(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

Clone Detection Techniques for JavaScript and
Language Independence: Review

Danyah Alfagehl, Hosam AlhakamiZ, Abdullah Baz?, Eisa Alanazi?, Tahani Alsubait®
College of Computer and Information Systems
Umm Al-Qura University, Makkah, Saudi Arabia

Abstract—Code clone detection is an active field of study in
computer science. Despite its rich history, it lacks focus on web
scripting languages. Due to the expansion of web applications
and web development amongst developers of varying education
and experience levels, they inevitably resort to cloning through
out the web. The spread of code clones is further increased by
websites like StackOverflow and GitHub. In this paper, we will
be focusing on clone detection research done to target clones in
JavaScript code and discuss its areas of concern. Also, we will
summarize language independent research done and possibility
of its application on JavaScript and web applications.

Keywords—Clone detection; code clones; JavaScript; language
independent clone detection; web applications

I. INTRODUCTION

Code cloning is one of the most common practices in soft-
ware development. Over the years many researchers studied
the phenomenon and attempted to categorize and solve the
problem. Code cloning can cause an issue for software systems
as it leads to bug propagation which causes a huge technical
debt for stakeholders. Clone detection techniques aim to detect
all types of cloned code but differ in their results and coverage
ability.

Clones are generally grouped based on their similarity to
the source code to four categories as follows [1], [2]:

1) Type-I Exact clones duplicates of the source code ex-
cept for white space, layout and comments changes.

2) Type-II Renamed clones are similar to the source
code both in functionality and syntax and only differ
in variables names.

3) Type-III Gapped clones that include type-I and type-
I clones but with added or deleted parts of code.
They are also referred to as near miss clones.

4) Type-IV Semantic clones or logical clones are only
logically similar to source code but differ syntacti-
cally.

Clones can be further grouped into two main groups based
on their similarity to the source as [3]: clones of textual simi-
larity which includes type-I, type-1I and type-III Or functional
similarity which applies to type-IV.

Various techniques have been developed to detect any and
all of the aforementioned clone types and these techniques fall
under the following categories as demonstrated by [4] and [5]:

1) Textual based techniques where the source code is
compared to the cloned code to find a sequence of the

same text. These techniques best detect type-I clones
as they look for exact duplicates.

2) Lexical or token based techniques in which a lexer is
used to parse the entire source code into a series of
tokens which are scanned to return duplicated tokens.
This approach is better as it will not be affected
by white spaces and comments, but introduces the
possibility of false detection.

3) Tree based techniques where the program is parsed
into an AST (Abstract Syntax Tree) then the tree is
traversed to find duplicated code.

4) Metric based techniques where the code is parsed into
an AST or CFG (Control Flow Graph) on which a
number of metrics are calculated to detect clones.

5) Semantic approaches use static program analysis to
provide more information regarding logical clones
rather than focusing on syntactical similarity.

6) Hybrid approaches provide a mix of the other ap-
proaches in attempt to deliver a more accurate detec-
tion.

Clone detection accuracy is measured using standard infor-
mation retrieval metrics specifically precision and recall [3].
Precision measures how well the tool can detect an actual
clone. Recall measures the ratio of total number of clones
detected by a tool to the actual number of existing clones in
the source code.

In this research, we will partially focus on clones in
JavaScript which is one of the most used languages in web
development. It has also been dominating StackOverflow’s
most popular programming languages for seven years as shown
in their website [6]. Therefore, web developers must inevitably
resort to cloning code snippets found in StackOverflow in their
daily programming activities. Research done by Ragkhitwet-
sagul et al. [7] shows that there is a toxic nature of some code
snippets found on code sharing sites like StackOverflow such
as being out-dated or harmful to the software that they are used
in. Furthermore, Baltes and Treude [8] stated that even within
StackOverflow, the habit of cloning has even spread through
out developer threads i.e. answers to varying posts have been
cloned within the platform. Yet, research in areas of clone
detection has been lacking in developing tools and techniques
specifically geared toward this language. Furthermore, efforts
to refactor code clones suffer greatly from the lack of language
diversity as noted by Mondal, Roy and Schneider [9] where
they have noticed weaknesses in code refactoring closely
relating to lack of language diversity. Hence, we will also
analyse language independent research done in clone detection
and its applicability to JavaScript.

www.ijacsa.thesai.org

787 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Current uses of JavaScript are unique due to the popularity
of libraries and frameworks such as React, Angular, Vue,
Node.js and so on. These tools enable developers to create
full stack website by only writing a few lines of JavaScript
code. These frameworks also come with tons of built-in code
such as node modules for Node.js which means if regular
code detection is used it will detect such codes and classify
them as duplicates between two projects which is a waste of
time for a developer looking for a minimum amount of actual
clones. Framework and library specific files will never affect
the quality of the website and will only waste valuable time
in being detected by any clone detection tool. Furthermore,
These frameworks allow for the developer to write JavaScript
code that will compile into HTML and CSS code. This means
there is a necessity to find techniques that help developers to
do the following:

e detect duplicate JavaScript code without digging
through framework and library files

e detect duplicate JavaScript, HTML and CSS code
without having to configure each language specifica-
tions.

