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Abstract—Over the last years, many researchers have 

engaged in improving accuracies on Automatic Speech 

Recognition (ASR) task by using deep learning. In state-of-the-

art speech recognizers, both Long Short-Term Memory (LSTM) 

and Gated Recurrent Unit (GRU) based Reccurent Neural 

Network (RNN) have achieved improved performances 

compared to Convolutional Neural Network (CNN) and Deep 

Neural Network (DNN). Due to the strong complementarity of 

CNN, LSTM-RNN and DNN, they may be combined in one 

architecture called Convolutional Long Short-Term Memory, 

Deep Neural Network (CLDNN). Similarly we propose to 

combine CNN, GRU-RNN and DNN in a single deep architecture 

called Convolutional Gated Recurrent Unit, Deep Neural 

Network (CGDNN). In this paper, we present our experiments 

for phoneme recognition task tested on TIMIT data set. A phone 

error rate of 15.72% has been reached using the proposed 

CGDNN model. The achieved result confirms the superiority of 

CGDNN over all their baselines networks used alone and also 

over the CLDNN architecture. 
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I. INTRODUCTION 

Speech has always been regarded as the most common 
mode of communication between humans. With the recent 
development, this mode of speech communication has also 
been used for human-machine interaction. Current technology 
allows machines to process and respond reliably to basic 
human speech. Using speech as input in the human-machine 
dialogue puts technology within the reach of all, while the 
classic manual input techniques cannot really satisfy the needs 
of people with physical disabilities. 

Understanding speech is a difficult task for a machine. Just 
like the human brain, a machine must first recognize speech. 
Automatic Speech Recognition (ASR) is a primary step that 
allows machine to understand the oral information given by a 
human user. It consists of using several matching techniques to 
compare an inputted utterance to a set of samples. A common 
ASR application is to transcribe human speech into a textual 
representation, which can be further exploited in many 
applications such as language identification, information 
extraction, retrieval technology, archiving, etc.  

In spite of the huge progress in signal processing, 
computational resources and algorithms, we are far from 

getting ideal ASR systems. Thus, we should open the most 
relevant research topics to attain the principal goal of 
Automatic Speech Recognition. In fact, recognizing isolated 
words is not a hard task, but recognizing continuous speech is a 
real challenge. Any ASR system has two parts: the language 
model and the acoustic model. For small vocabularies, 
modeling acoustics of individual words is may be easily done 
and we may get good speech recognition rates. However, for 
large vocabularies, developing successful ASR systems with 
good speech recognition rates has become an active issue for 
researchers. As vocabulary size grows, we will not be able to 
get enough spoken samples of all words and we should model 
acoustics at a lower level. The ASR systems may use sub-word 
units of words, called phonemes, for both training and 
decoding process [1],[9]. 

From last five decades, HMM is considered as the leader to 
model temporal variability in speech signals. Each phoneme is 
modeled by a set of HMM states, currently a left-to-right 
HMM topology with three emitting states is used. Using HMM 
alone for training a speech recognition system did not bring 
promising results. To increase the performance researchers 
introduced several new or hybrid classifiers. And GMM 
became an integral part of HMM to model the acoustic 
characteristics of speech at each phonetic state using an n-gram 
language model [1],[2],[4]. 

Still there is a vast scope for improving speech recognition 
systems, since GMM is not efficient to model data on or near 
to nonlinear manifold in existing data space. An efficient 
generative modelling technique is so required to solve this 
problem. Among the recent researches, attention may be 
attracted to deep learning, which has been shown able to solve 
complex real-world problems. Deep learning has been 
successfully used for Automatic Speech Recognition (ASR) to 
reach better gains. Many researchers have proposed to replace 
GMM with a deep model to estimate the posterior probabilities 
of each HMM state. Deep neural models combined with hidden 
Markov models became the most dominant approach for 
speech recognition replacing the classic (GMM-HMMs) 
approach [4]-[6],[8]-[9]. 

In the last few years, deep learning has been progressively 
evolved, offering more efficient architectures. Earlier works 
exploiting deep learning for speech recognition were based on 
classic multilayer perceptron (MLP). Recently, with the advent 
of graphical processing unit (GPU) that is able to provide 
interesting processing power and huge memory to handle 
ample amount of datum, more advanced architectures have 
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been proposed like, Deep Neural Network (DNN), 
Convolutional Neural Network (CNN), both Long-Short Term 
Memory network (LSTM) and Gated Reccurent Unit (GRU) 
based Recurrent Neural Network (RNN). Of all these 
architectures, recurrent neural networks based models have 
shown very strong comparative performance [1],[2]. 

This paper is organized as follows: in Section 2, we present 
the related works to continuous speech recognition and in 
particular to the phone recognition task. Principally, we present 
the most promising deep architectures; namely, CNN, LSTM, 
GRU and DNN. In Section 3, we describe our proposed deep 
combined CLDNN and CGDNN structures. Section 4 presents 
our experimental setup and results for the TIMIT data set. 
Finally, we draw some conclusions and we outline our future 
works in Section 5. 

