART is simple and
efficient enough to still be in use and still very popular.

The fact that the structure of the data packages can change
according to the needs of the application and the fact that only
two wires are needed to link the two devices further
constitutes an advantage and a reason to use this means of
communication in our project and in many others as well.

E. The Communication Protocol

Just as the UART transmitter and receiver both use the
same baud rate and the same data package structure in order to
successfully exchange information, both software applications
(the one uploaded in the Arduino board and the one running
on the Windows PC) need to follow the same rules while
exchanging data, otherwise the communication between them
will not be possible. This set of rules implemented by both
apps form a communication protocol.

In order to test and validate the chosen communication
solution and the compatibility between components from the
perspective of bidirectional data exchange, the following
communication protocol was implemented in both the
Arduino IDE sketch run by the Uno board and in the Visual
C# app running in the Windows PC.

For now, this communication protocol is just a proof of
concept and defines only several commands, but the structure
of the data packages allow for close to 377000 commands to
be defined and implemented in future versions if ever needed.

Fig. 4. The Structure of a Data Package.

As seen in Fig. 4, each transmission must begin with a
specific character that signals the beginning of the data
package. For this purpose we will use the exclamation mark
“!” meaning “listen Arduino” followed by the command.

The command consists of 5 characters, letters or numbers
combined as desired. These commands are issued by the
Visual C# app as Master and executed by the Arduino board
as Slave. At the end of the command there is a mandatory “\n”
marker that signals the end of the data package and the Uno
board executes whatever it was requested of it.

Several commands were defined and implemented in the
two software applications communicating in our system.
These commands allow the app. to connect and disconnect
from the Arduino, to switch on and off its on board LED, to
request the temperature and humidity values from a DHT11
module connected to the Arduino and display those on our PC
and to request the board to write these values on a memory
card. The results of their implementation will be presented in
the Results and discussions section of this paper.

F. The Arduino Sketch

Arduino IDE (Integrated Development Environment) is an
open-source software used to write, compile, debug and
upload programs to Arduino boards. The code is written in
C/C++ and several specific methods and functions are added.

The Arduino program, called “sketch”, can safely be
uploaded onto the board if no errors occur during compilation
and if the dynamic variables do not exceed the limited
memory available.

The built-in flash memory of the board is non-volatile, so
the sketch is not lost when the board is disconnected from the
power supply. This way, when the board is repowered, it will
automatically reload the sketch and run.

In order to test the communication link and protocol
between the Arduino board and the Windows PC, a sketch
was written for the Uno board and a Visual C# app for the
Windows PC.

An overview of the Arduino sketch is presented in Fig. 5.
It begins with a initialization part where libraries are included
and variables are declared. For accessing the temperature
sensor, the “dht.h” library must be included and to write data
on the memory card the “SPI.h” and “SD.h” libraries are used.
For the purpose of accurate time keeping the real time clock
module on the Data logger shield is accessed and for this task,
the “wire.h” and “RTClib.h” libraries are needed.

In the Setup function the serial communication is initiated
and the baud rate is set, in our case at 9600 bps. The RTC is
also initiated and set if needed (using the time and date the
uploaded sketch was compiled at). For writing on the SD
memory card, it is checked if the card is available or not and
finally, the built-in LED is set as output so it can be turned on
and off later on in the sketch if desired.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

71 | P a g e

www.ijacsa.thesai.org

The main part of the sketch is the “void loop()” function.
This part runs, as named, in a loop as long as the board is
powered. At this point in the sketch the serial data is read. If
the Start command is received, this will validate an “if”
condition inside the loop and from that point onwards, other
commands will be answered, until the “!Stoop\n” command is
received.

Most of the sketch in this loop is composed of “if”
conditions checking whether certain commands are received.
For every command received one of these “if” conditions is
validated and the appropriate instructions are executed (e.g.
reading the temperature, switching the LED on/off, writing the
SD card).