This paper is structured in the following order. Firstly, we
discuss general concepts of clone detection and the necessity
of clone detection for JavaScript. Secondly, the related work
section discusses related research done in areas of plagiarism
detection of source code and cross language detection. Further-
more, we present a literature review which is a summary of
the research for JavaScript clones detection. Then, we present
a section to exclusively discusses JavaScript specific research
and tools. Afterwards, a section for language independent
research is presented which is further divided into sub sections
based on tool and related research of the tool. Followed by
a section of comparison between the tools mentioned in the
papers. Lastly, we conclude with a summary of the paper and
thoughts for future research.

II. RELATED WORK

In this section we will discuss related works that include
levels of language independence which are related to plagia-
rism detection for university source code assignments. Also,
we will discuss a tool for cross-language detection in where
clones are detected between different programming languages.

A. Source Code Plagiarism Detection

Similar to clone detection, source code plagiarism detection
aims to detect clones in assignments submitted by students. It
maintains language independence due to the varied languages
taught at universities.

YAP was a tool developed by Wise [10] to detect pla-
giarised source code submitted by students. It detects multiple
languages to support multiple courses. In later versions, it even
detects English language. It has two phases, a generation phase
in where comments are removed, upper to lower case trans-
formations is applied, removing letters that are not identifiers
and removing multiple changes based on student tactics of text
modification to generate token files. Then, a comparison phase
where the generated pair of token files are compared.

Vol. 11, No. 4, 2020

Brixtel et al. [11] developed a language independent
framework for plagiarism detection based on clone detection
research. They compare plagiarised homework to type-II and
type-1II clones as students tend to modify the code ever so
slightly to camouflage syntax similarity yet maintain same
functionality. Their approach sets a threshold of similarity
which compares two files at a time and if the result is higher
than the threshold it means the code is plagiarised.

Pandit and Toksha [12] have said that future directions
in the field are towards machine learning use in plagiarism
detection which is a promising direction for improving source
code plagiarism detection.

B. Cross-Language Clone Detection

Cross language clone detection aims to detect clones that
perform similarly in two different programming languages.
A tool named LICCA (Language Independent Code Clone
Analyzer) was developed by Raki, Cardozo and Budimac [13]
to detect cross language clones. LICCA aims to test source
code similar in structure and syntax.

This is possible as source code is transformed using Set
of Software Quality Static Analysers (SSQA) introduced by
Rakic [14] which produces a unified representation of the
source code as enriched Concrete Syntax Tree (eCST) which
allows for all languages to be transformed into a unified format.
The tree is composed of universal nodes which are nodes that
give a grouping to tokens in the syntax tree. An example for
a universal node is the universal FUNCTION_DECL which
means that it can be a function, a method or a block in the
original source code. Comparison of the the trees is based on
these nodes.

LICCA is integrated into SSQA and the clone detection
is based on the eCST produced by SSQA. LICCA calcu-
lates similarity on levels of the syntax tree starting from the
higher statement level to lower levels. They compare five
programming languages with each having a sample of the
same source code Java, JavaScript, C, Modula-2, and Scheme
using LICCA. Their research shows many limitation of cross-
language comparison but it does provide a unique approach as
it is the only one that covers a wide range of languages.

III. LITERATURE REVIEW

Research specifically focusing on clones in JavaScript
alone is sparse yet there is plenty of research that includes
JavaScript in its analysis. Thung et al. [15] show the de-
gree of cloning of JavaScript code based on source code
in Github. They use a tool called Dejavu which detects file
level duplication in Github repositories for C++, Java, Python
and JavaScript. They found out that the highest duplication
amongst the four was found in JavaScript where almost 94%
of the dataset being tested turned out to contain duplicates.

Further research on JavaScript and HTML clones was done
in a paper by Choi et al. [16] in which they focus on inter-
language clones. They found out that the highest co-used
languages on Github are HTML and JavaScript. Also, they
have found the nature of JavaScript code written inside an
HTML file’s script tags to be particularly challenging since it
will not allow for a straightforward application of a language
dependent detection tool.

www.ijacsa.thesai.org

788 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

JavaScript is also a language that can manipulate CSS
through jQuery and research on this area is very limited. Yet,
Mazinanian [17] has developed a tool to detect CSS clones.
However, research on jQuery and JavaScript code clones that
manipulate CSS is almost non-existent.

IV. OVERVIEW OF JAVASCRIPT CLONE DETECTION
TECHNIQUES

Cheung, Ryu and Kim [18] developed JSCD (JavaScript
Clone Detector) which is a tool to detect clones in JavaScript.
Their research also provides a comprehensive review of tools
and research done for clone detection specifically focused on
JavaScript. They have segmented their test data to three cate-
gories: web applications that include JavaScript and HTML,
stand-alone JavaScript applications and libraries and Java
systems.

They have found out that web applications have unique
characteristics that separate them from stand-alone JavaScript
projects as they include clones in HTML, CSS and DOM
Manipulation. They have also reported high percentage of
clones in JavaScript web segment in particular and they also
suggested that lack of studies on the area has led to low
assessment of the risks of such phenomenon. Furthermore, they
concluded that stand-alone JavaScript projects share further
similarity to Java projects rather than with JavaScript used in
web development.