II. RELATED TERMINOLOGIES 

This section aims to provide an overview on the most 
performing deep learning architectures used for speech 
recognition and to discuss the nuances between these models. 

A. Deep Neural Network (DNN) 

As shown in Fig. 1, a Deep Neural Network (DNN) is a 
conventional Multi-Layer Perceptron (MLP) containing several 
layers of hidden units stacked on top of each other between the 
input and output layers. The hidden units of each layer are 
connected to those of the next layer using unidirectional 
connections. The DNN is so able to extract more robust and 
significant features of the input data via these different non-
linear hidden layers [2]-[3]. 

Generally, the logistic function is used by each hidden unit 

to map its total input from the previous layer jx to the scalar 

state 
j

y  that will be send to next layer. 

1
logistic( )

-1j x j
y j e

x 


  ,    y w
i ijj j

i
x b             (1) 

where jb  is the bias of hidden unit  j,  i  is an index over the 

units in previous layer and ijw  is the weight of connection 

between unit  j  and  unit i of  previous layer [5]-[6]. 

The main idea of a DNN is to pass the speech input to a 
first layer that will extract a new representation from this input 
and will then pass the output as input to a layer above. The next 
layer will produce a new higher representation from its input, 
and so on; these steps will be repeated with the next layers, 
until reaching the last layer [5], [7]. 

For multiclass classification, the output unit j uses a 

“softmax” non-linearity to convert its total input, jx into a class 

probability jp .[5]-[6] 
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where k is an index over all classes. 

 
Fig. 1. Fully-Connected DNN Structure. 

The DNN may be discriminatively trained in a supervised 
way by back-propagating the derivatives of a cost function, 
which computes the error between the network outputs and the 
desired outputs. This cost function can be defined as a cross-
entropy between the target probabilities d and the outputs of 
the softmax, p: [5]-[7]. 

logj j

j

C d p 
               

            (3) 

where the target probabilities are provided for training the 
DNN. 

In the case of large training sets, it’s more interesting to 
calculate the cost function derivatives on small “mini-batch” 
randomly taken from the whole training set, before updating 
the weights in proportion to the gradient. This method called 
stochastic gradient descent (SGD) may be improved, if we use 

a “momentum” coefficient 0 1m that smooths the gradient 

computed for a mini-batch t [5]-[6]. 
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The DNN model has been largely used for many speech 
recognition tasks; with two different training approaches either 
supervised approach or unsupervised one. This later approach, 
namely unsupervised training, was proposed by Hinton et al. in 
[5] and it was done using the weights of a deep belief network 
(DBN) built by stacking several Restricted Boltzmann 
Machines (RBMs) on top of each other [5]-[7]. 

Previous works proposed to combine DNN with Hidden 
Markov Model to get hybrid system defined as “DNN-HMM”. 
DNN is used to estimate the posterior probabilities for senone 
(context dependent tied state model) in HMM based speech 

recognition. Consider on input a feature vector tx of a context 

dependent window frame and applies nonlinear transformation 
on it through many hidden layers of DNN. The senone labels 
are obtained using forced-alignment through a well-trained 
“GMM-HMM” system. The DNN uses softmax output layer 
containing a number of classes (nodes) equals to its number of 
senones [4], [9]. 

Earlier, Mohamed et al [6] has successfully implemented a 
pre-trained DNN for phoneme recognition. In his work a 
context independent “DNN-HMM” model has brought a phone 
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error recognition rate of 22.4% on TIMIT test set. The obtained 
result displays significantly the power of DNN over GMM. 

B. Convolutional Neural Network (CNN) 

Very recently, Convolutional Neural Network (CNN) 
becomes popular hierarchical deep structure aka deep learning 
for several tasks of speech processing and recognition. CNN 
has been shown able to produce highly efficient learning 
parameters. The efficiency of CNN may be attributed to its 
ability to exploit translational invariance in speech signals. 
Compared to other deep learning models, CNN can capture 
easily the environmental and speaker variability in acoustic 
features [10]-[15],[18]-[19]. 

Simply, three extra concepts, i.e., local filters, pooling, and 
weight sharing make CNN powerful over DNN and contribute 
to its superior performance. A typical architecture of CNN 
contains usually several convolutional-pooling layers, followed 
by a certain number of fully-connected layers [10]-[12],[16]. 

The inputted speech utterances for a Convolutional Neural 
Network, presented by the feature vectors, must be transformed 
into feature maps, where each feature map define the values of 
one feature vector for different locations. Speech recognition 
systems require features organized along frequency or time (or 
both). A convolution operation will be then applied on these 
feature maps in order to get outputs from small local regions, 
which represent the features of a limited frequency range.  The 
neurons of this convolution layer are organized into feature 
maps, where the neurons belonging to one feature map will 
share the same weights, called also filters or kernels [12]-[16]. 

