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Abstract—HTML pages contain unstructured and diverse 

information. However, these documents lack semantics and are 

not machine understandable. Semantic webs aim to add formal 

semantics to web data, whereas ontology provides formal 

semantics to a domain and is thus considered a foundation of 

semantic webs. Domain ontologies can be constructed manually, 

but this process is tedious and inefficient. Thus, this study 

presents an ontology learning (OL) model to create domain 

ontologies automatically from a set of HTML pages. The key 

insight of this research is that it combines the list structure and 

headings of HTML pages to recognize the ontology vocabulary. 

The approach also incorporates synonym relationships with 

ontology and allows the semantic interpretation of ontology 

concepts. We implement the proposed OL approach to build 

sports ontology from a collection of sports domain HTML 

documents. The new sports ontology is tested using FaCT++ 

reasoner; results show no inconsistency in the ontology. 

Furthermore, experts evaluate the successful mapping of HTML 

lists and headings to the ontology vocabulary. The proposed OL 

approach performs effectively and achieves 92.7% and 95.4% 

precision values for list and heading mapping, respectively. 

Keywords—Ontology learning; semantic web; sports ontology; 

HTML documents; knowledge extraction; ontology engineering 

I. INTRODUCTION 

HTML is a markup language that is used to write web 
pages over the World Wide Web [1]. It consists of elements 
called tags, which have a fixed definition. Web browsers are 
tools that interpret these tags and display the web pages. Many 
web applications, such as data mining, machine learning, 
artificial intelligence, and natural language processing, 
facilitate the retrieval of information from web pages to fulfill 
user information requirements [2-4]. However, semantics (i.e., 
definition of data embedded in a tag) are not explicitly 

provided in HTML pages. The vision of semantic webs is to 
achieve HTML documents that are understandable by 
machines. To achieve this vision, a formal manner of 
representing semantics is required. This semantic 
representation organizes information, thereby enabling the 
machines to search and process information rapidly and 
accurately. Ontology has emerged as an approach that 
represents the machine-understandable semantics of a domain 
and is currently considered the heart of semantic web 
technologies [5]. 

An ontology represents domain semantics in terms of 
classes, which are linked via relationships called properties. 
The manual construction of ontologies for specific domains is a 
time-consuming and tedious task [6]. In contrast to manual 
ontology development, ontology learning (OL) aims to create 
ontologies automatically from given sources, such as textual 
and HTML documents or relational database (RDB) schema 
[7]. Thus, an OL approach helps reduce the time and effort 
consumed in ontology development. In [8], the authors 
presented and analyzed a broad spectrum of OL approaches. 

This study presents an OL approach that learns ontology 
automatically by using HTML documents. The ontology is 
learned through a combined use of the list and heading tags of 
HTML. In our OL approach, an initial ontology is initially built 
by exploiting the structure of HTML lists. Subsequently, the 
HTML headings are mapped and merged into the initial 
ontology to generate the final ontology. The proposed OL 
approach has two unique features, which are as follows. 

1) It utilizes the combination of HTML list and heading 

tags to develop an ontology. 

2) Synonym relationships are added to the resultant 

ontology to improve the semantic interpretation of concepts. 
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The next section presents related work on OL and 
illustrates the different categories of OL approaches. Section 3 
discusses the steps and algorithms of the proposed OL 
approach. Section 4 outlines the evaluation metrics and 
discusses the results. The last section provides the conclusion 
and future directions. 

II. RELATED WORK 

Various OL techniques have been proposed in the 
literature. These techniques are classified into three main 
categories, namely, textual, knowledge, and semistructured 
based techniques. 