JSCD was based on a popular code detection tool called
DECKARD demonstrated by Jiang et al. [19]. It parses
JavaScript files into ASTs then approximates the resulting
structural information into integer vectors that represent the
occurrence of a node in the ASTs. It then uses LSH (Locality
Sensitive Hashing), a technique which hashes similar vectors
into one hash with high probability and distant vectors into a
hash with low probability, to cluster similar vectors based on
their euclidean distance into clone groups.

In addition, Letic [20] did research which uses JSInspect
tool developed by Danielstjules [21] that detects structurally
similar code clones in JavaScript code. The tool accepts .js and
.jsx files and returns the result in either a JSON (JavaScript
Object Notation) or XML (Extensible Markup Language)
format. A sample result is shown in Fig. 1 includes the path
of the file containing the clones, the number of lines of clones
locations and the exact text of the clones.

i "id":"6ceb36d5891732db3835c4954d48d1b909368a475",
"instances”: [

"path":"spec/fixtures/intersection.js",

"lines":[1,5],

"code":"function intersectionA(arrayl, array2) { arrayl.filter
(function(n) { return array?.index0f(n) I= -1; 150}

"path":"spec/fixtures/intersection.js",
"lines":[7,111,
"code":"function intersectionB(arrayA, arrayB) {

arrayA.filter
(function(n) { "

return arrayB.index0f(n) = -1; });in}

1
1

Fig. 1. Sample result of a comparison by JSInspect tool in [21]

JSInspect uses abstract syntax trees to break the source
code to nodes where each node represents a block of the

Vol. 11, No. 4, 2020

source code. In the results, the paper provides a detailed
comparison between the JSInspect tool and another tool called
JSCPD (JavaScript Copy/Paste Detector) which is a language
independent tool developed by Kucherenko [22] in JavaScript.
JSCPD implements Karp and Rabin algorithm [23] to find
copy/paste duplicates across 150 programming languages. The
algorithm converts a predefined string value to its hash value
then iterates through existing strings to match the hash of any
of the sub string hashes found in the file.

Data used for testing the tools was taken from three open
source projects on Github containing a total 4,1600 and 6977
JavaScript files per project. She noted that both tools perform
equally when dealing with a small project but JSCPD had
better performance and results with larger projects.

V. LANGUAGE INDEPENDENT APPROACHES

Language independent clone detection tools can detect
clones in multiple programming languages. These tools can
be helpful for researchers to test on JavaScript as they are
not reliant on a single language rules and limitations for
clone detection. They manage to abstract their clone detection
process based on many techniques and algorithms to fulfil
language independence. We will discuss the most popular
language independent tools and the languages tested in their
research in chronological order.

A. Duploc

Ducasse, Rieger and Demeyer in [24] have introduced a
solution that requires no parsing and can detect variety of
languages. Firstly, they transform the code very minimally by
using basic string manipulation. Then, they use string matching
techniques to detect clones but in order to optimize this process
they use hashing to store the lines of string in buckets so
lines of the same hash are thrown in the same bucket hence
eliminating false negatives. Lastly, they provide a visualization
of the distribution of the clones using scatter plots.

For their testing, they try four source code projects written
in C, Smalltalk, Cobol and Python. They have implemented
the algorithm in a tool called Duploc which is developed
in SmallTalk and runs on Unix, Mac and Windows. Duploc
reads the source code, removes white spaces and comments.
Resulting lines of output are then compared with basic string
matching algorithm. Duploc produces a matrix to show the
source code with matches. Also, it produces a report called
map to show exact occurrences per line of duplication in the
source code as shown by Rieger and Ducasse[25]. Due to
its straightforward approach this tool might provide a good
solution to detect JavaScript clones as it is truly language
independent.

B. DuDe: Duplication Detector

DuDe (Duplication Detector) developed by Wettel and
Marinescu [26] is a tool to detect language independent clones.
The tool detects syntactically similar clones and also chunks
of similar codes that might be related to the same source.
They define what they refer to as “Duplication Chain”, shown
in Fig. 2, and is composed of two chunks of similar clones
found close to each other in the source code. Furthermore,
they breakdown the duplication chain to what they call exact

www.ijacsa.thesai.org

789 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

chunks, which are non-altered duplicate code blocks, that are
represented as chunks in a scatter plot matrix in the tool. Also,
non-matching gaps are blank areas in the scatter plot occurring
between two exact chunks which may indicate they are code
lines that have been altered from a larger duplication block.
They have specified two characteristics of a duplication chain
which are type and signature. The type characteristic defines
the type of changes done to the clone code block and is divided
into:

1) Exact: the code has suffered no change at all.

2) Modified: the duplication chain is made of exact
chunks with modified code lines between them.

3) Insert/Delete: the code chain is linked by insert/delete
gaps.

4) Composed: exact chunks linked by various gap types.

Additionally, they define the signature as a characteristic
similar to a map that stores the locations of the exact chunks
and the non-matching gaps.

