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Abstract—Factoring a composite odd integer into its prime 

factors is one of the security problems for some public-key 

cryptosystems such as the Rivest-Shamir-Adleman cryptosystem. 

Many strategies have been proposed to solve factorization 

problem in a fast running time. However, the main drawback of 

the algorithms used in such strategies is the high computational 

time needed to find prime factors. Therefore, in this study, we 

focus on one of the factorization algorithms that is used when the 

two prime factors are of the same size, namely, the Fermat 

factorization (FF) algorithm. We investigate the performance of 

the FF method using three parameters: (1) the number of bits for 

the composite odd integer, (2) size of the difference between the 

two prime factors, and (3) number of threads used. The results of 

our experiments in which we used different parameters values 

indicate that the running time of the parallel FF algorithm is 

faster than that of the sequential FF algorithm. The maximum 

speed up achieved by the parallel FF algorithm is 6.7 times that 

of the sequential FF algorithm using 12 cores. Moreover, the 

parallel FF algorithm has near-linear scalability. 
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I. INTRODUCTION 

The extensive use of digital systems has led to an increased 
need for information security. The main tool used to ensure the 
security of information is cryptography. In order to provide 
information security services, a set of cryptographic strategies 
is needed to convert plaintext into ciphertext. A set of such 
strategies is known as a cryptosystem. There are two main 
types of modern cryptosystems:- (1) public-key (asymmetric) 
cryptosystems such as the ElGamal digital signature scheme, 
Rivest-Shamir-Adleman (RSA) cryptosystem, Diffe-Hellman 
scheme and digital signature algorithm [1], and (2) private-key 
(symmetric) cryptosystems such as the advanced encryption 
standard algorithm [2]. 

The RSA cryptosystem is one of the important 
cryptosystems with security based on integer factorization 
problem, which is defined as follows: Given a positive integer 
𝑛 , the aim of the factorization of 𝑛  is to find two positive 
integers (also known as factors) 𝑝1  and 𝑝2  such that 𝑛 equals 
the product of 𝑝1  and 𝑝2 , and 𝑝1 , 𝑝2  > 1. In this case, 𝑛  is 
called a composite integer. On the other hand, if 𝑛 cannot be 
factored, then 𝑛  is called a prime number. Thus, we can 
represent any positive integer as a unique product of prime 
factors. 

In the RSA cryptosystem, the key is constructed by 
detecting two prime numbers 𝑝1  and 𝑝2  such that the size of 

each of them is large and approximately equal. The modulus 
for the key is defined as 𝑛 = 𝑝1 𝑝2  . Then an encryption 
exponent e is chosen that is relatively prime to 𝜑(𝑛) =
(𝑝1 − 1)(𝑝2 − 1) . Finally, the decryption exponent d is 

defined as 𝑑 ≡ 𝑒−1 (mod 𝜑(𝑛)). 

The main challenge of factorization is the amount of time 
that is consumed to arrive at a solution, especially when the 
size of the prime factors is large. Also, there exists no 
deterministic polynomial algorithm to factor a composite 
number into two prime numbers. 

A. High-Performance Computing 

One of the strategies that can be utilized to reduce the high 
computational time needed by factorization methods is the 
high-performance computing (HPC). The main objective of 
using HPC is to design a parallel algorithm in running time, Tp, 
which is almost equal Tseq/p, where Tseq is the execution time of 
the problem using one processor and p is the number of 
processors used in the HPC. However, the achievement of this 
objective is not easy for several reasons such as the difficulty 
of dividing the problem into equal-sized, the communication 
between processors, and the dependences in some steps of the 
solution. 

The effectiveness of the parallel algorithm can be measured 
using the speedup criteria. The speedup of a parallel algorithm 
is the ratio between the running time of the problem using one 
processor over the running time of the problem using p 
processors and is denoted by Sp=Tseq/Tp. The main goal of 
designing a parallel algorithm is to achieve linear speedup. 
Another important criteria for the parallel algorithm is 
scalability, which represents the parallel system’s capacity to 
increase speedup in proportion to the number of processors. 

Many hardware and software platforms have been 
introduced to measure parallel algorithms practically. 
Examples of parallel hardware are the cluster, multi-core, 
graphics processing unit (GPU) and cloud. There are also many 
different parallel programming languages or libraries such as 
open multi-processing (openMP), the message passing 
interface (MPI), and compute unified device architecture 
(CUDA). 

