
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

525 | P a g e

www.ijacsa.thesai.org

Towards Robust Combined Deep Architecture for

Speech Recognition : Experiments on TIMIT

Hinda DRIDI1, Kais OUNI2

Research Laboratory Smart Electricity & ICT, SE&ICT Lab, LR18ES44

National Engineering School of Carthage, ENICarthage

University of Carthage, Tunis, Tunisia

Abstract—Over the last years, many researchers have

engaged in improving accuracies on Automatic Speech

Recognition (ASR) task by using deep learning. In state-of-the-

art speech recognizers, both Long Short-Term Memory (LSTM)

and Gated Recurrent Unit (GRU) based Reccurent Neural

Network (RNN) have achieved improved performances

compared to Convolutional Neural Network (CNN) and Deep

Neural Network (DNN). Due to the strong complementarity of

CNN, LSTM-RNN and DNN, they may be combined in one

architecture called Convolutional Long Short-Term Memory,

Deep Neural Network (CLDNN). Similarly we propose to

combine CNN, GRU-RNN and DNN in a single deep architecture

called Convolutional Gated Recurrent Unit, Deep Neural

Network (CGDNN). In this paper, we present our experiments

for phoneme recognition task tested on TIMIT data set. A phone

error rate of 15.72% has been reached using the proposed

CGDNN model. The achieved result confirms the superiority of

CGDNN over all their baselines networks used alone and also

over the CLDNN architecture.

Keywords—Automatic speech recognition; deep learning;

phoneme recognition; convolutional neural network; long short-

term memory; gated recurrent unit; deep neural network; recurrent

neural network; CLDNN; CGDNN; TIMIT

I. INTRODUCTION

Speech has always been regarded as the most common
mode of communication between humans. With the recent
development, this mode of speech communication has also
been used for human-machine interaction. Current technology
allows machines to process and respond reliably to basic
human speech. Using speech as input in the human-machine
dialogue puts technology within the reach of all, while the
classic manual input techniques cannot really satisfy the needs
of people with physical disabilities.

Understanding speech is a difficult task for a machine. Just
like the human brain, a machine must first recognize speech.
Automatic Speech Recognition (ASR) is a primary step that
allows machine to understand the oral information given by a
human user. It consists of using several matching techniques to
compare an inputted utterance to a set of samples. A common
ASR application is to transcribe human speech into a textual
representation, which can be further exploited in many
applications such as language identification, information
extraction, retrieval technology, archiving, etc.

In spite of the huge progress in signal processing,
computational resources and algorithms, we are far from

getting ideal ASR systems. Thus, we should open the most
relevant research topics to attain the principal goal of
Automatic Speech Recognition. In fact, recognizing isolated
words is not a hard task, but recognizing continuous speech is a
real challenge. Any ASR system has two parts: the language
model and the acoustic model. For small vocabularies,
modeling acoustics of individual words is may be easily done
and we may get good speech recognition rates. However, for
large vocabularies, developing successful ASR systems with
good speech recognition rates has become an active issue for
researchers. As vocabulary size grows, we will not be able to
get enough spoken samples of all words and we should model
acoustics at a lower level. The ASR systems may use sub-word
units of words, called phonemes, for both training and
decoding process [1],[9].

From last five decades, HMM is considered as the leader to
model temporal variability in speech signals. Each phoneme is
modeled by a set of HMM states, currently a left-to-right
HMM topology with three emitting states is used. Using HMM
alone for training a speech recognition system did not bring
promising results. To increase the performance researchers
introduced several new or hybrid classifiers. And GMM
became an integral part of HMM to model the acoustic
characteristics of speech at each phonetic state using an n-gram
language model [1],[2],[4].

Still there is a vast scope for improving speech recognition
systems, since GMM is not efficient to model data on or near
to nonlinear manifold in existing data space. An efficient
generative modelling technique is so required to solve this
problem. Among the recent researches, attention may be
attracted to deep learning, which has been shown able to solve
complex real-world problems. Deep learning has been
successfully used for Automatic Speech Recognition (ASR) to
reach better gains. Many researchers have proposed to replace
GMM with a deep model to estimate the posterior probabilities
of each HMM state. Deep neural models combined with hidden
Markov models became the most dominant approach for
speech recognition replacing the classic (GMM-HMMs)
approach [4]-[6],[8]-[9].