—>—_exact chunk (2)
,I
E exact

n(m-matching
gap (1, deleted)

non-matching
gap (1, modified)

Fig. 2. DuDe duplication chain as shown in [26]

Furthermore, they define the following metrics based on
LOC (lines of code) to evaluate their tool:

1) SEC (Size of Exact Chunks) is the length of the
duplicate code.

2) LB (Line Bias) the distance between two consecutive
exact chunks. The lower the distance is the more
likely the space is occupied by modified duplicate
code.

3) SDC (Size of Duplication Chain) the size of a mean-
ingful duplication area. It should be equal to SEC in
case of exact duplicate chain.

Additionally, thresholds were imposed to manage the pro-
portions of the duplication chain. Firstly, a minimum SDC
to ensure the length of the chain is significant. Secondly, a
minimum SEC to guarantee exclusion of very small duplicates.
Thirdly, a maximum LB to ensure consecutive exact chunks.
Finally, minimum SEC should always be greater than max-
imum LB as it is not preferable to detect chains with gaps
longer than exact chunks.

Moreover, they have broken down their detection process
into three phases as follows:

1) Code processing: where the original source code files
are read to eliminate white spaces and pieces of text

Vol. 11, No. 4, 2020

that do not affect the detection. This step is language
independent as they treat these files as basic strings
with no language specific parsing done on them.

2) Populating the scatter-plot: each line of code is com-
pared against the entire project to populate a matrix
with the comparison result.

3) Build duplication chains: by looking at the exact
chunk of the matrix they attempt to follow along the
diagonal to find a pattern to qualify for duplication
chain.

They have conducted two experiences one on 4 Java
and 4 C projects the other is on an open-source software
system called JHotDraw. They have carried out quantitative,
qualitative, reliability and scalability validations using their
tool.

For the first experiment, they conducted the detection by
DuDe based on two configurations for both of those they set
the SDC to 7 LOC. For the first configuration they set LB
to zero to simulate a detection without duplication chains.
As for the second configuration they set the maximum LB
and minimum SEC to a threshold of 2 to enable detection
of duplication chains. More duplication was detected with the
second configuration hence validating the quantitative request.

In a quest to fulfil qualitative validation they carried out
the second experiment on JHotDraw where they have tested
two configurations one enabled duplication chain and the other
did not enable duplication chain. This led to show that when
chain detection was enabled they were able to detect 72 clones
of varying types vs only 42 clones of exact duplication when
chain detection was not enabled.

The percentage of recall of their method is 89% for
detecting type-I exact clones. Finally, their tool can process
800,000 LOC over four hours which assures scalability.

C. SDD: Similar Data Detection

Lee and Jeong [27] have introduced SDD (Similar Data
Detection) which offers high performance code detection for
large software systems. Their algorithm defines a distance
measure called n-neighbour distance which represents the
distance between two exact chunks of exact clones and based
on its length you can judge the type of the clone. Furthermore,
they define an inverted index that includes code chunks and
their positions, and an index which stores information of the
position and corresponding chunk reversely.

Then, a chunk of code can be found easily when tracing
adjacent indices by simply looking for it in the inverted index.
Then if duplicated indices are found their n-neighbor distance
will be evaluated to define a leading chain and duplicated
chains are made accordingly. Finally, they have tested their
algorithm on five projects of varying languages which are:
JDK-1.5 com2, httpd-2.0.54, lucene-1.4.3, Phpwiki-1.2.9 and
Ruby-1.8.2. They did not measure recall nor precision for the
tool but they state that the tool manages to analyze Java project
of size 37.65MB in 67 seconds.

D. PALEX: Parsing Actions and Lexical Information in XML

Another language independent algorithm was presented by
Maeda [28] and implemented in a tool called PALEX which

www.ijacsa.thesai.org

790 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

stands for (PArsing actions and LExical information in XML).
Their approach works with two independent tools. First, it uses
a parser generator such as YACC or Bison to read user-defined
syntax rules with action codes to be invoked when the syntax
rules are recognized, and they generate LALR parsers. The
LALR parser excute two actions: shift and reduce. The LALR
parser is built in debug mode and they provide an example of
how the parser works by analyzing the arithmetic expression:
1 + 2 * 3. The LALR parser will display debug results to the
user output as shown in Fig. 3 which includes state transitions.

Reading a token: Next token is token NUM
Shifting token NUM

Entering state 1

Reducing stack by rule 5

Stack now 0 2 6

Entering state 4

Reducing stack by rule 4

Stack now 0 2 &

Entering state 8§

Reading a token: Next token is token MLT
Shifting token MLT

Entering state 7

Reading a token: Next token is token NUM
Shifting token NUM

Fig. 3. LALR parser resulting debug information [28]

Then when the compiler is finished, it records the list of
parsing actions: shift, reduce and reading a token. PALEX
then represents these information and additionally includes
lexical information such as white spaces and comments in
XML. Moreover, this breakdown of the approach into two steps
further ensures language independence because PALEX XML
elements, which are shown in Fig. 4 below, have no language
association. The elements are defined as follows:

e wsc: white space element or comment.
e lex: reading a token.

e sft: shift action.

e rdc: reduce action.

e cst: change from state to state.