Considering the input to CNN is defined by 

1 2[   ... ] A B

Bv v v v   , where A is the number of features 

corresponding to an input frequency band, B is the number of 

input frequency bands and 
bv  is the feature vector 

corresponding to band  b . The activations of the convolutional 
layer will be calculated as:  [12]-[13] 
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where ,k jh is the activation corresponding to the thj feature 

map of the thk convolution layer band, s is the filter size, ,b jw

is the weight vector corresponding to the thb band of the thj

filter , ja is the bias representing the thj feature map and ( )x  

is the activation function . 

Local filters and weight-sharing are two interesting 
concepts making the success of CNN for speech recognition. In 
fact, different phonemes have different energy concentrations 
in different local bands along frequency axis. To distinguish 
different phonemes the small local energy concentrations are 
processed by a set of local filters in the convolutional layer 
[12]-[13]. 

Generally, a pooling layer will be added after the 
convolution one. A pooling layer is also arranged into feature 
maps of a number equal to those of the convolution layer, but 
with smaller maps. In the pooling layer, a sub-sampling will be 
done on the activations of the convolution layer to obtain new 

representations with a reduced resolution. Pooling layer leads 
to more efficient training by reducing the total number of 
trainable parameters. Different pooling functions may be used 
as, max-pooling, stochastic-pooling and average-pooling. For a 
max-pooling function, it provides the maximum value of a 
feature map along the corresponding frequency bands. The 
activations of the max-pooling layer can be calculated as [12]: 

, ( 1) ,
1

max( )
r

m j m n k j
k
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where ,m jp  is the activation corresponding to the thj

feature map and the thm  pooling layer band, r is the pooling 

size, and  1,...,n r is the sub-sampling factor [12]-[13]. 

Finally, a certain number of fully connected layers will be 
added on top of these convolution-pooling layers to achieve the 
building of CNN [12]-[13]. 

Convolutional Neural Networks have achieved an 
impressive performance in phone recognition task. A CNN 
with limited-weight-sharing scheme and with frequency 
convolution has been successfully used in the work of Abdel-
Hamid et al [12]. The phone recognition accuracy obtained 
using this hybrid “CNN-HMM” model was interesting. A 
phone error rate of 20.36% was achieved on TIMIT test set, 
which is outperforming the performance achieved using a 
“DNN-HMM” model. Loth [17] has also presented another 
“CNN-HMM” model with convolution over both time and 
frequency. Better performance was achieved in this work, the 
lowest phone error rate achieved on TIMIT test set was of 
16.7%. 

Recurrent Neural Network (RNN) based architectures 

Despite providing interesting performances, DNNs and 
CNNs are able to model only a limited temporal dependency. 
Consequently, they are not efficient to model speech, which is 
inherently a sequential signal. To handle this weakness, 
Recurrent Neural Networks (RNNs) are used in many speech 
recognition applications. RNNs are a class of neural networks, 
which include recurrent connections from the previous time 
step as inputs. This structure lets them more efficient for 
sequence modeling than the traditional neural networks. The 
interest of RNNs lies in their capability to dynamically model 
the long-term dependencies by using an internal state and 
updating it at each time step based on its previous state and 
current input [20],[25]-[26]. 

A conventional RNN computes a mapping from an input 
sequence

1( ,...., )Tx x x to an output sequence 
1( ,...., )Ty y y

by calculating the sequence of hidden activations vector

1 2( , ,...., )Th h h h using the following equations iteratively 

from 1t  to T : [20] 

1( )t xh t hh t hh H W x W h b                (7) 

t hy t yy W h b                 (8) 

where,  W terms are the weight matrices, b is the bias 

vector and (.)H is the recurrent hidden layer activation 

function. 
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Unfortunately, RNN training may be complicated due to 
the classical vanishing and exploding gradients problem. To 
address properly this problem, previous studies proposed more 
sophisticated variant of RNN called “gated RNN”. The core 
idea of this architecture is using a gating mechanism to control 
efficiently the flow of information through various time-steps. 
Two of the most successful gated RNN are Long Short-Term 
Memory (LSTM) and Gated Recuurrent Unit (GRU) models, 
which often conduct to state-of-the art recognition accuracies 
for various machine learning tasks [20]-[21],[26]. 

1) Long-Short Term Memory (LSTM) 
Among different implementations of gated RNNs, an 

alternative variant called Long Short Term Memory (LSTM) 
has been introduced. The LSTM network has the ability to 
memorize sequences with long range temporal dependencies. 
In a conventional LSTM network, each hidden layer is 
composed by a certain number of recurrently connected units 
called “memory blocks”. Each memory block contains one or 
more self-connected memory cells for storing the contextual 
information and three multiplicative gates called input, output 
and forget gate for controlling the flow of information from 
previous steps to the current ones. These three gates try to 
remember when and how much the information in the memory 
cell should be updated. This gate mechanism makes LSTM 
architectures well suited for sequence modeling and has 
improved robustness [22]-[24]. 