In the last few years, deep learning has been progressively
evolved, offering more efficient architectures. Earlier works
exploiting deep learning for speech recognition were based on
classic multilayer perceptron (MLP). Recently, with the advent
of graphical processing unit (GPU) that is able to provide
interesting processing power and huge memory to handle
ample amount of datum, more advanced architectures have

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

526 | P a g e

www.ijacsa.thesai.org

been proposed like, Deep Neural Network (DNN),
Convolutional Neural Network (CNN), both Long-Short Term
Memory network (LSTM) and Gated Reccurent Unit (GRU)
based Recurrent Neural Network (RNN). Of all these
architectures, recurrent neural networks based models have
shown very strong comparative performance [1],[2].

This paper is organized as follows: in Section 2, we present
the related works to continuous speech recognition and in
particular to the phone recognition task. Principally, we present
the most promising deep architectures; namely, CNN, LSTM,
GRU and DNN. In Section 3, we describe our proposed deep
combined CLDNN and CGDNN structures. Section 4 presents
our experimental setup and results for the TIMIT data set.
Finally, we draw some conclusions and we outline our future
works in Section 5.

II. RELATED TERMINOLOGIES

This section aims to provide an overview on the most
performing deep learning architectures used for speech
recognition and to discuss the nuances between these models.

A. Deep Neural Network (DNN)

As shown in Fig. 1, a Deep Neural Network (DNN) is a
conventional Multi-Layer Perceptron (MLP) containing several
layers of hidden units stacked on top of each other between the
input and output layers. The hidden units of each layer are
connected to those of the next layer using unidirectional
connections. The DNN is so able to extract more robust and
significant features of the input data via these different non-
linear hidden layers [2]-[3].

Generally, the logistic function is used by each hidden unit

to map its total input from the previous layer jx to the scalar

state
j

y that will be send to next layer.

1
logistic()

-1j x j
y j e

x 


 , y w
i ijj j

i
x b   (1)

where jb is the bias of hidden unit j, i is an index over the

units in previous layer and ijw is the weight of connection

between unit j and unit i of previous layer [5]-[6].

The main idea of a DNN is to pass the speech input to a
first layer that will extract a new representation from this input
and will then pass the output as input to a layer above. The next
layer will produce a new higher representation from its input,
and so on; these steps will be repeated with the next layers,
until reaching the last layer [5], [7].

For multiclass classification, the output unit j uses a

“softmax” non-linearity to convert its total input, jx into a class

probability jp .[5]-[6]

exp()

exp()

x j
p

j xk
k




 (2)

where k is an index over all classes.

Fig. 1. Fully-Connected DNN Structure.

The DNN may be discriminatively trained in a supervised
way by back-propagating the derivatives of a cost function,
which computes the error between the network outputs and the
desired outputs. This cost function can be defined as a cross-
entropy between the target probabilities d and the outputs of
the softmax, p: [5]-[7].

logj j

j

C d p 

 (3)

where the target probabilities are provided for training the
DNN.

In the case of large training sets, it’s more interesting to
calculate the cost function derivatives on small “mini-batch”
randomly taken from the whole training set, before updating
the weights in proportion to the gradient. This method called
stochastic gradient descent (SGD) may be improved, if we use

a “momentum” coefficient 0 1m that smooths the gradient

computed for a mini-batch t [5]-[6].

() (1)
(t)

ij ij

ij

C
w t m w t

w



    



 (4)

The DNN model has been largely used for many speech
recognition tasks; with two different training approaches either
supervised approach or unsupervised one. This later approach,
namely unsupervised training, was proposed by Hinton et al. in
[5] and it was done using the weights of a deep belief network
(DBN) built by stacking several Restricted Boltzmann
Machines (RBMs) on top of each other [5]-[7].

Previous works proposed to combine DNN with Hidden
Markov Model to get hybrid system defined as “DNN-HMM”.
DNN is used to estimate the posterior probabilities for senone
(context dependent tied state model) in HMM based speech

recognition. Consider on input a feature vector tx of a context

dependent window frame and applies nonlinear transformation
on it through many hidden layers of DNN. The senone labels
are obtained using forced-alignment through a well-trained
“GMM-HMM” system. The DNN uses softmax output layer
containing a number of classes (nodes) equals to its number of
senones [4], [9].

Earlier, Mohamed et al [6] has successfully implemented a
pre-trained DNN for phoneme recognition. In his work a
context independent “DNN-HMM” model has brought a phone

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Input Hidden Output

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

527 | P a g e

www.ijacsa.thesai.org

error recognition rate of 22.4% on TIMIT test set. The obtained
result displays significantly the power of DNN over GMM.

