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Abstract—A Capacitated Vehicle Routing Problem (CVRP)
is an important problem in transportation and industry. It is
challenging to be solved using some optimization algorithms.
Unfortunately, it is not easy to achieve a global optimum solution.
Hence, many researchers use a combination of two or more
optimization algorithms, which based on swarm intelligence
methods, to overcome the drawbacks of the single algorithm. In
this research, a CVRP optimization model, which contains two
main processes of clustering and optimization, based on a discrete
hybrid evolutionary firefly algorithm (DHEFA), is proposed. Some
evaluations on three CVRP cases show that DHEFA produces an
averaged effectiveness of 91.74%, which is much more effective
than the original FA that gives mean effectiveness of 87.95%. This
result shows that clustering nodes into several clusters effectively
reduces the problem space, and the DHEFA quickly searches the
optimum solution in those partial spaces.
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I. INTRODUCTION

A Vehicle Routing Problem (VRP) model plays an impor-
tant role in various industrial sectors, ranging from production-
based industries to logistical issues. Various methods are used
to solve this problem, which are grouped into two categories:
deterministic optimization algorithms [1], [2], [3], [4], [5], and
probabilistic optimization algorithms [6], [7], [8], [9].

An optimization algorithm determines such a great solution
in solving VRP that finding the global optimum solution
takes a long time. Not only the deterministic optimization
algorithms but also the probabilistic ones have some specific
problems. The deterministic algorithms guarantee to give a
global optimum solution, but their processes take a long time.
In contrast, the probabilistic algorithms are commonly fast,
but they do not always produce a global optimum solution.
In practice, probabilistic algorithms are preferable in terms of
fast processing time.

Therefore, many probabilistic algorithms are developed to
tackle optimization problems, such as genetic algorithm (GA)
[10], [11], [12], [13], [14], particle swarm optimization (PSO)
[15], [16], bee colony optimization [17], [18], cuckoo search
[19], and Firefly Algorithm (FA) [20], [21], [22], [23]. There
are also many new their hybrid versions or variants, such as
parallel genetic algorithm [24], fuzzy optimization [25], ant
colony optimization and variable neighbourhood search (ACO-
VNS) [26], hybrid firefly algorithm (HFA) [27], and Hybrid
Evolutionary Firefly Algorithm (HEFA) [28].

In practice, HEFA has been proven to produce high perfor-
mances for many optimization problems [28]. Hence, in this
paper, a discrete version of HEFA, which is called as DHEFA,
is exploited to develop a CVRP optimization model. A new
idea of HEFA-based clustering is also proposed to make the
model more effective in searching the minimum-cost route.

Next, the fundamental theory of CVRP and HEFA will
be clearly described in Section II. The proposed models of
HEFA-based clustering and DHEFA-based optimization are
then explained more detail in Section III. After that, Section IV
discusses the simulation results. Section V eventually provides
conclusion and the further plan.

II. FUNDAMENTAL THEORY

VRP is a combinatorial optimization problem, which is
an extension of a Traveling Salesman Problem (TSP) [3]. It
has a basic form called Capacitated VRP (CVRP) [7]. Unlike
VRP, the CVRP has an additional problem when searching
for optimum vehicle order schedules. Each node visited has
a load that should be accommodated, and each vehicle has
a maximum capacity that cannot be violated. This not only
makes the optimum solution depend on the results of vehicle
scheduling but also considers the burden that each vehicle
can accommodate. The total distance on the scheduling is
formulated as

xtot =

k∑
i=1

ci∑
j=1

xj , (1)

where xtot is the total distance, k is the number of vehicles, ci
is number of nodes contained in the ith vehicle, and xj is the
route traversed by the jth vehicle.