A. Textual-based OL Techniques 

Textual or linguistic techniques depend on natural language 
processing methods for learning ontology constructs from 
textual data. These approaches exploit linguistic analysis to 
uncover the key terms and relationships among terms from a 
given text. Authors in [9] exploited the syntactic patterns of 
sentences to discover the dependency relations among words. 
Their proposed extraction procedure provides a fruitful tool for 
learning domain ontology to support web services. Two 
different evaluations, namely, quantitative and qualitative 
evaluation, are adopted to check the performance of tools. In 
quantitative evaluation, the precision measure is calculated to 
represent the extraction of relevant information from the text. 
On the contrary, the extraction of valid hierarchical structures 
to build an ontology among words is analyzed through 
qualitative evaluation. 

Venu et al. [10] illustrated relation pattern hypernymy (i.e., 
parent–child) and meronyms (i.e., part–whole) in their system 
to learn ontology automatically. The proposed system 
developed an ontology in five stages, as follows: (1) in the first 
stage, an iterative focused crawler is used over the corpus 
collection; (2) in the second stage, the dominant terms are 
extracted using a hyperlink-induced topic search algorithm 
[11]; (3) in the third stage, hypernym and meronym patterns 
are extracted to recognize taxonomic relations (superclass and 
subclass); (4) association rules are used for mining 
nontaxonomic relations in the fourth stage; (5) the last stage 
refines the domain-specific ontology. Many other techniques, 
namely, co-occurrence analysis [12], clustering analysis [13], 
term subsumption [14], and association rule mining [15], are 
also used in the OL procedure for ontology building with high-
level precision. 

B. Knowledge-based OL Techniques 

In this OL category, ontologies are learned through 
structured data, such as using knowledge structure or database 
schemas. Various approaches have been proposed for learning 
ontologies from relational schemas, that is, mapping relational 
schema elements to ontology vocabulary [16-17]. In [18], the 
authors proposed a migration approach that generates resource 
description framework (RDF) graphs from the RDB. To build 
ontologies, they built a prototype that extracts the metadata 
schema of databases. Subsequently, the extracted schema was 
converted into a canonical data model to facilitate the 
migration procedure. Lastly, the structure of the RDF ontology 
was generated as a result of the migration process. 

To learn the ontology from the RDB, Hazber et al. [19] 
proposed a novel approach to facilitate semantic web 
applications. The approach consists of two phases, namely, 
(1) constructing ontology structures from the RDB schema and 
(2) learning ontology instances from the RDB data 
accordingly, that is, mapping rules are applied on the RDB data 
to obtain ontological instances in RDF triple formats. The 
resultant ontology of the proposed approach appeared to be 
reliable and was also verified by software engineers. Gamallo 
and Pereira-Farina [20] used WordNet knowledge structure for 
OL. Different WordNet relation types, such as synset and 
hypernyms, are exploited to learn the vocabulary of ontology. 
The learned ontology represents high-level domain semantics 
with the use of WordNet knowledge-based techniques. 

C. Semistructured-based Techniques 

The approaches that learn ontologies from semistructured 
data, such as XML documents or HTML corpus, fall under the 
semistructured-based OL group. In [21], the ontology in RDF 
language is learned from legal XML documents. In addition to 
XML files, authors explored the use of cases of an ongoing 
project to improve the accuracy of RDF graphs. The 
performance evaluation of RDF ontologies showed 
improvement over an existing parser. 

Algosaibi and Albahli [22] reviewed different categories of 
OL techniques, especially focusing on web documents to 
achieve the vision of semantic webs. Hazman et al. [23] 
presented an approach to learn ontology from HTML 
documents. The approaches are used by extracting the phrases 
of HTML headings, which are then converted into seed 
concepts representing the domain knowledge. Subsequently, 
the relationships between heading phrases are identified on the 
basis of the heading hierarchy within the HTML page. The 
approach provides a useful lightweight ontology. However, 
focusing only on HTML headings may not fully capture the 
semantics of the domain of interest. Authors in [24] followed a 
manual approach to construct ontologies in the tourism 
domain. The researchers collected tourism data from HTML 
datasets and then explored the structure of HTML documents 
to extract the ontology vocabulary. The tourism ontology is 
evaluated by experts using questionnaires and the Pellet 
reasoner tool. The approach is effective but relies on the 
manual identification of ontology vocabulary from the corpus. 