B. Convolutional Neural Network (CNN)

Very recently, Convolutional Neural Network (CNN)
becomes popular hierarchical deep structure aka deep learning
for several tasks of speech processing and recognition. CNN
has been shown able to produce highly efficient learning
parameters. The efficiency of CNN may be attributed to its
ability to exploit translational invariance in speech signals.
Compared to other deep learning models, CNN can capture
easily the environmental and speaker variability in acoustic
features [10]-[15],[18]-[19].

Simply, three extra concepts, i.e., local filters, pooling, and
weight sharing make CNN powerful over DNN and contribute
to its superior performance. A typical architecture of CNN
contains usually several convolutional-pooling layers, followed
by a certain number of fully-connected layers [10]-[12],[16].

The inputted speech utterances for a Convolutional Neural
Network, presented by the feature vectors, must be transformed
into feature maps, where each feature map define the values of
one feature vector for different locations. Speech recognition
systems require features organized along frequency or time (or
both). A convolution operation will be then applied on these
feature maps in order to get outputs from small local regions,
which represent the features of a limited frequency range. The
neurons of this convolution layer are organized into feature
maps, where the neurons belonging to one feature map will
share the same weights, called also filters or kernels [12]-[16].

Considering the input to CNN is defined by

1 2[...] A B

Bv v v v   , where A is the number of features

corresponding to an input frequency band, B is the number of

input frequency bands and
bv is the feature vector

corresponding to band b . The activations of the convolutional
layer will be calculated as: [12]-[13]

1

, ,

1

()
s

T
k j b j b k j

b

h w v a






 

(5)

where ,k jh is the activation corresponding to the thj feature

map of the thk convolution layer band, s is the filter size, ,b jw

is the weight vector corresponding to the thb band of the thj

filter , ja is the bias representing the thj feature map and ()x

is the activation function .

Local filters and weight-sharing are two interesting
concepts making the success of CNN for speech recognition. In
fact, different phonemes have different energy concentrations
in different local bands along frequency axis. To distinguish
different phonemes the small local energy concentrations are
processed by a set of local filters in the convolutional layer
[12]-[13].

Generally, a pooling layer will be added after the
convolution one. A pooling layer is also arranged into feature
maps of a number equal to those of the convolution layer, but
with smaller maps. In the pooling layer, a sub-sampling will be
done on the activations of the convolution layer to obtain new

representations with a reduced resolution. Pooling layer leads
to more efficient training by reducing the total number of
trainable parameters. Different pooling functions may be used
as, max-pooling, stochastic-pooling and average-pooling. For a
max-pooling function, it provides the maximum value of a
feature map along the corresponding frequency bands. The
activations of the max-pooling layer can be calculated as [12]:

, (1) ,
1

max()
r

m j m n k j
k

p h   


 (6)

where ,m jp is the activation corresponding to the thj

feature map and the thm pooling layer band, r is the pooling

size, and  1,...,n r is the sub-sampling factor [12]-[13].

Finally, a certain number of fully connected layers will be
added on top of these convolution-pooling layers to achieve the
building of CNN [12]-[13].

Convolutional Neural Networks have achieved an
impressive performance in phone recognition task. A CNN
with limited-weight-sharing scheme and with frequency
convolution has been successfully used in the work of Abdel-
Hamid et al [12]. The phone recognition accuracy obtained
using this hybrid “CNN-HMM” model was interesting. A
phone error rate of 20.36% was achieved on TIMIT test set,
which is outperforming the performance achieved using a
“DNN-HMM” model. Loth [17] has also presented another
“CNN-HMM” model with convolution over both time and
frequency. Better performance was achieved in this work, the
lowest phone error rate achieved on TIMIT test set was of
16.7%.

Recurrent Neural Network (RNN) based architectures

Despite providing interesting performances, DNNs and
CNNs are able to model only a limited temporal dependency.
Consequently, they are not efficient to model speech, which is
inherently a sequential signal. To handle this weakness,
Recurrent Neural Networks (RNNs) are used in many speech
recognition applications. RNNs are a class of neural networks,
which include recurrent connections from the previous time
step as inputs. This structure lets them more efficient for
sequence modeling than the traditional neural networks. The
interest of RNNs lies in their capability to dynamically model
the long-term dependencies by using an internal state and
updating it at each time step based on its previous state and
current input [20],[25]-[26].