As shown in Fig. 2, given an input sequence
1( ,...., )Tx x x

a conventional LSTM calculates the network unit activations 

by iterating the following equations from 1t  toT : [21],[22] 

1( )t gx t gh t gg W x W h b   
                                          

(9)
 

1 1( )t ix t ih t ic t ii W x W h W c b     
                         

(10) 

1 1( )t fx t fh t fc t ff W x W h W c b     
                      

(11)
 

1t t t t tc f c i g 
                                         

(12)

1( )t ox t oh t oc t oo W x W h W c b    
                        

(13) 

( )t t th o c
                                                     

(14) 

where ixW
, fxW , gxW  and oxW

are the weights connected to 

the LSTM inputs, ihW
, fhW , ohW

and ghW  are the weights 

connected to the LSTM activations, , ,ic fc ocW W W  are diagonal 

weight matrices for peephole connections, b terms are the 

biases , i , 
f

, o  and c are respectively the input gate, forget 

gate, output gate and cell activation vectors, is the element-

wise product of vectors,  is the sigmoid function and


is the 

hyperbolic tangent function. 

In speech, a phoneme is usually influenced by its past and 
future dependencies due to co-articulation and linguistic 
tendency of a word.  To take into account this phenomenon, a 
bidirectional variant of LSTM (BLSTM) has been proposed to 
further ameliorate the recognition accuracy compared to the 
unidirectional LSTM.  The motivation of a bidirectional LSTM 

is to exploit the bidirectional contextual information (past and 
future context) to improve predictions. For each depth, a 
classic BLSTM model has two layers; a forward layer for 
processing the inputted utterance in the forward direction and a 
backward layer for processing the inputted utterance in the 
backward direction. The final output is resulted by 
concatenating the outputs of forward and backward layers [22]-
[24], [27]-[28]. 

To bring more improvements to these single-layer 
architectures, either unidirectional or bidirectional, their deep 
alternatives may be used. Inspired by DNNs, the deep LSTM-
RNNs are built by stacking several LSTM layers on top of each 
other. When input features propagate through the recurrent 
layers, the output features at each time step incorporate the 
history of temporal features from previous time steps. 
Compared to a shallow LSTM, a deep LSTM gives an 
improved learning and achieves better generalization. Since the 
inputs are processed with many nonlinear layers, the deep 
LSTM models are more robust against overfitting [20]-[24]. 

Similarly, Deep BLSTM (DBLSTM) are able to extract 
long term high-level representations of historical and future 
context before aggregating them to capture full range of 
temporal dependencies. By using more hidden layers, we are 
aiming to model temporal dependencies at higher timescale 
[22]-[24],[27]. 

Several previous works, have applied Long Short Term 
Memory (LSTM) model for acoustic modeling. An initial work 
exploiting the use of Long Short Term Memory (LSTM) 
models for speech recognition was proposed by Graves et al 
[23]. This work has shown that a bidirectional LSTM 
(BLSTM) outperforms the unidirectional extension and that the 
depth (number of layers) is more important than the layer size. 
On TIMIT test set, a phone error rate of 17.7% was achieved 
using a deep BLSTM. 

 
Fig. 2. Diagram for Long Short-Term Memory (LSTM). 

2) Gated Recurrent Unit (GRU) 
Despite the effectiveness of LSTMs, they rely on particular 

design consisting of a sophisticated gating mechanism that 
might result in an overly complex model that can be tricky to 
implement efficiently. To ameliorate the computational 
efficiency of LSTM some research efforts have proposed a new 
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simplified model called Gated Recurrent Unit (GRU). A GRU 
is an advanced variant of RNN, which allows solving the 
gradient-vanishing problem like LSTM, but with a less number 
of weights. The main reason for the popularity of GRU is the 
computational cost and simplicity of the model [29]. 

As shown in Fig. 3, and Compared to LSTM, Gated 
Recurrent Unit (GRU) is based only on two multiplicative 
gates; update and reset gates, where the “update gate” is 
obtained by combining the forget gate and the input gate. The 
update gate decides how much the units will update their 
activations [29]. 

 
Fig. 3. Diagram for Gated Recurrent Unit (GRU). 

In contrast to LSTM, the GRU exposes the whole state at 
each timestep and computes a linear sum between the existing 

state and the newly computed state. The GRU reset gate rt  is 

computed as:  [29] 

1  (  )t rx t rh t rr W x U h b   
                                     



where is a sigmoid function, tx
and 1th  are the input to 

GRU and the previous output of GRU. rxW
, rhU

 and rb
are 

forward matrices, recurrent matrices, and biases for reset gate, 
respectively. 

The update gate tz controls update value of the activation, 

defined as: 

1  (  )t zx t zh t zz W x U h b   
                                    

 

where the parameters are as above. 

 The candidate activation is defined as: 

1
ˆ   ( ( ) )t t t th W x U r h b   

                        
 

where  is the hyperbolic tangent function and denotes 

element-wise multiplication. 

The output of the GRU is computed as: 

1
ˆ z (1 ) ht t t t th h z  

                                       


Using the gating mechanism in both GRU and LSTM 
architectures has shown strong ability for controlling the flow 
of information and for creating shortcut paths across many 
temporal steps. As like the forget gate in LSTM, the update 
gate in GRU allows capturing long term dependencies. And the 
reset gate helps GRU to reset whenever the detected feature is 
not necessary anymore [29]. 