The approach was tested on Java, C# and Ruby two of which
are dynamically typed languages which further proofs its
applicability to JavaScript.

In order to achieve seamless transition from parsing and
maintain language integrity bison was modified to write out
PALEX code and it is called MoBison in the paper. This
provides ability to parse the sorce code to PALEX syntax and
transform PALEX XML back to the language syntax.

The clone detection is done using PALEX and implements
a suffix-tree matching algorithm. A suffix tree is a data
structure that represents suffixes of a string. For example, the
string ”ABCDABC” will be broken into seven suffixes and the
tree will be built in the following order:

e ABCDABC
e BCDABC
e CDABC

Vol. 11, No. 4, 2020

<?xml version="1.0" encoding="us-ascii"?>
<parseFiles lang="ruby" pg="bison" ver="0.5">
<parse name="ruby.rb">

<rdc st="0" ru="1" />

<cst fr="0" to="2" />

<lex st="2" tk="tIDENTIFIER" va="include" 1i="1"

co="7" />
<sft fr="2" to="34" />
<wsc va=" " />
<lex st="34" tk="tCONSTANT" va="Math" li="1"
co="0" />

<rdc st="34" ru="477" />

<cst fr="2" to="94" />

<rdc st="94" ru="253" />

<cst fr="94" to="246" />

<sft fr="246" to="38" />

<lex st="38" tk="r\n"" va="s#xA;" 1i="2" co="1" />
. (skip) ...

Fig. 4. PALEX XML Representation of Ruby code snippet [28]

e DABC
e ABC
e BC

o C

Clones can be detected as sub strings of the tree in the previous
example ABC, BC and finally C are clones detected by the
algorithm.

E. The NiCad Clone Detector

The NiCad clone detector is a tool developed by Cordy
and Roy [29] based on an approach they developed previously
and it loosely an acronym of Accurate Detection of Near-
Miss Intentional Clones. Their method is broken down to three
stages: parsing, normalization and comparison.

e First phase: the source code is parsed to extract
fragments based on user specified granularity such as
function or block.

e Second phase: the parsed text is then normalized like
renaming transformation of the source code.

e Third phase: after the fragments are extracted and nor-
malized they are compared line-wise using a longest
common sub-sequence algorithm.

NiCad tool runs through the command line where users can
specify the granularity, the language of the source and the path
of the directory to be analyzed. At the time of the research the
tool only supported function and block granularities and five
languages C, C#, Java, Python and WSDL.

However, the tool mainly accomplishes language indepen-
dence due to its use of TXL which was introduced by Cordy
[30] as a programming language designed to transform and
manipulate source code. They use it to parse any programming
language based on its rules into a normalized text that is then
abstracted based on the specified language’s rules.

The tool is designed on a plugin based architecture. New
languages, normalization rules and granularities can be added
easily to customize the tool. It can handle over 60 million
lines of code on a single processor computer with only 2 GB
of memory.

www.ijacsa.thesai.org

791 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Their approach is based on text line comparison of lines of
code. Similar to many clone detection techniques they define
a minimal clone to reduce the the amount of work detectors
have to do. Therefore, they use TXL to extract and enumerate
potential clones. Extracted clones are only captured once and
saved to a text file by the name of their source file and the
numbers of the first and last line of the chunk.

Moreover, clones are detected twice if they are inside
a parent clone chunk so they will be extracted once alone
and with their parent chunk. Throughout extraction extracted
clones are stripped of all formatting and comments and are
pretty printed by TXL according to adapted grammar rules.
Furthermore, TXL’s agile parsing explained by Dean et al. [31]
allows to control flexibility of pretty printing to be specified
for clone detection.

TXL’s agile parsing overrides the original grammar to allow
for more specific parsing according to each application. Thus,
TXL includes a language specific grammar file and with agile
parsing it can “override” non terminals with a definition more
appropriate to the current task.

Hence, this allows to customize pretty typing, allowing to
break the source code into multiple lines and to carry out line
by line textual comparison. An example of the grammar of C
language is shown in Fig. 5 below.

define for_head
"for ([opt exprl’; [opt expr]’
end define

; [opt expr])

Fig. 5. TXL grammar definition for for headers in C [32]

Also, by using pretty typing overrides we can break down
the grammar and add new lines as shown in Fig. 6 below.
This is achieved simply by adding “[NL]” which will add a
new line after each part.

redefine for head

"for ([NL]
[opt expr] ’; [NL]
[opt expr] ’; [NL]
[opt expr]) [NL]
[statement]

end redefine

Fig. 6. TXL grammar override to add new line [32]

The user can further specify the breaking level by changing
TXL grammar override by hand to add customized granulari-
ties.