A conventional RNN computes a mapping from an input
sequence

1(,....,)Tx x x to an output sequence
1(,....,)Ty y y

by calculating the sequence of hidden activations vector

1 2(, ,....,)Th h h h using the following equations iteratively

from 1t  to T : [20]

1()t xh t hh t hh H W x W h b   (7)

t hy t yy W h b  (8)

where, W terms are the weight matrices, b is the bias

vector and (.)H is the recurrent hidden layer activation

function.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

528 | P a g e

www.ijacsa.thesai.org

Unfortunately, RNN training may be complicated due to
the classical vanishing and exploding gradients problem. To
address properly this problem, previous studies proposed more
sophisticated variant of RNN called “gated RNN”. The core
idea of this architecture is using a gating mechanism to control
efficiently the flow of information through various time-steps.
Two of the most successful gated RNN are Long Short-Term
Memory (LSTM) and Gated Recuurrent Unit (GRU) models,
which often conduct to state-of-the art recognition accuracies
for various machine learning tasks [20]-[21],[26].

1) Long-Short Term Memory (LSTM)
Among different implementations of gated RNNs, an

alternative variant called Long Short Term Memory (LSTM)
has been introduced. The LSTM network has the ability to
memorize sequences with long range temporal dependencies.
In a conventional LSTM network, each hidden layer is
composed by a certain number of recurrently connected units
called “memory blocks”. Each memory block contains one or
more self-connected memory cells for storing the contextual
information and three multiplicative gates called input, output
and forget gate for controlling the flow of information from
previous steps to the current ones. These three gates try to
remember when and how much the information in the memory
cell should be updated. This gate mechanism makes LSTM
architectures well suited for sequence modeling and has
improved robustness [22]-[24].

As shown in Fig. 2, given an input sequence
1(,....,)Tx x x

a conventional LSTM calculates the network unit activations

by iterating the following equations from 1t  toT : [21],[22]

1()t gx t gh t gg W x W h b   

(9)

1 1()t ix t ih t ic t ii W x W h W c b     

(10)

1 1()t fx t fh t fc t ff W x W h W c b     

(11)

1t t t t tc f c i g 

(12)

1()t ox t oh t oc t oo W x W h W c b    

(13)

()t t th o c

(14)

where ixW
, fxW , gxW and oxW

are the weights connected to

the LSTM inputs, ihW
, fhW , ohW

and ghW are the weights

connected to the LSTM activations, , ,ic fc ocW W W are diagonal

weight matrices for peephole connections, b terms are the

biases , i ,
f

, o and c are respectively the input gate, forget

gate, output gate and cell activation vectors, is the element-

wise product of vectors,  is the sigmoid function and


is the

hyperbolic tangent function.

In speech, a phoneme is usually influenced by its past and
future dependencies due to co-articulation and linguistic
tendency of a word. To take into account this phenomenon, a
bidirectional variant of LSTM (BLSTM) has been proposed to
further ameliorate the recognition accuracy compared to the
unidirectional LSTM. The motivation of a bidirectional LSTM

is to exploit the bidirectional contextual information (past and
future context) to improve predictions. For each depth, a
classic BLSTM model has two layers; a forward layer for
processing the inputted utterance in the forward direction and a
backward layer for processing the inputted utterance in the
backward direction. The final output is resulted by
concatenating the outputs of forward and backward layers [22]-
[24], [27]-[28].

To bring more improvements to these single-layer
architectures, either unidirectional or bidirectional, their deep
alternatives may be used. Inspired by DNNs, the deep LSTM-
RNNs are built by stacking several LSTM layers on top of each
other. When input features propagate through the recurrent
layers, the output features at each time step incorporate the
history of temporal features from previous time steps.
Compared to a shallow LSTM, a deep LSTM gives an
improved learning and achieves better generalization. Since the
inputs are processed with many nonlinear layers, the deep
LSTM models are more robust against overfitting [20]-[24].

Similarly, Deep BLSTM (DBLSTM) are able to extract
long term high-level representations of historical and future
context before aggregating them to capture full range of
temporal dependencies. By using more hidden layers, we are
aiming to model temporal dependencies at higher timescale
[22]-[24],[27].