The principal difference between LSTM and GRU is that 
there is no output gate in a GRU. Intuitively, coupling the reset 
gate and the update gate for GRU makes the use of an output 
gate less valuable and avoids the problem that the output may 
be unbounded, which may hurts performance significantly. 
Further, eliminating the output gate in GRU helps to reduce the 
number of weights compared to LSTM, which makes GRU 
more robust against overfitting [29]. 

III. ROBUST COMBINED DEEP ARCHITECTURES 

All deep learning models presented in previous sections 
have shown promising accuracies for many speech recognition 
tasks. Nevertheless, they have all some strengths and 
weaknesses. The individual shortcomings of these different 
deep learning architectures have motivated many works to 
combine them in a single architecture to achieve greater 
performance [30]-[34]. 

Very recently, a model combining CNN, unidirectional 
LSTM and DNN called Convolutional Long Short-Term 
Memory, Deep Neural Network (CLDNN) has been proposed 
in [31], and achieved greater accuracies over any single model. 
The CLDNN model has achieved considerable success in a 
wide range of tasks: speech recognition [31], voice-activity 
detection (VAD) [32], acoustic scene classification [34]. 

Later, several works have proposed alternative architectures 
to achieve additional gains over the CLDNN model. In [33] 
addressing the task of endpoint detection for streaming speech 
recognition, the convolution layer in the CLDNN has been 
replaced with a grid LSTM layer to model both spectral and 
temporal variations. In [35], the CLDNN model has been 
extended by introducing a highway connection between LSTM 
layers. 

The focus of this paper, in first step, is to justify the choice 
of combining CNN, LSTM and DNN into one unified 
architecture that is trained jointly. Next, similar to previous 
works, our contribution will be to extend the CLDNN model 
by replacing the unidirectional LSTM layers with GRU layers 
(both unidirectional and bidirectional). We refer to this 
proposed architecture as Convolutional Gated Reccurent Unit, 
Deep Neural Network (CGDNN) and it’s designed by 
combining this time CNN, GRU and DNN. The idea behind 
introducing the GRU layers is solving the gradient-vanishing 
problem like LSTM but with a reduced number of weights, 
which will make the proposed CGDNN model more robust 
against overfitting and less sophisticated than the conventional 
CLDNN model.  And motivated by the fact that GRU model 
brings better recognition accuracies than the LSTM we expect 
that the proposed CGDNN architecture may show more 
significant improvements over CLDNN architecture. 
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(a) Convolutional Long Short-Term Memory, Deep Neural Network (CLDNN)              (b) Convolutional Gated Reccurent Unit, Deep Neural Network (CGDNN) 

Fig. 4. An Illustration of the Two Combined Deep Architectures. 

Subsequently, our contribution will be to exploit the 
advantage of a deeper CGDNN structure by increasing the 
number of GRU layers. In literature, deeper network 
architectures tend to perform better than shallower models, but 
the major difficulty with building a very deep structure is the 
computational cost that has been a shortcoming for the 
experimentation with more hidden layers or units in deep 
structures.  

In Fig. 4, we illustrate the CLDNN structure experimented 
in this paper and the proposed CGDNN architecture. These two 
deep combined architectures are able to achieve further 
improvements for many tasks of speech recognition. The 
CLDNN and CGDNN architectures may compensate the 
problem of spectral variations using a frequency convolution, 
the problem of long-term temporal dynamics using either 
LSTM or GRU layers and may reduce the final class 
discrimination using several DNN layers.  

The performing of the CLDNN and the proposed CGDNN 
architecture may be resumed in three main steps. In first step, 
the inputted features will be passed into a CNN in order to 
reduce the spectral variations and hence to address the speaker 
normalization issues. We used 40-dimensional FBANK 

features, computed using a 25ms window every 10ms. The 
CNN model used is only with convolution along frequency and 
is composed by two convolution layers. A max-pooling layer 
will be added after the first convolution layer, while no pooling 
layer is added after the second convolution layer. Next, several 
fully connected layers will be added; each of them contains 
1024 hidden units and with sigmoid activation function. The 
dimension of the last layer in this CNN architecture is very 
large; for that a linear layer is added after these CNN layers. 
This linear layer reduces the number of parameters without 
deteriorating the recognition accuracy.  In second step, the 
output of this linear layer will be fed into several LSTM layers 
for the CLDNN model and to several GRU layers for the 
CGDNN model, which are both efficient for long-term 
temporal modeling in speech signals. 

In last step and after achieving frequency and temporal 
modeling, the output of the final LSTM or GRU layer for 
respectively the CLDNN or the proposed CGDNN model will 
be passed into a DNN containing several fully-connected feed-
forward layers. These top DNN layers are promising to get a 
higher-order feature representation for an easy separation into 
the different classes that we want to discriminate [31].  
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The outputs of both CLDNN and CGDNN models are a 
probability distribution over the possible labels of the central 
frame. To estimate the phones sequence these probabilities will 
be divided by the HMM states obtained by the top DNN layer, 
and will be then passed to a Viterbi decoder.   