B. State of the Art 

Many integer factorization algorithms have been proposed 
based on a range of different strategies [1,3,4] such as trial 
division [5], Fermat [6], Brent, Pollard rho and p-1 [1,7], 
elliptic curves [8], Lehman’s method [1,6], continued fraction 
[1,5], multiple polynomial quadratic sieve [9], and number 
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field sieve [9,10]. These algorithms can be categorized based 
on the properties of the numbers to be factorized into general-
purpose and special-purpose algorithms [1,3]. 

The time complexity of the algorithms that belong to the 
general-purpose group is almost independent of the size of the 
factor found and depends on the size of 𝑛. Examples of some 
of the methods that belong to this group are Lehman’s method, 
Shanks’ square form factorization method, continued fraction, 
multiple polynomial quadratic sieves, and number field sieve. 
In the case of the algorithms that belong to the special-purpose 
group, the time complexity of the algorithms mainly depends 
on the size of the factor found. Examples of some of the 
methods belong to this group are the trial division, Fermat, 
Pollard rho, and Lenstra’s elliptic curve methods. 

In this study, we focus on the Fermat factorization (FF) 
algorithm, which is an efficient method when the difference 
between two factors is small. Many research studies have 
attempted to enhance this method from the sequential 
computation viewpoint [11,12,13,14]. However, from the 
parallel computation perspective, to our knowledge there is 
only one published paper on implementing the FF algorithm on 
a GPU, namely, the NVIDIA GeForce GT 630 [15]. Also, in 
this study, the experimental conducted to parallelize the FF 
algorithm on the GPU was based on a small input size of less 
than 60. 

C. Study Outline 

In this study, we show how to utilize HPC to speed up the 
computation of FF method. We use a multi-core platform that 
executes 12 threads concurrently to reduce the execution time 
of the FF algorithm. Also, we study the effect of using HPC 
when we increase the difference between the two primes, even 
of two primes of the same size. The results show that the 
proposed parallel FF algorithm improves execution time and 
that the maximum speed up achieved by parallelization is 6.7 
times that of a sequential FF algorithm. Moreover, the 
parallelization of the proposed parallel FF algorithm shows 
near-linear scalability. 

The rest of this paper is arranged as follows. In Section 2, 
we provide an overview of the FF algorithm, including the 
mathematical concept and pseudocode algorithm, as well as a 
complexity analysis and example. In Section 3, we introduce 
our proposed strategy for parallelizing the FF algorithm. Then, 
in Section 4 we present and discuss the results of our 
experimental evaluation according to execution time, speed-up 
and scalability. Finally, in Section 5, we present the conclusion 
of this work. 

II. THE FF ALGORITHM 

In this section, first we introduce, briefly, the mathematical 
concept on which the FF algorithm is based. Second, we 
present the idea underpinning the FF algorithm as well as the 
pseudocode of the FF algorithm. Third, we provide a 
complexity analysis of the FF algorithm. Finally, we provide 
an illustrative example to show the effect of the difference 
between two primes on the performance of the FF algorithm. 

A. Mathematical Concept 

Assume that 𝑛  is an odd integer of the form 𝑛 = 𝑝1𝑝2 , 
where 𝑝1 > 𝑝2 > 0 . Then the integer 𝑛  can be formed as a 
subtraction of two squares 𝑞1 and 𝑞2, i.e., 𝑛 = 𝑞1

2 − 𝑞2
2. 

We can easily prove this statement by setting 𝑞1 and 𝑞2 as 
follows: 

𝑞1 =
𝑝1 + 𝑝2

2
 and 𝑞2 =

𝑝1 − 𝑝2

2
 

Then, 

𝑛 = 𝑞1
2 − 𝑞2

2 

⟹  𝑛 = (
𝑝1 + 𝑝2

2
)

2

− (
𝑝1 − 𝑝2

2
)

2

 

⟹  𝑛 = 𝑝1𝑝2 

Also, 𝑛 = 𝑞1
2 − 𝑞2

2 can be rewritten as follows: 

𝑛 = 𝑞1
2 − 𝑞2

2 = (𝑞1 + 𝑞2)(𝑞1 − 𝑞2) 

If the two values (𝑞1 + 𝑞2) and (𝑞1 − 𝑞2) are not equal to 
1, then the two values are factors of n. 