Several previous works, have applied Long Short Term
Memory (LSTM) model for acoustic modeling. An initial work
exploiting the use of Long Short Term Memory (LSTM)
models for speech recognition was proposed by Graves et al
[23]. This work has shown that a bidirectional LSTM
(BLSTM) outperforms the unidirectional extension and that the
depth (number of layers) is more important than the layer size.
On TIMIT test set, a phone error rate of 17.7% was achieved
using a deep BLSTM.

Fig. 2. Diagram for Long Short-Term Memory (LSTM).

2) Gated Recurrent Unit (GRU)
Despite the effectiveness of LSTMs, they rely on particular

design consisting of a sophisticated gating mechanism that
might result in an overly complex model that can be tricky to
implement efficiently. To ameliorate the computational
efficiency of LSTM some research efforts have proposed a new

 ̂

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

529 | P a g e

www.ijacsa.thesai.org

simplified model called Gated Recurrent Unit (GRU). A GRU
is an advanced variant of RNN, which allows solving the
gradient-vanishing problem like LSTM, but with a less number
of weights. The main reason for the popularity of GRU is the
computational cost and simplicity of the model [29].

As shown in Fig. 3, and Compared to LSTM, Gated
Recurrent Unit (GRU) is based only on two multiplicative
gates; update and reset gates, where the “update gate” is
obtained by combining the forget gate and the input gate. The
update gate decides how much the units will update their
activations [29].

Fig. 3. Diagram for Gated Recurrent Unit (GRU).

In contrast to LSTM, the GRU exposes the whole state at
each timestep and computes a linear sum between the existing

state and the newly computed state. The GRU reset gate rt is

computed as: [29]

1 ()t rx t rh t rr W x U h b   



where is a sigmoid function, tx
and 1th  are the input to

GRU and the previous output of GRU. rxW
, rhU

 and rb
are

forward matrices, recurrent matrices, and biases for reset gate,
respectively.

The update gate tz controls update value of the activation,

defined as:

1 ()t zx t zh t zz W x U h b   



where the parameters are as above.

 The candidate activation is defined as:

1
ˆ (())t t t th W x U r h b   



where  is the hyperbolic tangent function and denotes

element-wise multiplication.

The output of the GRU is computed as:

1
ˆ z (1) ht t t t th h z  



Using the gating mechanism in both GRU and LSTM
architectures has shown strong ability for controlling the flow
of information and for creating shortcut paths across many
temporal steps. As like the forget gate in LSTM, the update
gate in GRU allows capturing long term dependencies. And the
reset gate helps GRU to reset whenever the detected feature is
not necessary anymore [29].

The principal difference between LSTM and GRU is that
there is no output gate in a GRU. Intuitively, coupling the reset
gate and the update gate for GRU makes the use of an output
gate less valuable and avoids the problem that the output may
be unbounded, which may hurts performance significantly.
Further, eliminating the output gate in GRU helps to reduce the
number of weights compared to LSTM, which makes GRU
more robust against overfitting [29].

III. ROBUST COMBINED DEEP ARCHITECTURES

All deep learning models presented in previous sections
have shown promising accuracies for many speech recognition
tasks. Nevertheless, they have all some strengths and
weaknesses. The individual shortcomings of these different
deep learning architectures have motivated many works to
combine them in a single architecture to achieve greater
performance [30]-[34].

Very recently, a model combining CNN, unidirectional
LSTM and DNN called Convolutional Long Short-Term
Memory, Deep Neural Network (CLDNN) has been proposed
in [31], and achieved greater accuracies over any single model.
The CLDNN model has achieved considerable success in a
wide range of tasks: speech recognition [31], voice-activity
detection (VAD) [32], acoustic scene classification [34].

Later, several works have proposed alternative architectures
to achieve additional gains over the CLDNN model. In [33]
addressing the task of endpoint detection for streaming speech
recognition, the convolution layer in the CLDNN has been
replaced with a grid LSTM layer to model both spectral and
temporal variations. In [35], the CLDNN model has been
extended by introducing a highway connection between LSTM
layers.

The focus of this paper, in first step, is to justify the choice
of combining CNN, LSTM and DNN into one unified
architecture that is trained jointly. Next, similar to previous
works, our contribution will be to extend the CLDNN model
by replacing the unidirectional LSTM layers with GRU layers
(both unidirectional and bidirectional). We refer to this
proposed architecture as Convolutional Gated Reccurent Unit,
Deep Neural Network (CGDNN) and it’s designed by
combining this time CNN, GRU and DNN. The idea behind
introducing the GRU layers is solving the gradient-vanishing
problem like LSTM but with a reduced number of weights,
which will make the proposed CGDNN model more robust
against overfitting and less sophisticated than the conventional
CLDNN model. And motivated by the fact that GRU model
brings better recognition accuracies than the LSTM we expect
that the proposed CGDNN architecture may show more
significant improvements over CLDNN architecture.