Additionally, TXL allows for partial normalization of code
which coupled with pretty printing allows NiCad to detect
up to 100% of near-miss code clones. Furthermore, TXL
allows to choose normalizing only certain parts of a statement,
types of statement or levels of nesting. Moreover, selective
normalization allows user to normalize the statement if(x
<(n +y)) by either normalizing the entire control part so
it becomes if(AnyControl) but such normalization will not
detect clones in the control part. Also, the same statement can
be normalized to maintain the control part as if(id <(id + id

)

Vol. 11, No. 4, 2020

It also allows for stricter normalization where only a part
of the statement is normalized like if(x <(id + id)) or if(id
<(rightControl)) the flexibility in normalization allows the user
to choose the level of clones they aim to detect. Furthermore,
filtering out code that doesn’t include any suspect clones is
provided by TXL’s agile parsing. Such cases include replacing
initialization and declaration with empty lines as they are not
significant for detection.

Lastly, after clone extraction and processing it proceeds to
apply longest common sub-sequence algorithm to compare the
clones line by line. The algorithm in the simplest terms takes
two strings A: “SDEXWRL” and B: “CSDRZEKL” and results
in C: “SDERL” which represents the shared literals amongst
the strings and is obtained by deleting non common literals
of the two string. The comparison is done by comparing the
processed and broken clones line by line and giving every line
a score of 1 in case of similarity and O in case of uniqueness.

Then, the percentage of unique items is measured against
all items and compared against a clone threshold, which can
be set by the user, specified to qualify clones. This threshold is
called UPI (Unique Percentage of Items) and it is size sensitive
depending on the lines of code in each clone. Subsequently,
as longest common sub-sequence algorithm can only compare
two clones at a time this means each clone has to be compared
with all other clones which leads to high run time. In order to
improve the performance comparisons are done based on UPI,
if UPI equals 0% this indicates the clones requested to detect
are exact clones hence only a cluster of clones of the same
size are compared.

However, if UPI is greater than 0% then a clone x is
compared to another clone y if size(y) is between of minimum
size size(x) - size(x) * UPIT/I00 and maximum size clones
size(x) + size(x) * UPIT/100. Clones are maintained in a
database ordered by their size which makes generating classes
for comparison an applicable job. An exemplar of a class is
a possible option for optimization i.e. if x and y are similar
clones x is considered an exemplar of the two and will go
to be compared based on size to find it’s class while y will
not be compared hence enhancing the overall performance.
Overall, the high level of abstraction provided at extraction
level with the textual comparison makes NiCad a competent
candidate for true language independence and support of any
language.

F. Clone Detection Using Fingerprinting

Next, Mythili and Sarala [33] developed a language inde-
pendent cloning approach based on Rabin-Karp string match-
ing algorithm and fingerprinting. To start they explain finger-
printing as the process of breaking down a document into
chunks or k-grams which are then converted into a numeric
value making a document’s fingerprint.

Moreover, their method first starts be pre-processing the
source code in which white spaces, tabs and all extra for-
matting is removed. Secondly, they look for lexical meaning
of text by searching for words in WordNet as introduced by
Miller [34], which is a database for English language that
links nouns, verbs, adjectives and adverbs to synonym sets
linked by semantic relationships based on word definitions,

www.ijacsa.thesai.org

792 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

to find similar words and replace them all with a common
name for example two methods sum(x,y) and add(x,y) will be
both identified as clones based on the previous check. Then,
the source code variable names and data types are normalized
and converted to general format. Next, fingerprint generation
is carried out using Karp’s [23] algorithm and fingerprints
are stored in an array for comparison. After comparison, if
fingerprints of the source code and the pattern are similar
a character by character comparison is done to the codes
associated with the fingerprints. Finally, based on a results
matrix lines of duplicate codes will be highlighted if they
correspond with a value of 1 in the comparison matrix meaning
they are clones.

G. Clone Detection using JSON String Parsing

An approach by Singh, Kaur and Sohal [35] converts all
source code into JSON format and compares the resulting
JSON files to detect clones. First, the user inputs the source
code files to be compared. Second, the code is converted in
JSON to remove all formatting and white spaces. Then, string
matching is done by using a C# function called equals() to
compare the two JSON strings and detect type-I clones. To
detect type-1I and type-III clones they use Google’s “Google
Diff Match and Patch Library” in where diff compares lines
of texts to return the differences between them, then match
looks for the best match of a string. Finally, patch applies the
needed fixes and report their success or failure. Furthermore,
they apply a size by size comparison of the converted JSON
files to determine if they are size clones. Finally, results are
displayed graphically based on the calculated percentage of
detected clones.

H. CCFinderSW Clone Detector

The CCFinderSW was developed by Semura et al. [36] to
fulfill the need for easy addition of multiple programming lan-
guages. CCFinderSW is a token based approach that identifies
Type-II and Type-III clones. First step is lexical analysis where
comments are removed. Then, the source code is tokenized in
the following order:

1) Characters and string literals are mapped to a token.
2) White spaces and new lines are delimiters.

3) Each symbol is mapped to a token.

4) The remaining strings are mapped to token.

Next, tokens are transformed by replacing all variable and
function names with a common value but reserved words are
not replaced. Furthermore, clone detection is carried out using
n-gram algorithm. Based on a user defined threshold for the
value of n the n-grams are them extracted from the token
sequence where CCFinderSW will only detect clones longer
than the n threshold. Lastly, results are displayed with lines of
detected clone.