Recent research has focused on automatic learning of 
ontology from the HTML documents. However, this study 
proposed an OL technique that differs from existing works in 
terms of two unique facets. (1) In addition to HTML headings, 
we used ordered and unordered lists, given that these HTML 
lists can be a good source to extract web documents with 
appropriate structure. (2) We included synonym relationships 
in the creation of final ontologies to improve the semantics of 
the domain. 

III. PROPOSED ONTOLOGY LEARNING MODEL 

We propose an OL model using semistructured web data 
while considering all semantics of the domain. The proposed 
model (as shown in Fig. 1) is composed of seven components. 
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Fig. 1. Steps of the OL Model. 

A. List Extractor 

HTML lists (either ordered or unordered) within the 
<script> or <div> tags are usually used as menus in HTML 
documents [25]. For OL, the lists provide an improved source 
of information to understand the appropriate structure of the 
collected web documents. A list extractor module is 
responsible for extracting lists from the input HTML 
collection. For instance, from the unordered list (as shown in 
Fig. 2), the list extractor module acquires <li> athletic trainer 
</li> as a list item. 

B. Heading Extractor 

Headings in HTML documents are also important to 
understand the structure of web documents. Researchers have 
focused on using them in OL procedures [22-23]. In our OL 
model, the heading extractor module was used to extract 
headings from HTML documents, where all six heading levels 
are considered. For instance, from the HTML code <div><h1> 
Assistant athletic trainer </h1></div>, this module retrieves the 
heading item as <h1> Assistant athletic trainer </h1>. 

C. Preprocessing 

This step normalizes the inner text of the extracted HTML 
lists and headings. The output of this model are the following 
two sets: HTML list set (HLS) and HTML heading set (HHS). 
HLS or HHS normalization involves two important tasks, 
namely, stop word removal and stemming. 

1) Stop word removal: Numbers and stop words (e.g., the, 

an, to, and of) in the HLS and HHS are removed using this 

module. For example, from the HHS heading <h2> the athletic 

trainer </h2>, the stop word “The” is removed from the 

heading, and the remaining heading “Athletic trainer” is the 

output. 

2) Stemming: The process of reducing different 

grammatical forms of a term to its base form is called 

stemming. Primitive stemmers work on the removal of prefixes 

or suffixes from the text. Various stemmers have been used in 

the literature [26] to obtain the basic concepts of a domain. We 

used Porter stemmer [27] for this task. 

The overall work of the preprocessing module is shown as 
an algorithm in Fig. 3. 

D. Concept Identification 

In this step, two sets of terms (HLS and HHS), which are 
obtained as output of the preprocessing algorithm, are 
recognized as concepts by adding an underscore between 
different terms of a phrase. For instance, a phrase “athletic 
trainer” in HLS becomes “athletic_trainer,” and “associate 
athletic trainer” is converted to “associate_athletic_trainer.” 
The same procedure is applied to HHS terms. The concepts are 
then used to identify different relationships to create an 
ontology 

 

Fig. 2. Snippet of HTML Document. 

Algorithm: HTML Preprocessor 

Input: HTML lists and HTML headings 

1.  For each tag // <h1> to <h6> || <ol> || <ul> 

2.  Extract inner text T of <li> or heading tag 

3.  Remove noise from T 

4.  Stem T using Porter stemmer 

5.  End For 

Output: Two sets of refined terms: HLS and HHS 

Fig. 3. Preprocessing Algorithm. 
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E. Hierarchy Identification 

The hierarchy module builds a parent–child or is–a relation 
(hierarchy) between the identified HLS concepts. To represent 
the work of this module, we proposed an algorithm as shown in 
Fig. 4. The algorithm uses HLS concepts as input, generates 
subclass relations between concepts by calling the 
Insert_ontology() function, and finally builds an initial 
ontology from the HLS. 