B. The Algorithm 

The main idea of the algorithm is to search for two possible 
values 𝑞1 and 𝑞2 such that 𝑛 = 𝑞1

2 − 𝑞2
2. We can rewrite the 

relation between 𝑛 , 𝑞1  and 𝑞2  as 𝑞2
2 = 𝑞1

2 − 𝑛 . So, if we 
know the value of 𝑞1, we can find the value of 𝑞2. Since the 
value of 𝑞2

2 is a positive integer, this means that 𝑞1
2 > 𝑛. So, 

the initial value of 𝑞1 is ⌊√𝑛⌋ + 1. 

The idea of FF algorithm is to test iteratively, increasing by 

a value of 1, all values of 𝑞1 beginning with ⌊√𝑛⌋ +1 until we 

detect a value of 𝑞1 that satisfies the condition that 𝑞1
2 − 𝑛 is a 

perfect square. In this case, the two factors are (𝑞1 +
𝑞2) and (𝑞1 − 𝑞2). 

The complete pseudocode of the FF algorithm is as shown 
in Algorithm 1. The algorithm consists of three main steps. The 
first step is to compute the square root of 𝑛 to determine the 
start value of 𝑞1 . The second step is an iterative step that 
increases the value of 𝑞1  by 1 until the value 𝑞1

2 − 𝑛  is a 
perfect square. At this point, the two factors are determined in 
the third step. 

Algorithm 1: Fermat Factorization (FF) 

Input: Composite odd integer n.  

Output: two prime factors, 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2. 

1. 𝑞1 ← ⌊√𝑛⌋ 
2. Do 

  𝑞1 ←  𝑞1 + 1 

  𝑞2 ← 𝑞1
2 − 𝑛 

 While (𝑞2 is not a perfect square) 

3. 𝑝1 ←  𝑞1 + √𝑞2 

 𝑝2 ←  𝑞1 − √𝑞2 
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TABLE I. THE EFFECT OF THE DIFFERENCE BETWEEN TWO FACTORS ON FERMAT FACTORIZATION 

𝒏 𝒑𝟏 𝒑𝟐 𝜶 ⌊√𝒏⌋ 𝒒𝟏 # of trials 

16181393 4079 (12 bits) 3967 (12 bits) 6 4022 4023 1 

15634807 4079 (12 bits) 3833 (12 bits) 7 3954 3955, 3956 2 

14566109 4079 (12 bits) 3571 (12 bits) 8 3816 3817, … , 3825 9 

12510293 4079 (12 bits) 3067 (12 bits) 9 3536 3537, …, 3573 37 

8439451 4079 (12 bits) 2069 (12 bits) 10 2905 2906, … , 3074 169 

C. Complexity Analysis 

The best case of the FF algorithm occurs when the two 
factors are close together. This means that the value of  𝑞2 =
𝑝1−𝑝2

2
 is small and the value of  𝑞1 is slightly greater than √𝑛. 

Therefore, the number of iterations in the second step is small. 

The worst case of the FF algorithm can be calculated as 
follows. Assume that the minimum value of 𝑞1 − 𝑞2 is 𝛿. This 
implies that: 

𝑛 = (𝑞1 + 𝑞2)(𝑞1 − 𝑞2)  = (𝑞1 + (𝑞1 − 𝛿))  × 𝛿 =
(2𝑞1 − 𝛿)  × 𝛿. Therefore,  

𝑛 = 2𝑞1𝛿 − 𝛿2  ⟹ 𝑞1 =
𝑛−𝛿2

2𝛿
.  

If 𝛿 =3, for large primes, then 𝑞1 =
𝑛+9

6
. 

In general, the performance of FF algroithm is based on the 
difference between the two prime factors, and can be given by 
the following rule [16]:- 

𝒪 (
|𝑝1−𝑝2|2

4√𝑛
) 

In case of |𝑝1−𝑝2| = 𝒪( √𝑛
4

), the FF solution can be found 

easily [16]. 