IV. ANALYSIS AND RESULTS 

A. Speech Database 

The TIMIT data corpus contains 6,300 sentences recorded 
by 630 speakers of 8 major dialects of American English. After 
removing all the SA sentences (two sentences recorded by all 
speakers), we obtain a training set with 3,696 sentences from 
462 speakers. A test set containing 192 sentences from 24 
speakers. A development (dev) set, composed by a random 
10% of the training set, is used for validating our results and 
adjusting the network parameters. 

In all experiments presented in this work, we have used a 
bigram language obtained from the training set. The training 
labels are obtained through forced alignment using a well-
trained “GMM-HMM” model, with tied context dependent 
HMM states. We pass the final phoneme label outputs to the 
usual set of 39 labels. The open speech recognition toolkit 
Kaldi [36] was used for feature extraction, decoding, and 
training of the “GMM-HMM” model and all the baselines 
neural networks exploited in this work. 

B. Experimental Results 

1) Network architectures 
The CNN model is composed by two convolution layers 

with 128 and 256 filters, respectively and four fully connected 
layers each of them with 1024 hidden units. A max-pooling 
layer, with a pooling size of 6 and a sub-sampling factor of 2, 
is added after the first convolution layer. No pooling layer is 
added after the second convolution layer.  

The stochastic gradient decent (SGD) based back-
propagation algorithm is used to train the CNN model. For 
fine-tuning, we have chosen an initial learning rate of 0.0004 
and it will be divided by two for each increasing in cross-
validation frame accuracy in a single epoch less than 0.5%.  

We have explored the efficiency of four commonly used 
LSTM and GRU architectures: deep unidirectional LSTM 
(DLSTM), deep unidirectional GRU (DGRU), deep 
bidirectional LSTM (DBLSTM) and deep bidirectional GRU 
(DBGRU). The choice of number of units per LSTM and GRU 
layers is based on our previous works. In all experiments done 
along this paper the specification of these architectures is kept 
as follows: 

 Deep LSTM (DLSTM) size of1024 per hidden layer 

 Deep GRU (DGRU) size of1024 per hidden layer 

 Deep Bidirectional LSTM (DBLSTM) size of 1024 per 
hidden layer (512 per each forward and backward 
direction)  

 Deep bidirectional GRU (DBGRU)size of 1024 per 
hidden layer (512 per each forward and backward 
direction)  

TABLE I.  EXPERIMENTS WITH DNN, CNN AND DLSTM MODELS 

Method PER % (dev core) PER % (test core) 

DNN (6 layers) 20.45 21.18 

CNN 17.43 18.83 

DLSTM (2 layers) 17.76 18.97 

The truncated back-propagation though time (TBPTT) 
algorithm was used to train the deep unidirectional LSTM and 
GRU models. Each utterance is divided into short 

subsequences with a fixed length of bpttT . These subsequences 

are processed in their original order.  For each subsequence, the 
activations are first calculated and forward-propagated using 
the LSTM and GRU input and the previous activations, then 
the cross-entropy gradients are calculated and back-propagated. 
For efficient computation, N subsequences from different 
utterances may be operated in parallel by one GPU at a time. 
After updating the parameters, the GPU continues with the 
following N subsequences. 

To train the deep bidirectional LSTM and GRU models, we 
used the context sensitive-chunk BPTT (CSC-BPTT) learning 
algorithm. Firstly, each utterance is divided into chunks of a 

fixed length cN . Then lN previous frames and rN future 

frames are concatenated before and after each chunk to give 
information about, respectively right and left context.  Since 
each trunk can be independently trained, a several number of 
trunks may be stacked to obtain large minibatches, which leads 
to faster training. 

The DNN model is composed by a few number of fully-
connected feed-forward layers, trained in a supervised way. 
Each layer contains 1024 hidden units and with sigmoid 
activation function. To train this DNN model, the stochastic 
gradient decent SGD algorithm is used. The SGD algorithm is 
using mini-batches of 256 frames. For fine-tuning, we fixed the 
initial rate to 0.008. 

In all experiments, the networks take on input 25 ms frames 
of 40-dimensional filterbank features (FBANK features), 
within their first and second temporal derivatives, calculated 
every 10 ms. The phone error rates (PERs) for the baseline 
CNN, DNN and DLSTM models are as shown in Table I. 

A CNN may bring more improved accuracies than a DNN. 
The efficiency of CNNs may be attributed to their invariance to 
small frequency shifts. As consequent, CNNs are more 
powerful to tolerate speaker variations than DNNs. A DLSTM 
may lead to phone recognition rates close to those obtained 
using a CNN. To improve more the performances we must 
increase the number of LSTM layers. 