We did not include a “Serial.end()” function in this sketch,
that means the Rx and Tx digital pins are always reserved for
the UART communication and that our Arduino board is
constantly ready to receive commands through the serial link.

G. The Visual C# app

Microsoft Visual Studio is an Integrated Development
Environment – IDE used to develop apps capable of running
on any platform.

Fig. 5. Overview of the Arduino Sketch Logic.

We refer to Visual C# when Visual Studio is used to
develop a C# app. It makes it easy to create modular

applications where code can be reused, it has multiple libraries
that make it easy to implement a multitude of functions and
creating a windows form app is fast and straight forward. The
decision to develop a Windows app was taken as Windows OS
represents 77% of the global market in the area of desktop and
laptop computers at the time this article was written, so it is
relevant to the vast majority of users around the World.

Similar to the Arduino code, in the C# app we also set up
the serial communication by selecting the communication port
and baud rate and sending the “!Start\n” command to the
Arduino board. While the two entities are connected, it is
possible to send commands and receive data to and from the
microcontroller. The specific examples will be discussed next,
in the Results and discussion part of this paper. As a general
rule, all commands are issued as text sent through the serial
link and structured according to the communication protocol
described earlier. All received data is simply read from the
serial monitor and displayed in the text boxes of the Windows
app. All data received from the Arduino is time stamped so
that it is easier to keep track of it.

IV. RESULTS AND DISCUSSIONS

While researching a simple and efficient way to exchange
data between a microcontroller and a Windows running
program, two apps were developed, a communication protocol
set up and messages were exchanged successfully between
them.

As seen in Fig. 6, the Arduino board has a data logger
shield with a SD memory card attached and a temperature
sensor also connected.

In this simple configuration there is no pin conflict
detected, however, if more sensors or modules are connected,
it has to be kept in mind that digital pins 0 and 1 on the
Arduino board are used for the UART communication. In case
these pins also need to be connected to other devices, the
UART communication is harder to achieve, but not impossible
and the Arduino board has to be programmed in such a way,
as to take turns between using these pins for UART and sensor
communication, each time opening and closing a serial
communication link and then interacting with the sensor. The
power to the sensor must also be turned on and off
accordingly to avoid simulant data transmission towards the
Rx pin. This complex setup however is not recommended.

The Arduino sketch was written in Arduino IDE and
uploaded onto the board. As seen in Fig. 7, while compiling
the current version it was noted that it used 17088 out of
32256 bytes of on-board storage memory (52%) and the
variables occupy 1370 out of 2048 bytes of dynamic memory
available (66%). There are sufficient memory resources still
available to further develop the sketch and add to its
functionality. For the Windows app, such details are not
relevant as memory resources on desktop and laptop
computers are plentiful.

The interface of the Windows app is presented in Fig. 8.
When the “START” button is pressed, the “!START\n”
command is sent to the Arduino board and from that moment
on the board will accept other commands as well. Pressing the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

72 | P a g e

www.ijacsa.thesai.org

“STOP” button will have the opposite effect, sending a
“!STOOP\n” command and closing the communication link.

The “Read T” button sends a “!GETMP\n” command to
the board and it will cause the Arduino to answer with a serial
message containing the time and the temperature recorded by
the DHT11 sensor module. This data is displayed in the
window. This will be an “one off” event and to obtain another
temperature reading the button has to be pressed again.

Fig. 6. Arduino with Data Logger Shield and Temp Sensor.

Fig. 7. The Arduino IDE Window and Sketch Code.

Fig. 8. The Graphic user Interface of the Windows App.

The system behaves in a similar way if the “Read H”
button is pressed, with the exception that the “!GETHU\n”
command is sent and the humidity value is received.

If the button “Write SD” is pressed, the command
“!WRTON\n” is sent to the Arduino and data is being written
onto the SD card inserted into the data logger shield. A sample
of this data is seen in Fig. 9. If the same button is pressed
again the “!WRTOF\n” command is sent to prompt the
Arduino to stop writing data on the SD card. The app decides
what command to send by checking the state of a Boolean
variable that is changed every time the button is pressed,
alternating between True/False, meaning write or stop writing.