 ̂

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

530 | P a g e

www.ijacsa.thesai.org

(a) Convolutional Long Short-Term Memory, Deep Neural Network (CLDNN) (b) Convolutional Gated Reccurent Unit, Deep Neural Network (CGDNN)

Fig. 4. An Illustration of the Two Combined Deep Architectures.

Subsequently, our contribution will be to exploit the
advantage of a deeper CGDNN structure by increasing the
number of GRU layers. In literature, deeper network
architectures tend to perform better than shallower models, but
the major difficulty with building a very deep structure is the
computational cost that has been a shortcoming for the
experimentation with more hidden layers or units in deep
structures.

In Fig. 4, we illustrate the CLDNN structure experimented
in this paper and the proposed CGDNN architecture. These two
deep combined architectures are able to achieve further
improvements for many tasks of speech recognition. The
CLDNN and CGDNN architectures may compensate the
problem of spectral variations using a frequency convolution,
the problem of long-term temporal dynamics using either
LSTM or GRU layers and may reduce the final class
discrimination using several DNN layers.

The performing of the CLDNN and the proposed CGDNN
architecture may be resumed in three main steps. In first step,
the inputted features will be passed into a CNN in order to
reduce the spectral variations and hence to address the speaker
normalization issues. We used 40-dimensional FBANK

features, computed using a 25ms window every 10ms. The
CNN model used is only with convolution along frequency and
is composed by two convolution layers. A max-pooling layer
will be added after the first convolution layer, while no pooling
layer is added after the second convolution layer. Next, several
fully connected layers will be added; each of them contains
1024 hidden units and with sigmoid activation function. The
dimension of the last layer in this CNN architecture is very
large; for that a linear layer is added after these CNN layers.
This linear layer reduces the number of parameters without
deteriorating the recognition accuracy. In second step, the
output of this linear layer will be fed into several LSTM layers
for the CLDNN model and to several GRU layers for the
CGDNN model, which are both efficient for long-term
temporal modeling in speech signals.

In last step and after achieving frequency and temporal
modeling, the output of the final LSTM or GRU layer for
respectively the CLDNN or the proposed CGDNN model will
be passed into a DNN containing several fully-connected feed-
forward layers. These top DNN layers are promising to get a
higher-order feature representation for an easy separation into
the different classes that we want to discriminate [31].

Input

Convolutional Layer

Pooling Layer

GRU Layer

GRU Layer

Feedforward Layer

Feedforward Layer

Output Targets

…

…

Convolutional Layer

Fully connected layers

Convolutional

Neural Network

Gated

Recurrent Unit

Network

Deep Neural

Network

Dimension reduction

Linear layer

Input

Convolutional Layer

Pooling Layer

LSTM Layer

LSTM Layer

Feedforward Layer

Feedforward Layer

Output Targets

…

…

Convolutional Layer

Fully connected layers

Convolutional

Neural Network

Long Short

Memory based

Network

Deep Neural

Network

Dimension reduction

Linear layer

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

531 | P a g e

www.ijacsa.thesai.org

The outputs of both CLDNN and CGDNN models are a
probability distribution over the possible labels of the central
frame. To estimate the phones sequence these probabilities will
be divided by the HMM states obtained by the top DNN layer,
and will be then passed to a Viterbi decoder.

IV. ANALYSIS AND RESULTS

A. Speech Database

The TIMIT data corpus contains 6,300 sentences recorded
by 630 speakers of 8 major dialects of American English. After
removing all the SA sentences (two sentences recorded by all
speakers), we obtain a training set with 3,696 sentences from
462 speakers. A test set containing 192 sentences from 24
speakers. A development (dev) set, composed by a random
10% of the training set, is used for validating our results and
adjusting the network parameters.

In all experiments presented in this work, we have used a
bigram language obtained from the training set. The training
labels are obtained through forced alignment using a well-
trained “GMM-HMM” model, with tied context dependent
HMM states. We pass the final phoneme label outputs to the
usual set of 39 labels. The open speech recognition toolkit
Kaldi [36] was used for feature extraction, decoding, and
training of the “GMM-HMM” model and all the baselines
neural networks exploited in this work.