D. Example 

Table I shows that the main step of FF algorithm, i.e., Step 
2, is affected by the difference between the prime factors even 
when the two factors are of the same size. The table consists of 
seven columns. The first three columns are related to the 
numbers to be factor and their factorization, 𝑛, 𝑝1, and 𝑝2. The 
two prime factors have sizes of 12 bits each, but they have 
different values. The fourth column, 𝛼, represents the number 
of bits in the difference between two factors, ∆. The relation 
between 𝛼  and ∆  is 2𝛼 ≤ ∆< 2𝛼+1 . The fifth and sixth 
columns represent the square root of 𝑛 and all the trail values 
of 𝑞1, respectively. The last column represents the number of 
iterations in the second step of FF method. 

For all the values of 𝑛, the number of bits is 𝑙 = 24, and the 

number of bits for each factor is 
𝑙

2
= 12. In the first row, the 

number of bits in the difference between two factors is 
𝑙

4
= 6. 

The number of bits in the difference between two factors is 
increased by 1 in each next row. It is clear from Table I, that 
when the difference between two factors increases, the number  
 

of iterations in the main step (Step 2) of the FF algorithm also 
increases. 

III. PARALLEL FF ALGORITHM 

In this section, we present the mechanism that is used to 
parallelize FF method. The FF algorithm can be considered as 

a searching algorithm over the range from ⌊√𝑛⌋ + 1  to 
𝑛+9

6
. 

Therefore, the proposed approach to parallelize the FF method 
is based on assigning the first 𝑡 integers to 𝑡 threads, such that 
each thread, 𝑡𝑖 , takes one integer. This means that integers 

⌊√𝑛⌋ + 1, ⌊√𝑛⌋ + 2, …, ⌊√𝑛⌋ + 𝑡 are assigned to threads 𝑡1 , 

𝑡2, …, 𝑡𝑡, respectively. If the target goal is not found by any 

thread, then the second 𝑡 integers, ⌊√𝑛⌋ + 𝑡 + 1, ⌊√𝑛⌋ + 𝑡 + 2, 

…, ⌊√𝑛⌋ + 2𝑡 , are assigned to 𝑡  threads 𝑡1 , 𝑡2 , …, 𝑡𝑡 , 

respectively. This process continues dynamically until a thread 
finds a value of  𝑞2𝑖

 and satisfies the condition that  𝑞2𝑖
 is a 

perfect power. 

In general, the assignment of integer, 𝑞1𝑖
, to thread 𝑡𝑖  is 

given by the following formula: 

𝑞1𝑖
= ⌊√𝑛⌋ + (𝑗 − 1) 𝑡 + 𝑖 

where 𝑗 represents the 𝑗th 𝑡 integers, 𝑗 ≥ 1, and 1 ≤ 𝑖 ≤ 𝑡. 

All the steps in this parallelization method are given by 
Algorithm 2. The first step of the algorithm is a sequential 
steps that are used to (1) determine the value of the square root 
that is used by all threads, and (2) assign the shared variable 
found with false. The second step is a parallel step that is 
executed by all threads, where each thread 𝑖 , 1 ≤ 𝑖 ≤ 𝑡, has 

two local variables, 𝑞1𝑖
 and 𝑞2𝑖

. This step consists of three 

substeps, 2.1, 2.2, and 2.3. Substep 2.1 is used to assign initial 
values for 𝑗 (iteration number) and 𝑞1𝑖

. Substep 2.2 is used to 

update the value of 𝑞1𝑖
 and 𝑞2𝑖

 if the value of 𝑞2𝑖
 is still not a 

perfect square or no other thread has found the solution. 
Finally, in Substep 2.3 the thread that has found the solution, 
i.e., 𝑞2𝑖

 that is a perfect square, changes the value of found 

from false to true and then calculates the two factors 𝑝1 and 𝑝2. 

In order to improve the performance of Algorithm 2, we 
applied the following modifications. First, in order to be able to 
read a shared value between all threads, for each shared value 
between threads, we used a local variable instead of the shared 
value, except at the beginning of executing each thread. Also, 
for the shared value found, we used a shared array Ok of 𝑡 
elements of Boolean type. We also changed the second 
condition in the While-loop in Substep 2.2, to Ok[i]. Second, 
we implemented a modification to enable writing on a shared 
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variable. This occurs when thread 𝑗 has found the solution. In 
this case, thread 𝑗 is responsible to changing all values of Ok 
using the critical region command. The complete steps of the 
modified algorithm are shown in Algorithm 3. 