Turning the on-board LED on and off is done in a similar
way, the only difference is the command being sent that can
either be “!LEDON\n” or “!LEDOF\n”.

Fig. 9. A Sample of Data from DHT11 Recorded Overnight.

If the sensor received data (such as temperature or
humidity) was displayed on a dedicated LCD shield attached
to the Arduino Uno, we would need 9 pins (out of 20)
dedicated to this task. Other pins would also be required if we
were to attach more buttons to activate or deactivate different
functions of the board. All this would mean that the number of
sensors and actuators that could still be attached to our board
would be limited, something that is not desirable.

In contrast to the scenario outlined above, connecting the
Arduino to a Windows PC and controlling it through an app,
makes it an all-around better solution. The graphical user
interface is easy to use, we can integrate countless buttons and
commands without using any additional I/O pins and so more
sensors and actuators can be attached to the Arduino board.

V. CONCLUSIONS AND FURTHER WORK

The successful exchange of data between the
microcontroller board and the Windows app is extremely
important. It proves that it is possible to build a cheap and
easy to program automation systems (Arduino based) and to
connect it to a user friendly application for control and
monitoring purposes.

Such a communication method does not generate any new
EM radiation in the environment (as opposed to Wi-Fi or
Bluetooth) and still offers full configuration and control
capabilities over the microcontroller board.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

73 | P a g e

www.ijacsa.thesai.org

This paper is an essential part in developing a complete
Arduino based Smart Home Automation system that will
make the home more comfortable to live in while having
limited new EM radiation generated in the environment and
very importantly, reducing the energy footprint of that home.

Our work continues with perfecting the architecture of this
smart home automated system, selecting the modules to be
included, the electrical connections between them and
finalizing the control software, all of which will be made
public in future papers over the coming year.

REFERENCES

[1] Online resource: United States Energy Information Administration
https://www.eia.gov/energyexplained/index.php?page=electricity_in_the
_unit ed_states

[2] Online resource: https://ec.europa.eu/eurostat/statisticsexplained/index.
PhpEnergy_consumption_in_households#Energy_consumption_in_
house holds_by_type_of_end-use.

[3] Online resource: https://www.statista.com/statistics/678739/forecast-on-
connected-devices-per-person/

[4] Online resource: "1.5 Million Home Automation Systems Installed in
the US This Year". www.abiresearch.com. Retrieved 2018-11-22.

[5] Online resource: https://www.statista.com/outlook/279/109/smart-home/
united-states#market-users

[6] R. John Robles and Tai-hoon Kim, “Applications, Systems and Methods
in Smart Home Technology: A Review,” International Journal of
Advanced Science and Technology. 15: 37-48-2010.

[7] Ms. Poonam V. Gaikwad, Prof. Mr. Yoginath R. Kalshetty, “Bluetooth
Based Smart Automation System Using Android”, International Journal
of New Innovations in Engineering and Technology, Volume 7 Issue 3–
April 2017.

[8] N.Sriskanthan and Tan, Karande. “Bluetooth Based Home Automation
System”. Journal of Microprocessors and Microsystems, Vol. 26,
pp.281-289, 2002.

[9] Theint Win Lai#1, Zaw Lin Oo*2, Maung Maung Than*3,“Bluetooth
Based Home Automation System Using Android and Arduino “#Faculty
of Computer System and Technology, University of Computer Studies
(Sittway),No.(123),Natmauk Road,Bahan Township, Yangon, Myanmar

[10] Hany F. Atlam and Gary Wills,"IoT Security, Privacy, Safety and
Ethics", published on: March 2019,DOI: 10.1007/978-3-030-18732-3_8
In book: Digital Twin Technologies and Smart Cities Publisher:
Springer Nature Switzerland AG 2020.

[11] Online resource: http://www.circuitbasics.com/basics-uart-communicati.