B. Experimental Results

1) Network architectures
The CNN model is composed by two convolution layers

with 128 and 256 filters, respectively and four fully connected
layers each of them with 1024 hidden units. A max-pooling
layer, with a pooling size of 6 and a sub-sampling factor of 2,
is added after the first convolution layer. No pooling layer is
added after the second convolution layer.

The stochastic gradient decent (SGD) based back-
propagation algorithm is used to train the CNN model. For
fine-tuning, we have chosen an initial learning rate of 0.0004
and it will be divided by two for each increasing in cross-
validation frame accuracy in a single epoch less than 0.5%.

We have explored the efficiency of four commonly used
LSTM and GRU architectures: deep unidirectional LSTM
(DLSTM), deep unidirectional GRU (DGRU), deep
bidirectional LSTM (DBLSTM) and deep bidirectional GRU
(DBGRU). The choice of number of units per LSTM and GRU
layers is based on our previous works. In all experiments done
along this paper the specification of these architectures is kept
as follows:

 Deep LSTM (DLSTM) size of1024 per hidden layer

 Deep GRU (DGRU) size of1024 per hidden layer

 Deep Bidirectional LSTM (DBLSTM) size of 1024 per
hidden layer (512 per each forward and backward
direction)

 Deep bidirectional GRU (DBGRU)size of 1024 per
hidden layer (512 per each forward and backward
direction)

TABLE I. EXPERIMENTS WITH DNN, CNN AND DLSTM MODELS

Method PER % (dev core) PER % (test core)

DNN (6 layers) 20.45 21.18

CNN 17.43 18.83

DLSTM (2 layers) 17.76 18.97

The truncated back-propagation though time (TBPTT)
algorithm was used to train the deep unidirectional LSTM and
GRU models. Each utterance is divided into short

subsequences with a fixed length of bpttT . These subsequences

are processed in their original order. For each subsequence, the
activations are first calculated and forward-propagated using
the LSTM and GRU input and the previous activations, then
the cross-entropy gradients are calculated and back-propagated.
For efficient computation, N subsequences from different
utterances may be operated in parallel by one GPU at a time.
After updating the parameters, the GPU continues with the
following N subsequences.

To train the deep bidirectional LSTM and GRU models, we
used the context sensitive-chunk BPTT (CSC-BPTT) learning
algorithm. Firstly, each utterance is divided into chunks of a

fixed length cN . Then lN previous frames and rN future

frames are concatenated before and after each chunk to give
information about, respectively right and left context. Since
each trunk can be independently trained, a several number of
trunks may be stacked to obtain large minibatches, which leads
to faster training.

The DNN model is composed by a few number of fully-
connected feed-forward layers, trained in a supervised way.
Each layer contains 1024 hidden units and with sigmoid
activation function. To train this DNN model, the stochastic
gradient decent SGD algorithm is used. The SGD algorithm is
using mini-batches of 256 frames. For fine-tuning, we fixed the
initial rate to 0.008.

In all experiments, the networks take on input 25 ms frames
of 40-dimensional filterbank features (FBANK features),
within their first and second temporal derivatives, calculated
every 10 ms. The phone error rates (PERs) for the baseline
CNN, DNN and DLSTM models are as shown in Table I.

A CNN may bring more improved accuracies than a DNN.
The efficiency of CNNs may be attributed to their invariance to
small frequency shifts. As consequent, CNNs are more
powerful to tolerate speaker variations than DNNs. A DLSTM
may lead to phone recognition rates close to those obtained
using a CNN. To improve more the performances we must
increase the number of LSTM layers.

2) The combined CLDNN and CGDNN architectures
As initial step, we present some experiments to justify the

benefit of combining CNN, DLSTM and DNN in a single deep
architecture called Convolutional Long Short-Term Memory,
Deep Neural Network (CLDNN). First, a deep LSTM
(DLSTM) with two LSTM layers is added after the CNN
model and we denote this combination as “CNN-DLSTM”.
Next, this DLSTM model is added after a DNN model with
three fully-connected layers and we denote this combination as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

532 | P a g e

www.ijacsa.thesai.org

“DNN-DLSTM”. As shown in Table II, we observe that the
power of CNN over DNN still existing even when it is
combined with the DLSTM model.