2) The combined CLDNN and CGDNN architectures 
As initial step, we present some experiments to justify the 

benefit of combining CNN, DLSTM and DNN in a single deep 
architecture called Convolutional Long Short-Term Memory, 
Deep Neural Network (CLDNN). First, a deep LSTM 
(DLSTM) with two LSTM layers is added after the CNN 
model and we denote this combination as “CNN-DLSTM”. 
Next, this DLSTM model is added after a DNN model with 
three fully-connected layers and we denote this combination as 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 4, 2020 

532 | P a g e  

www.ijacsa.thesai.org 

“DNN-DLSTM”. As shown in Table II, we observe that the 
power of CNN over DNN still existing even when it is 
combined with the DLSTM model.  

In the following, we show the impact of adding DNN 
layers after the DLSTM model (composed by 2 LSTM layers). 
The achieved performances according to the number of DNN 
layers are so reported in Table III. 

Adding several DNN layers after the DLSTM model helps 
to further improve the recognition accuracies; while adding 
more than 3 layers will not reduce more the phone error rates. 
Using DNN layers after achieving the temporal modeling 
within the DLSTM model helps to map the output of the top 
LSTM layer to a more discriminative space and to predict 
easily the targets. 

Now, we present the efficiency of the combined deep 
architecture; namely Convolutional Long Short-Term Memory, 
Deep Neural Network (CLDNN).The performing of this 
architecture can be resumed in three steps; in first step the 
inputted features are passed to a CNN model, in second step 
the output of the CNN is passed to a DLSM model (composed 
by 2 LSTM layers) and in last step, the output of the top LSTM 
layer is passed to 3 DNN layers. Table IV shows the PER for 
the DLSTM, CNN-DLSTM, DLSTM-DNN and finally the 
combined CLDNN model. 

The CLDNN architecture is very efficient, it may bring up 
to 0.99% improvement over the DLSTM model used alone for 
the dev set, and up to 0.87% for the test set.  

TABLE II.  PHONE ERROR RECOGNITION RATES WITH CNN- DLSTM VS 

DNN- DLSTM 

Method 
PER % 

(dev core) 

PER % 

(test core) 

DNN-DLSTM 20.13 20.82 

CNN-DLSTM 17.05 18.41 

TABLE III.  PHONE ERROR RECOGNITION RATES WITH DLSTM-DNN 

DNN layers PER %  (dev core) PER %  (test core) 

0 (DLSTM) 17.76 18.97 

1 17.62 18.83 

2 17.54 18.71 

3 17.48 18.66 

4 17.63 18.79 

TABLE IV.  PHONE ERROR RECOGNITION RATES WITH CLDNN 

ARCHITECTURE 

Method PER % (dev core) PER %  (test core) 

DLSTM 17.76 18.97 

CNN-DLSTM 17.05 18.41 

DLSTM-DNN 17.48 18.66 

CLDNN 16.77 18.10 

TABLE V.  PHONE ERROR RECOGNITION RATES WITH CGDNN 

ARCHITECTURE 

Method PER % (dev core) PER % (test core) 

DGRU (2 layers) 17.52 18.85 

CGDNN 16.55 17.96 

Considering the promising phone recognition rates 
achieved by the CLDNN architecture and motivated by the fact 
that GRU model may bring better accuracies than the LSTM 
one we propose another alternative architecture called 
Convolutional Gated Recurrent Unit, Deep Neural Network 
(CGDNN) by combining this time CNN, GRU and DNN. Just 
like the CLDNN architecture, the performing of the CGDNN 
architecture can be resumed in three steps; in first step the 
inputted features are passed to a CNN model, in second step 
the output of the CNN is passed to a deep GRU (DGRU) 
model and in last step, the output of the top GRU layer is 
passed to 3 DNN layers. In first step, we used a DGRU model 
with two GRU layers. The configurations of CNN and DNN 
models are kept the same as described previously. Table V 
shows the PER for the DGRU and the proposed CGDNN 
model. 

A deep GRU model (DGRU) is outperforming CNN, DNN 
and a little more powerful than a DLSTM model. The 
performances obtained by the proposed CGDNN architecture 
can bring up to 0.97% improvement in the recognition rates 
over a DGRU model used alone for the dev set, and up to 
0.89% for the test set. 

The interesting accuracies obtained by the CLDNN and 
CGDNN architectures are not surprising because they take 
advantage from the strong complementarity of the individual 
modeling capacities of their three deep sub-models, 
respectively (CNN, DLSTM, DNN) and (CNN, DGRU, DNN).  

Using GRU instead of LSTM in the proposed CGDNN 
architecture has significantly improved the accuracies, while 
having less number of parameters. The CGDNN architecture 
can bring up to 0.22% improvement in the recognition rates 
over the CLDNN architecture for the dev set, and up to 0.14% 
for the test set. 

To show how the depth (number of GRU layers) may affect 
the overall performance of the proposed CGDNN architecture; 
a set of experiments is done using respectively 2, 3 and 4 GRU 
layers. Table VI shows the PER for the proposed CGDNN 
model according to the number of GRU layers. 