A. Firefly Algorithm

FA is inspired by the movements of fireflies looking for a
partner, which based on two things: the attraction between fire-
flies and the intensity of light. The light intensity is basically
the value of a function. Unfortunately, the light intensity is not
the same in every place. Therefore, in [20] the formula of light
intensity in one firefly against the others can be formulated as

I = I0e
γr, (2)

where I0 is the value of fitness, γ is the value of light
absorption, and r is the distance between the chasing individual
and the individual being pursued in a scalar value.
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Just like the light intensity, the attraction is dynamic since
the distance determines its change. The further the distance
between the fireflies, the smaller the interest. Hence, the
attractiveness function is formulated as

β = β0e
−γr2 , (3)

where β0 is the initial attractiveness value between two in-
dividuals and it is generally set to 1. In the original version
for continuous-problem optimization, the distance is calculated
using an Euclidean distance as

r(x, y) =

√√√√ n∑
i=1

(xi − yi)2, (4)

where both x and y are n-dimensional vectors.

Meanwhile, the firefly movement is calculated using the
formula

xi = xi + β(xj − xi) + αεi, (5)

where β is the attractiveness value and α is a random value
from 0 to 1.

B. Differential Evolution (DE)

DE is one of the Evolutionary Algorithms (EAs) [28],
where the key processes of this algorithm are mutation,
crossover, and selection. The mutation process in DE uses
velocity vectors from two random vectors. This velocity vector
then becomes the driving force for new vectors, which are
not the two previous vectors. The DE mutation formula is
represented as

vi(t+1) = xi(t) + F (xk(t) − xj(t)), (6)

where vi(t+1) is a vector of mutations, xi(t) is an old vector,
and F (xk(t)− xj(t)) is a random vector difference from other
individuals.

Meanwhile, the crossover scheme in HEFA is simply
represented as [28]

ui(t+1) = vi(t) if (rand > cr), (7)

where ui(t+1) is the vector of the crossover result and vi(t)
is the result of the exchange of elements between the vector
x1(t) and the vector vi(t+1) with cr is a cross-over rate or a
constant value when the element must be crossed-over.

The selection process is then formulated as

xi(t+1) =


xi, (f(xi) > f(ui(t+1)))

ui(t+1), (f(xi) ≤ f(ui(t+1)))

(8)

where this process only selects between the old vector xi and
the result of the crossover vector ui(t+1) based on its fitness
value.

Fig. 1. Individual movement in FA

C. Hybrid Evolutionary Firefly Algorithm

When building a good program of collective intelligence,
the balance between both exploitation and exploration plays an
important role. High exploitation makes the program converges
too quickly, which is known as a premature convergence,
and consequently, the program fails to find the best solution
(global optimum ). In contrast, too high exploration affects the
program does not converge to a global optimum. The program
tends to behave like a random search.

In FA, the process of balancing exploitation and exploration
is more focused on regulating the values of γ and α. The α
is responsible to the exploration process in the FA, which is
usually a little value. The small α keeps the FA from behaving
like a random search. But, at the same time, the exploration
area became smaller, as illustrated in Fig. 1. A small radius α
limits the movement of FA exploration. Each firefly drawn by
a dark blue circle cannot explore areas outside its population.
In cases where the solution space is greater than the radius
of the distribution of fireflies, some areas within the solution
space cannot be traced.

Nevertheless, this exploration problem can be solved using
a DE. Fig. 2 shows that the DE behavior that moves based
on other vectors makes DE has a significant exploration
radius. With a broad reach, DE can explore even outside the
population area. This feature makes it one of the reasons why
DE can complement the FA.

HEFA is a combination algorithm between FA and DE.
This algorithm is introduced by Afnizanfaizal Abdullah in [28].
The process of moving the algorithm is quite simple. HEFA
only divides the firefly population into two parts based on their
fitness values. Half of the population with high fitness values
exploits the FA while the rests with poor fitness scores explore
using the DE scheme. The experimental results in [28] prove
that HEFA is excellent at solving complex problems and non-
linear biological models.
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Fig. 2. Individual movement in DE

A dataset of nodes

Initializing a population of DHEFA based 
on the generated set of centroids

Clustering nodes using HEFA

Set of centroids
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Optimizing route using DHEFA

Fig. 3. Proposed DHEFA-based CVRP optimization model

III. PROPOSED MODEL

The proposed DHEFA-based CVRP optimization model is
illustrated in Fig. 3. It receives a dataset of nodes. First, the
dataset is clustered using a HEFA. The produced optimum
centroids are then exploited to initialize a population of fireflies
in a DHEFA, where an individual of firefly represents a
candidate solution of a route. Finally, the DHEFA searches
a minimum-cost route as the best solution.