Algorithm 2: Parallel Fermat Factorization (PFF) 

Input: Composite odd integer n.  

Output: Two prime factors 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2. 

1. 𝑞1 ← ⌊√𝑛⌋ 

 found =false 

2. for 𝑖 ← 1 to 𝑡 do parallel 

2.1  𝑗 ← 0 

 𝑞1𝑖
← 𝑞1 + 𝑖 

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛 

2.2 while (𝑞2𝑖
 is not a perfect square) and (not found) do 

 𝑞1𝑖
← 𝑞1𝑖

+ 𝑡 

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛 

2.3 if (𝑞2𝑖
 is a perfect square) then 

 found =True 

 𝑝1 ←  𝑞1𝑖
+ √𝑞2𝑖

 

 𝑝2 ←  𝑞1𝑖
− √𝑞2𝑖

 

Note: There is another approach that can be used to 
parallelize the range search, 𝑅 for FF algorithm. This approach 
is based on dividing the search range into 𝑡, number of threads, 
subranges. Each thread 𝑡𝑖 , 1 ≤ 𝑖 ≤ 𝑡 , searches subrange, 𝑅𝑖 , 
which is defined as follows. 

[𝑞1 + 1 + (𝑖 − 1)
𝑅

𝑡
, 𝑞1 + 𝑖

𝑅

𝑡
] 

Algorithm 3: Modified Parallel Fermat Factorization (MPFF) 

Input: Composite odd integer n.  

Output: Two prime factors 𝑝1, 𝑝2 > 1, such that 𝑛 = 𝑝1 𝑝2. 

1. 𝑞1 ← ⌊√𝑛⌋ 

2. for 𝑖 ← 1 to 𝑡 do parallel 

2.1  𝑗 ← 0 

 𝑂𝑘𝑖 ← 𝑓𝑎𝑙𝑠𝑒 

 𝑛𝑖 ← 𝑛 

 𝑡𝑖 ← 𝑡 

 𝑞1𝑖
← 𝑞1 + 𝑖 

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛𝑖 

2.2 while (𝑞2𝑖
 is not a perfect square) and (not 𝑂𝑘𝑖) do 

 𝑞1𝑖
← 𝑞1𝑖

+ 𝑡𝑖 

 𝑞2𝑖
← 𝑞1𝑖

2 − 𝑛𝑖 

2.3 if (𝑞2𝑖
 is not a perfect square) then 

 for 𝑖 ← 1 to 𝑡 do // critical region 

  𝑂𝑘𝑖 ← 𝑡𝑟𝑢𝑒  

 𝑝1 ←  𝑞1𝑖
+ √𝑞2𝑖

 

 𝑝2 ←  𝑞1𝑖
− √𝑞2𝑖

 

Thread 𝑡𝑖 starts the search with 𝑞1𝑖
= ⌊√𝑛⌋ + 1 + (𝑖 − 1)

𝑅

𝑡
 

and tries to find the value of  𝑞2𝑖
 satisfying the condition that 

 𝑞2𝑖
 is a perfect power. If thread 𝑡𝑖 finds the target goal,  𝑞2𝑖

 is 

a perfect power, then the shared variable, found, is changed 
from false to true. This means that all the other threads stop 
searching if one of the threads changes the variable found to 
true. 

In general, this approach is not efficient for two factors of 
the same size. For example, referring to Table I, consider n=
4079 × 2069 = 8439451 , and let the number of threads 
𝑡 = 8. The range of the search is [2905,1406576]  and 
therefore the range of the search for each thread is 
approximately 175822. The first thread will therefore find the 
solution after 169 iterations. In contrast, by using Algorithm 2, 
the solution can be found after just 22 iterations. 

IV. EXPERIMENTAL EVALUATIONS 

In this section, we present the procedures and the results of 
our evaluations of the impact of the suggested parallel 
approach on the FF method according to the following three 
parameters: (1) the number of bits for the composite odd 
integer, (2) size of the difference between two prime factors, 
and (3) number of threads used. To achieve these goals, the 
section involves two subsections. The first subsection provides 
the configurations of the platform and data used in the 
experiments. The second provides the measurement and 
analysis of the running times and the scalability of the 
suggested parallel method. 