TABLE VI.  PHONE ERROR RECOGNITION RATES WITH DEEPER GRU AND 

CGDNNARCHITECTURES 

Method 
PER % (dev core) PER % (test core) 

DGRU CGDNN DGRU CGDNN 

GRU –2 layers 17.52 16.55 18.85 17.96 

GRU –3 layers 17.17 16.21 18.49 17.65 

 GRU –4  layers 16.64 15.77 17.90 17.19 
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TABLE VII.  PHONE ERROR RECOGNITION RATES WITH DEEPER BGRU AND 

CGDNN ARCHITECTURES 

Method 
PER % (dev core) PER % (test core) 

DBGRU CGDNN DBGRU CGDNN 

BGRU –2 layers 16.94 16.03 17.87 17.15 

BGRU – 3 layers 16.48 15.67 17.42 16.56 

BGRU –4  layers 16.04 15.21 17.10 16.19 

The objective of testing different layers was to analyze 
whether the performance of the proposed CGDNN architecture 
may be affected by adding the hierarchical depth. It has been 
shown, that a deeper CGDNN architecture may bring further 
improvements in the phone recognition accuracies. The lowest 
error rates are obtained using 4 GRU layers, however 
increasing the number of GRU layers beyond that makes the 
training hard and seems to complicate the training without 
bringing consistent improvements.  

The proposed CGDNN architecture using unidirectional 
GRU layers either shallow or deep has shown very interesting 
phone recognition rates. In next experiments we propose to use 
bidirectional GRU (BGRU) model instead of unidirectional 
GRU model to further improve the performances. A set of 
experiments with different number of BGRU layers was so 
done. The achieved performances according to the number of 
BGRU layers are so reported in Table VII. 

The robust CGDNN architecture using Bidirectional GRU 
(BGRU) layers may bring further improvements over the one 
using unidirectional GRU layers. This efficiency is not 
surprising; because the bidirectional GRU (BGRU) layers are 
able to exploit the bidirectional contextual information 
(previous and future context), contrariwise to unidirectional 
GRU layers that can exploit only the past history. 

A deeper CGDNN architecture allows an efficient 
modeling of the long-range history and the non-linear 
relationship structures.   By increasing the number of BGRU 
layers in the CGDNN architecture the phone error recognition 
(PER) rates will be further reduced. Nevertheless, adding more 
than four bidirectional layers will not bring more significant 
improvements and the performances will be saturated. 
Theoretically, increasing the number of layers may not harm, 
while practically that will let the convergence more slow and 
the network may broke after few epochs.   

In last step of our work, we have tested the proposed 
CGDNN architecture with four BGRU layers by using 
different type of features. The used features are 39 dimensional 
MFCC features, 40 dimensional filter-bank (FBANK) features 
and the LDA+STC+FMLLR features. These later features are 
obtained by splicing 11 frames (5 on left and right of the 
current frame) of 13 dimensional MFCCs; then we apply a 
linear discriminant analysis LDA to reduce the dimension to 
40. The MFCCs are normalized with cepstral mean-variance 
normalization (CMVN). After that, the semi-tied covariance 
(STC) transform is applied on the previous features. Finally, 
we apply on these features speaker adaptation using the 
feature-space maximum likelihood linear regression (FMLLR). 

TABLE VIII.  PHONE ERROR RATES WITH CGDNN ARCHITECTURE USING 

DIFFERENT FEATURES TYPES 

Features PER % (dev core) PER % (test core) 

MFCC 15.63 16.58 

FBANK 15.21 16.19 

FMLLR 14.69 15.72 

As shown in Table VIII we notice that using adapted 
FMLLR features leads to a phone error rate of 15.72% for the 
TIMIT test set which is the most promising and performing 
result obtained in this paper. Compared to CLDNN, the 
proposed CGDNN architecture brings the highest phone 
recognition rates and achieves more improved performances. 

V. CONCLUSION 

In this paper, we presented two combined architectures, 
namely Convolutional Long Short-Term Memory, Deep 
Neural Network (CLDNN) and Convolutional Gated Reccurent 
Unit, Deep Neural Network (CGDNN). The first architecture 
was designed by combining (CNN, LSTM and DNN) and the 
second architecture was designed by combining (CNN, LSTM 
and GRU). An overview of the performance gain brought by 
the deep CGDNN architecture is outlined and compared to all 
its sub-networks used alone so as to the CLDNN architecture. 
The proposed CGDNN architecture using deep GRU model 
(DGRU) achieves a 0.89% relative improvement over the 
DGRU model used alone and 0.14% over the CLDNN model 
using a DLSTM, for the TIMIT test set. And a CGDNN 
architecture using DBGRU model achieves a 0.91% relative 
improvement over the DBGRU model used alone. A phone 
error rate of 15.72% has been obtained using the proposed 
CGDNN architecture with four BGRU layers and using 
FMLLR features, which has been shown to give state-of-the-art 
performance for the TIMIT phone recognition task. 

From this work we will open several future research issues. 
The combined CGDNN architecture investigated in this study 
is found very efficient. Future researches can be conducted by 
stacking layers with some optimization algorithms to get better 
performance. 
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