1) Multilingual Clone Detection using ANTLR Grammar:
The research by Semura et al. [37] extends the CCFinderSW
tool to extract lexical information using ANTLR Grammer.
The module is added at extraction phase and it uses regular
expressions to extract: comments, string literals and reserved
words.

Vol. 11, No. 4, 2020

VI. RESULTS AND COMPARISON

In this section we will be comparing between the tools
mentioned in this paper based on the ability to detect clones
and the algorithms most popular amongst them. These com-
parisons will be divided into the following sections.

1) Classification based on Clone Detection Criteria: The
varied tools followed varying comparison measures some did
not measure the success rates of their tool. Hence, some
of these tools are not included below despite their mention
previously because their original paper did not follow any clear
quantifiable measures of their tools. In Table I the tools are
compared based on Line of Code (LOC), precision, recall and
Clone measure of the tool provided in the paper such as lines
of clones detected per minute. Also, a final column named
notes will include short specific details regarding each entry.
The last two columns are added to allow for inclusion of tools
that did not measure precision nor recall but provided a clear
measure unique to their paper.

Many of the papers do not measure the results of their
finding by known clone detection criteria and some do not
measure the clone detection at all.

2) Classification of tools based on Approach: All the
papers explicitly state what approaches they follow in their
detection process. The majority of the tools follow a textual
approaches to compare clones as it is a straightforward way to
achieve language independence. Most tools use either Rabin-
Karp algorithm, basic string matching, N-neigbhor or Longest
Common Subsequence (LCS) algorithm. However, JavaScript
specific tools JSCD and JSInspect use tree based approaches
for detection. PLAEX also uses a tree based approach despite
being language independent. Only CCFinderSW uses a lexical
approach in its implementation. In Fig. 7 the distribution of
the tools is displayed based on their approaches.

= Tree Approach

= Textual Approach

Lexical Approach

Fig. 7. Tool count by approach

VII. DISCUSSION AND RECOMMENDATIONS

In this paper we have compared different tools to detect
code duplication. Hence, due to the complexity of modern web
applications we are led to believe that straightforward language
specific detection is not enough to handle their complexity.
Therefore, a language independent approach is the best way
to handle such situation.

www.ijacsa.thesai.org

793 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

TABLE I. COMPARISON BASED ON CLONE DETECTION

Tool LOC Precision Recall Clone Measure Notes

JSInspect 198.031 - - 03:49 minutes threshold = 10 and Project 3

JSCPD 260.195 - - 03:01 minutes minLines = 5, minTokens = 5 and Project 3
JSCPD 41,092 - - 5 -7% This is for JSWeb for function level clones
JSCPD 582,091 - - 3 -6% This is for JSProj for function level clones
Duploc 6500 - - 17.4% Case of Message Board in Python

DuDe 148,000 - 89% - Case of eclipse-jdtcore project

SDD 245,000 - - 200 clones found in 28 sec ~ Case of ruby-1.8.2

PALEX - - - - The paper did not provide any measures
NiCad 12,500 - - - The total of the LOC is made of two projects

A solution like NiCad in particular can be excellent as
it offers the addition of language semantics to it’s language
independent structure. The challenge mainly lies in knowing
which clones to avoid detecting like node modules in a React
application are wasteful to detect as they are part of the
framework.

VIII.

JavaScript is a wildly used and popular programming
language and its use is not exclusive to the web. The current
status of code clone detection techniques of JavaScript are
scarce. Furthermore, reuse of code fragments from the web
causes issues that are undetected in the field of clone detection
studies.

CONCLUSION

The majority of the mentioned research papers agree that
there is a need to do further research for the language alone.
Also, research to understand the consequences of the risks of
code cloning on web languages is highly needed. In this paper
we have summarized the most prominent JavaScript specific
and language independent papers in an attempt to support
researchers to get an understanding of the current state of
research on JavaScript code clone tools and techniques.

We have also provided a list of language independent
tools that have established support and capability to detect
a multitude of language independent clones with the most
straightforward configurations.

REFERENCES

[11 Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Magbool,
“A systematic review on code clone detection,” IEEE Access, vol. 7,
pp. 86121-86144, 2019.

[2] A. N. Runwal and A. D. Waghmare, “Code clone detection based on
logical similarity: A review,” IEEE Access, 2017.

[3] C. K. Roy and J. R. Cordy, “Benchmarks for software clone detection:
A ten-year retrospective,” in 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 26—
37, IEEE, 2018.

[4] K. Solanki and S. Kumari, “Comparative study of software clone
detection techniques,” in 2016 Management and Innovation Technology
International Conference (MITicon), pp. MIT-152, IEEE, 2016.

[5] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of computer programming, vol. 74, no. 7, pp. 470-495, 2009.

(6]
(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

Stackoverflow, “Developer survey results 2019,” Nov 2019.

C. Ragkhitwetsagul, J. Krinke, M. Paixao, G. Bianco, and R. Oliveto,
“Toxic code snippets on stack overflow,” IEEE Transactions on Software
Engineering, vol. PP, pp. 1-1, 02 2019.

S. Baltes and C. Treude, “Code duplication on stack overflow,” arXiv
preprint arXiv:2002.01275, 2020.

M. Mondal, C. K. Roy, and K. A. Schneider, “A survey on clone
refactoring and tracking,” Journal of Systems and Software, vol. 159,
p- 110429, 2020.