A. Platform and Data Setting 

The platform settings in the experiments are based on the 
configurations shown in Table II. 

The experiments on all the studied algorithms are based on 
three parameters. The first two parameters are related to the 
generation of two prime numbers, 𝑝1 and 𝑝2, of the same size 
to construct a composite odd number 𝑛 = 𝑝1 𝑝2 . The first 
parameter is the number of bits for the integer 𝑛, which is 𝑙. 
This means that the number of bits for each prime factor, 𝑝1 

and 𝑝2, is 
𝑙

2
. The second parameter is the difference between 

the two prime factors, which is ∆= |𝑝1 − 𝑝2|, 2𝛼 ≤ ∆< 2𝛼+1, 

where 𝛼 <
𝑙

2
− 1. This means that a prime factor 𝑝1 of size 

𝑙

2
 is 

generated, the size of the second prime factor generated is 
𝑙

2
 

such that the difference between them is ∆ and 2𝛼 ≤ ∆< 2𝛼+1, 
for a certain value of 𝛼. The setting of these two parameters is 

shown in Table III. The maximum value of 𝛼 is 
𝑙

2
− 2 in order 

to ensure that the two prime factors are the same size. The 

minimum value of 𝛼 is 
𝑙

2
− 15, because this value is near to 

𝑙

4
, 

for the studied cases. Also, if 𝛼  is less than 
𝑙

2
− 15, for the 

studied cases, the running time of the algorithms tends to be 
toward zero. The third parameter is the number of cores, 𝑡, 
used in the experiments and the values of 𝑡 are 4, 8, and 12. 

In the experiments, we initially fix the value of 𝑙, say 𝑙 =

80, and then generate two prime numbers, each of size 
𝑙

2
 such 

that the difference between them is ∆, say ∆=
𝑙

2
− 5. We repeat 
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the same process to generate 25 different data, 𝑑𝑖 , 1 ≤ 𝑖 ≤ 25, 
for the same values of 𝑙 and ∆. After that, we run Algorithm A 
on 𝑑𝑖 using a fixed number of cores, 𝑡𝑗. Therefore, the running 

time for Algorithm A using 𝑡𝑗  cores is the average of the 

running times of Algorithm A on 25 instances. In the case of 
𝑙 = 100, we run the FF algorithm only one time, because the 
running time is very large (see Table IV). Also, in this case, we 
run the parallel FF algorithm using 𝑡 threads for five instances 
only. 

In general, the running time for Algorithm A is computed 
using the three parameters as follows: For each fixed value of 
𝑙, ∆, and 𝑡, we measure the running time of Algorithm A by 
executing Algorithm A on 25 different instances and then 
compute the average of these running times in seconds. 

In addition, for the fixed value of 𝑙, we have 12 values for 
the running time of Algorithm A, and each of them is the 
average time for 25 instances. These 12 values come from all 

the combinations of four values of ∆ (
𝑙

2
− 15, 

𝑙

2
− 10, 

𝑙

2
− 5, 

and 
𝑙

2
− 2) and three values of 𝑡 (4, 8, and 12). 

B. Discussion of the Results 

Based on the platform and data settings described in the 
previous subsection, the running times of Algorithm 1 
(sequential FF algorithm) and Algorithm 3 (parallel FF 
algorithm) are shown in Table IV. The table consists of six 
columns. The first column represents the number of bits for the 
composite odd integer 𝑛, while the second column represents 
the number of bits for the difference between the factors. The 
third column represents the running time for the sequential FF 
algorithm, Algorithm 1. The fourth to sixth columns represent 
the running time for the parallel FF algorithm, Algorithm 3, 
using 4, 8, and 12 threads, respectively. 