F. List and Heading Merger 

We also focused on the HTML heading list for final 
ontology construction. To this end, we merged the initial 
ontology (developed from HLS) with HHS. Fig. 5 describes the 
detailed steps of merging via an algorithm. The algorithm 
matches the headings within the HHS with each concept of 
initial_ontology (OC). If a heading is exactly matched with the 
OC, then this heading is merged with the OC (e.g., lines 3 and 
4). If the heading concept is unmatched with the OC, then its 
parent is explored. If a parent match is found for OC, then the 
heading concept is placed under the parent concept (see 
algorithm lines 7–10). On the contrary, if no match is found, 
then the heading is inserted as a child of a superclass “root” 
(e.g., line 13). 

1) Similarity measure: An important substep of the HHS 

merging algorithm is to find a similarity match between 

concepts (e.g., lines 3 and 9 in Fig. 5). To this end, Wu and 

Palmer’s (WP) measure [28] is used to compute the similarity 

match among the concepts. For instance, Table I indicates the 

WP similarity values (calculated via 1) between initial 

ontology concept (c1) and heading concept (c2). 

𝑠𝑖𝑚𝑤𝑝(𝑐1, 𝑐2) =
2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜(𝑐1,𝑐2))

𝑙𝑒𝑛(𝑐1,𝑐2)+2∗𝑑𝑒𝑝𝑡ℎ(𝑙𝑠𝑜(𝑐1,𝑐2))
           (1) 

Algorithm: List to ontology convertor 

Input: Script S, ol tags, ul tags 

1. For each ol | ul in S 

2.  Extract inner text T 

3.  If ol | ul is in Div-id && Div-class then  

4.  Extract first level <li> inner text T  

5.  //insert T under root ontology concept 

 CALL Insert_ontology (T, root) 

6.  End If 

7.  If nested <ol> | <ul> then 

  Extract nested level <li> inner text T` 

8.  //insert T` under non-root ontology concept T 

 CALL insert_ontology (T’,T) 

9.  End If  

10. End For 

Output: Initial_ontology 

Fig. 4. Algorithm for Converting an HTML List to an Ontology. 

Algorithm: Heading merger 

Input: HHS, Initial_ontology 

1 For each heading term Ti in HHS 

2  Match Ti with initial_ontology concept (OC) 

3  If Ti is exactly match with OC 

4  Merge Ti in OC 

5  End If 

6  Else  

7  Extract Ti parent Tp  

8  Match Tp with OC 

9  If Tp match found with OC 

10   Insert Ti under Tp 

11  End If 

12  Else 

13   Insert Ti under concept root 

14  End Else 

15  End Else 

16 End For 

Output: Final_ontology 

Fig. 5. Algorithm for Merging Headings. 

TABLE I. WU AND PALMER SCORES 

C1 (ontology) C2 (HHS) WP value 

Athletic_trainer Robust_trainer 0.987 

Associate_athletic_director Associate_ robust _director 0.981 

Sports_ physician Sports_psychologist 0.51 

Medical_assistant Physical_education_instructor 0.30 

G. Add Synonyms 

The last step of our OL model adds synonyms to the new 
ontology as additional semantic data. The synonyms for each 
ontology concept are derived using WordNet knowledge 
structure and are inserted via sim–syn relationships. We only 
focused on noun synonyms to be inserted in our ontology via 
sim–syn relationship because most concepts in the final 
ontology are nouns. Fig. 6 describes an algorithm for this 
module that identifies and inserts synonyms in the final 
ontology concepts. 