M. J. Wise, “Detection of similarities in student programs: Yap’ing may
be preferable to plague’ing,” in Acm Sigcse Bulletin, vol. 24, pp. 268—
271, ACM, 1992.

R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes,
“Language-independent clone detection applied to plagiarism detec-
tion,” in 2010 10th IEEE Working Conference on Source Code Analysis
and Manipulation, pp. 77-86, IEEE, 2010.

A. A. Pandit and G. Toksha, “Review of plagiarism detection technique
in source code,” in International Conference on Intelligent Computing
and Smart Communication 2019, pp. 393—405, Springer, 2020.

T. Vislavski, G. Rakié¢, N. Cardozo, and Z. Budimac, “Licca: A tool for
cross-language clone detection,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pp. 512-516, IEEE, 2018.

G. Raki¢, Extendable and Adaptable Framework for Input Language
Independent Static Analysis, Novi Sad Faculty of Sciences, University
of Novi Sad. PhD thesis, doctoral dissertation, 2015.

T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popular-
ity, interoperability, and impact of programming languages in 100,000
open source projects,” in 2013 IEEE 37th Annual Computer Software
and Applications Conference, pp. 303-312, July 2013.

Y. Nakamura, E. Choi, N. Yoshida, S. Haruna, and K. Inoue, “Towards
detection and analysis of interlanguage clones for multilingual web
applications.,” in /IWSC@ SANER, pp. 17-18, 2016.

D. Mazinanian, Eliminating Code Duplication in Cascading Style
Sheets. PhD thesis, Concordia University, 2017.

W. T. Cheung, S. Ryu, and S. Kim, “Development nature matters: An
empirical study of code clones in javascript applications,” Empirical
Software Engineering, vol. 21, no. 2, pp. 517-564, 2016.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the
29th international conference on Software Engineering, pp. 96-105,
IEEE Computer Society, 2007.

T. Leti¢, “Detection and analysis of duplicated javascript code usingjsin-
spect tool,” Zbornik radova Fakulteta tehnickih nauka u Novom Sadu,
vol. 34, no. 06, pp. 1116-1119, 2019.

Danielstjules, “danielstjules/jsinspect,” Aug 2017.

www.ijacsa.thesai.org

794 |Page

[22]
(23]

[24]

[25]

[26]

[27]

[28]

[29]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Kucherenko, “kucherenko/jscpd,” Nov 2019.

R. M. Karp and M. O. Rabin, “Efficient randomized pattern-matching
algorithms,” IBM journal of research and development, vol. 31, no. 2,
pp. 249-260, 1987.

S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in Proceedings IEEE Interna-
tional Conference on Software Maintenance-1999 (ICSM’99).’Software
Maintenance for Business Change’(Cat. No. 99CB36360), pp. 109-118,
IEEE, 1999.

M. Rieger and S. Ducasse, “Visual detection of duplicated code,” in
ECOOP Workshops, pp. 715-76, Citeseer, 1998.

R. Wettel and R. Marinescu, “Archeology of code duplication: Recov-
ering duplication chains from small duplication fragments,” in Seventh
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’05), pp. 8—pp, IEEE, 2005.

S. Lee and I. Jeong, “Sdd: high performance code clone detection
system for large scale source code,” in Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pp. 140-141, ACM, 2005.

K. Maeda, “Syntax sensitive and language independent detection of
code clones,” World Academy of Science, Engineering and Technology,
vol. 60, pp. 350-354, 2009.

J. R. Cordy and C. K. Roy, “The nicad clone detector,” in 2011 IEEE

19th International Conference on Program Comprehension, pp. 219—
220, IEEE, 2011.

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

Vol. 11, No. 4, 2020

J. R. Cordy, “The txl source transformation language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190-210, 2006.

T. R. Dean, J. R. Cordy, A. J. Malton, and K. A. Schneider, “Agile
parsing in tx1,” Automated Software Engineering, vol. 10, no. 4,
pp. 311-336, 2003.

C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”
in 2008 16th iEEE international conference on program comprehension,
pp- 172-181, IEEE, 2008.

S. Mythili and S. Sarala, “A language independent approach for method
level clone detection using fingerprinting.,” International Journal of
Advanced Research in Computer Science, vol. 3, no. 2, 2012.

G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 3941, 1995.

G. Singh, S. Kaur, and B. Sohal, “Language independent code clone
detection approach using json string parsing,” International Science
Press, 2016.

Y. Semura, N. Yoshida, E. Choi, and K. Inoue, “Ccfindersw: Clone
detection tool with flexible multilingual tokenization,” in 2017 24th
Asia-Pacific Software Engineering Conference (APSEC), pp. 654—659,
IEEE, 2017.

Y. Semura, N. Yoshiday, E. Choi, and K. Inoue, “Multilingual detection
of code clones using antlr grammar definitions,” in 2018 25th Asia-
Pacific Software Engineering Conference (APSEC), pp. 673-677, IEEE,
2018.

www.ijacsa.thesai.org

795 |Page