TABLE II. HARDWARE AND SOFTWARE CONFIGURATIONS 

Type of 

Platform 
Components Description 

Hardware 

Processor 2 hexa-core (12 cores) 

Speed 2.6 GHz 

Memory 16 GB 

Cash Memory 15 MB 

Software 

Operating System Windows 10 

Language C++ 

Parallel Library OpenMP (Open Multi-Processing) 

Big Integer Library GMP (GNU Multiple Precision) 

TABLE III. PARAMETER SETTINGS FOR 𝑙 AND ∆  

𝒍 
𝒍

𝟐
 

𝟐𝜶 ≤ ∆< 𝟐𝜶+𝟏 

𝜶 

𝒍

𝟐
− 𝟏𝟓 

𝒍

𝟐
− 𝟏𝟎 

𝒍

𝟐
− 𝟓 

𝒍

𝟐
− 𝟐 

70 35 20 25 30 33 

80 40 25 30 35 38 

90 45 30 35 40 33 

100 50 35 40 45 48 

TABLE IV. RUNNING TIME FOR SEQUENTIAL AND PARALLEL FF 

ALGORITHMS 

𝒍 𝜶 
Number of threads 

1 4 8 12 

70 

(𝑙 2)⁄ − 15 = 20 0 0.0002 0.0004 0.0004 

(𝑙 2)⁄ − 10 = 25 0.0022 0.0008 0.0006 0.0006 

(𝑙 2⁄ ) − 5 = 30 1.1628 0.4412 0.303 0.201 

(𝑙 2)⁄ − 2 = 33 57.9 19.1 13.7 9.8 

80 

(𝑙 2)⁄ − 15 = 25 0.0002 0.0004 0.0002 0.0002 

(𝑙 2)⁄ − 10 = 30 0.0544 0.0206 0.017 0.0106 

(𝑙 2⁄ ) − 5 = 35 35.7 10.7 8.8 6.4 

(𝑙 2)⁄ − 2 = 38 524.1 146.5 113.5 80.1 

90 

(𝑙 2)⁄ − 15 = 30 0.002 0.0007 0.0006 0.0004 

(𝑙 2)⁄ − 10 = 35 1.158 0.404 0.271 0.216 

(𝑙 2⁄ ) − 5 = 40 796.3 248.3 185.7 117.5 

(𝑙 2)⁄ − 2 = 43 19348.7 6046.5 4398.5 3064.5 

100 

(𝑙 2)⁄ − 15 = 35 0.0564 0.0224 0.014 0.01 

(𝑙 2)⁄ − 10 = 40 42.7 13.7 10.1 6.9 

(𝑙 2⁄ ) − 5 = 45 18695.7 5665.4 3995.8 2948.2 

(𝑙 2)⁄ − 2 = 48 873041.6 253055.5 174608.3 130956.2 

From results of the analysis of the running times of the two 
algorithms, 1 and 3, using different factors shown in Table IV, 
several observations can be made. First, in respect of the 
sequential FF algorithm, Algorithm 1: 

1) The running time of the sequential FF algorithm 

increases with increased difference between the two prime 

factors. This means that, for a fixed value of 𝑙, the running 

time of the FF algorithm when 𝛼 = 𝛼1 is less than when 𝛼 =
𝛼2, where 𝛼1 < 𝛼2. For example, when 𝑙 = 80, 𝛼1 = 35, and 

𝛼2 = 40, the running times of the sequential FF algorithm are 

0.05 and 35.7 seconds, respectively. 

2) For a fixed value of 𝑙 and two different values of 𝛼, 

𝛼1 and 𝛼2 , the difference in the running time of the FF 

algorithm between 𝛼1and 𝛼2 is significant. 

3) The minimum and maximum running times of the 

sequential FF algorithm occur when the values of 𝛼  are a 

minimum of 
𝑙

4
, and a maximum of 

𝑙

2
− 2, respectively. 

Second, in respect of the running time of the parallel FF 
algorithm, Algorithm 3: 

1) The running time of the parallel FF algorithm decreases 

with an increase in the number of threads. This means that for 

fixed values of 𝑙 and 𝛼, the running time of the parallel FF 

algorithm using 𝑡 threads is less than the running time for the 

same instance using 𝑡′ threads, where 𝑡 > 𝑡′. As an example, 

for 𝑙 = 80  and 𝑡 = 4, 8, and 12, the running times of the 

parallel FF algorithm are 10.7, 8.8, and 6.4, respectively. 

2) The running time of the parallel FF algorithm is faster 

than the running time of the sequential FF algorithm using any 

number of threads, 𝑡 ≥ 4, except when the running time for 

FF algorithm is near to zero. In this case, when 𝑙 = 70 and 
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𝛼 = 20, the parallelization approach is not efficient in terms 

of running time because the search range is very small. 