The most challenging step in this optimization problem is
determining the division of the number of nodes against the
available vehicles. This division can be done in a purely ran-
dom way, selecting nodes in sequence until reaching maximum
vehicle capacity, and so on. However, clustering the nodes
into n cluster, which is the same as the number of available

vehicles, is the best solution since clustering can reach the
minimum total distance traveled by each vehicle.

A. Dataset of Nodes

The dataset used in this research is the Augerat et al. Set
B. It has three instances: B-n50-k8 that contains 50 nodes
with eight vehicles, B-n66-k9 that consists of 66 nodes with
nine vehicles, and B-n78-k10 that contains 78 nodes with ten
vehicles. All instances do not provide a cluster of nodes to the
vehicle, which is important since it affects the total distance
traveled by a vehicle. Therefore, a clustering procedure is
needed to develop the optimization model.

B. HEFA-based Clustering

A HEFA-based clustering is exploited here since it has
been proven to give a high performance. It is expected to
produce as high possible as density cluster for each vehicle
since the denser the cluster, the lower the total distance for
the vehicle. Firefly at the beginning of an iteration contains a
random vector with a size of two times the total vehicles. A
pair of two vector elements in a firefly represents the centroid
coordinates in the form (x, y).

All coordinates of centroids are then used to produce a
fitness value obtained from the objective function. Half of the
firefly population will move to pursue the best fitness value
from its perspective while the rest move as if randomly in
search of better fitness value. Once all fireflies move, they
renew their respective fitness values. It is repeated until the stop
condition is reached, and the HEFA produces the best firefly
with the highest fitness value. An example of HEFA-based
clustering a set of sixty nodes into three clusters is illustrated
in Fig. 4.

(a) Initial random three centroids (b) Final centroids obtained by HEFA

c3

c1

c2

c3

c1
c2

Fig. 4. Example of HEFA-based clustering for three clusters

The coordinates of all centroids produced by the best firefly
are then used to determine the cluster of nodes. Each node in
a cluster is visited by a particular vehicle.

The objective function is simply designed here using a sum
of square Euclidean distance (SSE). This function calculates
the total distance of all nodes to their respective centroids,
which is formulated as

SSE =

k∑
j=1

∑
xi∈cj

‖cj − xi‖22, (9)
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where k is the number of cluster, xi is the ith node, and cj is
the jth cluster.

Once the optimum clusters are generated, check if there is
a vehicle carrying a load that exceeds the maximum capacity.
Any node in an over-loaded vehicle is then redistributed
to the nearest under-loaded vehicle, as illustrated in Fig. 5.
The vehicle capacity Cap in cluster c2, which exceeds the
maximum capacity MaxCap, looks for the closest vehicle to
redistribute one or more nodes. A node, which is the closest
to the cluster c1, is selected to move to the cluster c1.

(a) Vehicle in cluster c2 is over-loaded (b) A node in cluster c2 is moved to c1

Cap < MaxCap

c3

c1
c2

c3

c1
c2

Cap > MaxCap

Cap < MaxCap

Cap < MaxCap Cap > MaxCap

Cap < MaxCap

Fig. 5. Example of redistribution nodes in the clusters

C. DHEFA-based Optimization

Finally, a minimum-cost route is searched using DHEFA.
Since the problem of determining the route is a discrete
problem (sequence of nodes should be visited), the HEFA has
to be redesigned into a discrete model. In [29], a discrete firefly
algorithm (DFA) is proposed with a high performance. In this
paper, the discrete model of FA is designed by following the
concept of DFA.

At the beginning of the iteration, a firefly in DHEFA
consists of a random vector with a total size of nodes and
elements in the range of one to a total non-repeating node.
This vector is divided into the total number of vehicles where
the nodes contained in each vehicle are following the clusters
resulted from the previous HEFA-based clustering and the
redistribution procedure. An example of firefly representation
is illustrated in Fig. 6.