Algorithm: Synonym adder 

Input: Final_ontology, WordNet 

1  For each concept Ci in Final_ontology 

2   Retrieve synonyms S using WordNet for Ci 

3   Extract Noun synonyms N from S 

4   Insert N using sim-syn relationships with Ci  

5  End For 

Output: Final_ontology with synonyms 

Fig. 6. Adding Synonym Algorithm. 
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IV. IMPLEMENTATION AND RESULTS 

The proposed OL algorithms (as listed in Section 3) are 
implemented in Java environment to build a system prototype. 
In addition, Jena (an open source java API) is used for 
ontology manipulation, and Protégé tool is used to view the 
final ontology. We evaluated our approach by using the sports 
domain dataset, which consists of 105 HTML documents 
collected from https://www.sports.ru website1. Fig. 7 represents 
the ontograph view (i.e., protégé tool plugin) of the final 
ontology in the sports domain, which is semantically learned 
via the system prototype. 

A. Evaluation Measures 

Two performance measures, namely, semantic reasoner and 
precision measure, are used to evaluate the performance of our 
proposed OL model. 

1) Semantic reasoned: Once an OL technique learns an 

ontology, the consistency of new ontology vocabulary should 

be checked. Semantic reasoners are tools that assess the 

consistency (duplicate classes or properties and unconnected 

taxonomy) of ontologies. Different types of semantic 

reasoners, such as FaCT++, RACER, and HermiT, are 

available to check the validity of ontologies [29]. 

2) Precision: Precision evaluation metrics were used to 

measure the performance of our proposed OL algorithms. This 

metric shows whether a relevant ontology vocabulary is 

retrieved by the system prototype from the HTML document 

set. Precision can be calculated using (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠}∩{𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠}

{𝑟𝑒𝑡𝑟𝑖𝑣𝑒𝑑 𝑖𝑡𝑒𝑚𝑠}
           (2) 

B. Result Analysis 

We initially evaluated the new ontology learned by our OL 
model by using a semantic reasoner. We used the FaCT++ 
reasoner to check the consistency of our ontology. In our 
system, the FaCT++ reasoner provided consistent and reliable 
results for the newly learned sports ontology. This finding 
indicates that the resultant ontology is consistent and no 
ambiguity, and redundancy is found in the vocabulary of 
ontology. 

We further evaluated our approach by commissioning 
experts, which are divided into two groups. Each expert group 
consists of domain researchers and master students with 
background in computer science. The experts manually 
calculated the list items and headings from the collected web 
pages of the sports domain, where 70 list items spanning three 
levels of list hierarchy and 1080 heading items are extracted. 
Then, the experts compared these items with the sports 
ontology vocabulary that is learned by our OL model. To 
elaborate the expert’s results, the precision value was 
computed using Eq. 2 (as discussed in previous section). The 
two precision values calculated are (1) for list items that are 
used to build the initial ontology and (2) for headings that are 
mapped to create the final ontology. Fig. 8 provides a graphical 
representation of the precision value showing 92.7% precision 
for list mapping and 95.4% for heading mapping. This finding 
suggests that our OL approach can stably learn the ontology 
from the combined use of the lists and headings of HTML 
documents. 

 

Fig. 7. Ontograph view of Sports Ontology. 

1https://www.sports.ru// 
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Fig. 8. List and Heading Precision. 

V. CONCLUSION 

This research addresses the issue of accurate OL from the 
HTML corpus by focusing on the combined use of the lists and 
headings of HTML documents. We propose an OL model and 
claim that this model can accurately map the HTML dataset to 
an ontology knowledge base. We have tested our OL prototype 
over an HTML corpus in a sports domain. The ontology 
learned from the web dataset using our approach shows 100% 
consistency on the semantic reasoner. Our OL approach 
obtains 92.7% and 95.4% precision for HTML list mapping 
and HTML heading mapping, respectively. This finding 
indicates that the combination of HTML lists and headings is 
useful in learning precise ontology vocabulary from HTML 
documents. 

In the future, we will focus on improving our OL 
algorithms for inferring HTML heading hierarchy along with 
the HTML lists from the web documents. Furthermore, we will 
attempt to utilize synonym (sim–syn) relationships of newly 
learned ontologies for inferring the accurate structure of 
HTML headings. 
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