3) For fixed values of 𝑙  and 𝛼 , the running time of the 

parallel FF algorithm is different from one instance to another. 

This is because the range of ∆ is large for a large value of 𝛼. 

As an example, Fig. 1 shows the running time of the parallel 

FF algorithm on 25 different instances using four threads for 

the case of 𝑙 = 80 and 𝛼 = 35. 

4) The amount of improvement in the parallel FF 

algorithm, using 𝑡 threads, with respect to the FF algorithm is 

greater than the improvement in the parallel FF algorithm 

using 𝑡′ threads, 𝑡 > 𝑡′, see Fig. 2. For example, in the case of 

𝑙 = 90 and 𝛼 = 40, the amount of improvement in the parallel 

FF algorithm using four threads is 68.8%, whereas the amount 

of improvement increases to 76.6% using eight threads. 

Third, we also measured the speedup of the parallel FF 
algorithm based on two viewpoints: (1) fixed values of 𝑙 and 𝛼, 
and (2) fixed values of 𝑙 and 𝑡. 

1) Fig. 3 shows the speedup values with fixed 𝑙  and 𝛼 , 

and varied values of 𝑡, from which it can be observed that the 

speedup of the parallel FF algorithm increases with increased 

𝑡. This is true for every 𝑙 and 𝛼 studied except when 𝑙 = 70 

and 𝛼 = 20, because the running time of the FF algorithm at 

these values is zero. For example, when 𝑙 = 90 and 𝛼 = 40, 

the speedup values of the parallel FF algorithm using 𝑡 = 4, 8, 

and 12 are 3.2, 4.3, and 6.8, respectively. In addition, in 

general, the speedup value equals, approximately, half of the 

number of threads. 

2) Fig. 4 shows the speedup values with fixed 𝑙 and 𝑡, and 

varied values of 𝛼 , from which it can be observed that the 

speedup of the parallel FF algorithm increases, slightly, with 

increased 𝛼 . This means that for a fixed problem size and 

number of threads, the speedup value of the parallel FF 

algorithm increases, even slightly, with an increase in the 

difference between two prime factors. For example, when 𝑙 =
80  and 𝑡 = 12 , the speedup values of the parallel FF 

algorithm are 1, 5.1, 5.6, and 6.5 for 𝛼 =25, 30, 35, and 38, 

respectively. 

In general, the maximum speedup achieved by the parallel 
FF algorithm was 6.7 times greater than that achieved by the 

FF algorithm. Moreover, the parallel FF algorithm had near-
linear scalability. 

Fourth, Fig. 5 shows the efficiency of the parallel FF 
algorithm in the case of 𝑙 = 100 and different values of 𝛼. The 
maximum efficiency value achieved when the number of 
threads equals four. 

 

Fig. 1. Running Time of the Parallel FF Algorithm Over different instances. 

 

Fig. 2. Percentage of Improvements for the Parallel FF Algorithm. 
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Fig. 3. Scalability of the Parallel FF Algorithm with Fixed 𝑙 and 𝛼. 

 

Fig. 4. Scalability of the Parallel FF Algorithm with Fixed 𝑙 and 𝑡. 
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Fig. 5. Efficiency of the Parallel FF Algorithm. 

V. CONCLUSION 

In this study, we addressed one of the challenging problems 
related to cryptography, namely, integer factorization. The goal 
of integer factorization is to factor a composite number into 
two prime factors. The FF algorithm is one of the factorization 
algorithms that is used when the two factors are the same size. 
We investigated the use of a multi-core system on the 
performance of the FF method based on three parameters: (1) 
the number of bits for the composite positive integer, (2) size 
of the difference between two prime factors, and (3) number of 
threads used. The experimental results showed that the running 
time for the parallel FF algorithm was faster than that of the FF 
algorithm. The maximum speedup achieved by the parallel 
algorithm was 6.7 times that of the sequential FF algorithm. 
Moreover, the parallel FF algorithm had near-linear scalability. 

There are still some interesting open questions related to FF 
algorithm such as (1) how to use GPUs to parallelize FF 
algorithm, (2) how to reduce the running time of FF algorithm 
when the difference between the two prime factors is large, and 
(3) how to use FF algorithm in internet of things [17]. 
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