HEFA uses a distance that is determined by the difference
between two firefly vectors while DHEFA calculates the dis-
tance as the number of different elements between two fireflies
(also known as the Hamming distance [30]), as illustrated in
Fig. 7. Another difference is the movement of fireflies. This
movement does not use the sum of the ith firefly vector with
the distance to the followed firefly as in Equation 5, but instead
uses an insertion function. This function takes a random node
and swaps it with another random node [29], as illustrated in
Fig. 8. In this CVRP case, the insertion is limitedly performed
just for two nodes in the same cluster since the vectors in
fireflies are divided by the number of vehicles. It cannot
exchange two elements in two different vehicles. Therefore,
when choosing a random element in ki, the second random
element must be in ki. This exchange is carried out as much
as the Hamming distance× γ.

1 4 8 9 5 11 6 2 3 7 10 12 14 16 15 13xi =

c1 c2 c3
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16

Depot

Fig. 6. Individual representation of a firefly

1 2 3 4x1 =

1 3 2 4x2 =

Fig. 7. Hamming distance between two fireflies

1 3 2 4x1 =

2 3 1 4x1 =

Fig. 8. Insertion function for a firefly movement

Just like HEFA, the movement of a firefly in DHEFA also
depends on its fitness value that is calculated using Equation
(5). Half of the firefly population chases the best fireflies
from its perspective while the rest move randomly, expecting
to get better fitness values. All fireflies then update their
fitness values to be compared in the next iteration. When the
stopping condition is reached, the best fireflies are chosen as
the minimum-cost solution, as illustrated in Fig. 9.

IV. RESULTS AND DISCUSSION

In this research, the proposed DHEFA-based model is
evaluated and compared with the original FA-based model
using three cases of CVRP. The experiments are run five times
to give a more accurate statistical result. In each case, an
effectiveness metric is used here to measure how close the
obtained optimum-cost route to the real global optimum-cost
route from the dataset. In this evaluation, both FA and DHEFA
have the same conditions of parameters: γ = 0.95, α = 0.2,
and cr = 0.5. The results are listed in Table I.
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Fig. 9. Minimum-cost solution given by the best firefly

TABLE I. EFFECTIVENESS (%) PRODUCED BY BOTH FA AND DHEFA FOR
FIVE RUNS PER CASE OF CVRP

Case of CVRP FA without clustering DHEFA with clustering
B-n50-k8 94.49 96.00

90.71 93.71
80.71 94.43
91.12 90.87
94.11 96.24

Average 90.23 94.25
B-n66-k9 92.51 96.55

96.52 94.70
90.52 90.58
89.81 95.39
91.99 92.00

Average 92.27 93.84
B-n78-k10 83.27 89.45

82.09 85.20
85.00 84.53
80.07 90.31
76.36 86.13

Average 81.36 87.13

In all cases, DHEFA produces higher effectiveness than the
original FA. In the CVRP case of B-n50-k8, with 50 nodes and
eight vehicles, DHEFA produces an averaged effectiveness up
to 94.25% while the original FA just gives 90.23%. In the
CVRP case of B-n66-k9, which contains 66 nodes and nine
vehicles, DHEFA also reaches a higher averaged effectiveness
of 93.84%, but the FA just obtains 92.27%.

Meanwhile, in the CVRP case of B-n78-k10, with 78 nodes
and ten vehicles available, DHEFA gets much higher averaged
effectiveness of 87.13% while the original FA yields 81.36%
only. Thus, for the three cases, DHEFA reaches much higher
averaged effectiveness of 91.74% than the original FA that just
obtains 87.95%.

This effectiveness of DHEFA is highly supported by the
procedure of clustering nodes. Dividing nodes into some
clusters is capable of reducing the problem space in some
areas so that the optimization can be partially applied. This
concludes that the research objective stated in Section I has
been reached.

V. CONCLUSION

The proposed model of DHEFA-based CVRP optimization
is capable of reaching the averaged effectiveness of 91.74%.
This result is better than the original FA that gives mean
effectiveness of 87.95%. This fact shows that the proposed
clustering significantly increases the effectiveness of DHEFA.
It can be simply explained that clustering nodes into some
clusters is capable of reducing the problem space in some areas
so that the optimization can be partially applied. In the future,
an advanced procedure of redistribution can be introduced to
ensure all vehicles have fair loads as well as do not violate the
maximum capacity.
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