In the following, we show the impact of adding DNN
layers after the DLSTM model (composed by 2 LSTM layers).
The achieved performances according to the number of DNN
layers are so reported in Table III.

Adding several DNN layers after the DLSTM model helps
to further improve the recognition accuracies; while adding
more than 3 layers will not reduce more the phone error rates.
Using DNN layers after achieving the temporal modeling
within the DLSTM model helps to map the output of the top
LSTM layer to a more discriminative space and to predict
easily the targets.

Now, we present the efficiency of the combined deep
architecture; namely Convolutional Long Short-Term Memory,
Deep Neural Network (CLDNN).The performing of this
architecture can be resumed in three steps; in first step the
inputted features are passed to a CNN model, in second step
the output of the CNN is passed to a DLSM model (composed
by 2 LSTM layers) and in last step, the output of the top LSTM
layer is passed to 3 DNN layers. Table IV shows the PER for
the DLSTM, CNN-DLSTM, DLSTM-DNN and finally the
combined CLDNN model.

The CLDNN architecture is very efficient, it may bring up
to 0.99% improvement over the DLSTM model used alone for
the dev set, and up to 0.87% for the test set.

TABLE II. PHONE ERROR RECOGNITION RATES WITH CNN- DLSTM VS

DNN- DLSTM

Method
PER %

(dev core)

PER %

(test core)

DNN-DLSTM 20.13 20.82

CNN-DLSTM 17.05 18.41

TABLE III. PHONE ERROR RECOGNITION RATES WITH DLSTM-DNN

DNN layers PER % (dev core) PER % (test core)

0 (DLSTM) 17.76 18.97

1 17.62 18.83

2 17.54 18.71

3 17.48 18.66

4 17.63 18.79

TABLE IV. PHONE ERROR RECOGNITION RATES WITH CLDNN

ARCHITECTURE

Method PER % (dev core) PER % (test core)

DLSTM 17.76 18.97

CNN-DLSTM 17.05 18.41

DLSTM-DNN 17.48 18.66

CLDNN 16.77 18.10

TABLE V. PHONE ERROR RECOGNITION RATES WITH CGDNN

ARCHITECTURE

Method PER % (dev core) PER % (test core)

DGRU (2 layers) 17.52 18.85

CGDNN 16.55 17.96

Considering the promising phone recognition rates
achieved by the CLDNN architecture and motivated by the fact
that GRU model may bring better accuracies than the LSTM
one we propose another alternative architecture called
Convolutional Gated Recurrent Unit, Deep Neural Network
(CGDNN) by combining this time CNN, GRU and DNN. Just
like the CLDNN architecture, the performing of the CGDNN
architecture can be resumed in three steps; in first step the
inputted features are passed to a CNN model, in second step
the output of the CNN is passed to a deep GRU (DGRU)
model and in last step, the output of the top GRU layer is
passed to 3 DNN layers. In first step, we used a DGRU model
with two GRU layers. The configurations of CNN and DNN
models are kept the same as described previously. Table V
shows the PER for the DGRU and the proposed CGDNN
model.

A deep GRU model (DGRU) is outperforming CNN, DNN
and a little more powerful than a DLSTM model. The
performances obtained by the proposed CGDNN architecture
can bring up to 0.97% improvement in the recognition rates
over a DGRU model used alone for the dev set, and up to
0.89% for the test set.

The interesting accuracies obtained by the CLDNN and
CGDNN architectures are not surprising because they take
advantage from the strong complementarity of the individual
modeling capacities of their three deep sub-models,
respectively (CNN, DLSTM, DNN) and (CNN, DGRU, DNN).

Using GRU instead of LSTM in the proposed CGDNN
architecture has significantly improved the accuracies, while
having less number of parameters. The CGDNN architecture
can bring up to 0.22% improvement in the recognition rates
over the CLDNN architecture for the dev set, and up to 0.14%
for the test set.

To show how the depth (number of GRU layers) may affect
the overall performance of the proposed CGDNN architecture;
a set of experiments is done using respectively 2, 3 and 4 GRU
layers. Table VI shows the PER for the proposed CGDNN
model according to the number of GRU layers.

TABLE VI. PHONE ERROR RECOGNITION RATES WITH DEEPER GRU AND

CGDNNARCHITECTURES

Method
PER % (dev core) PER % (test core)

DGRU CGDNN DGRU CGDNN

GRU –2 layers 17.52 16.55 18.85 17.96

GRU –3 layers 17.17 16.21 18.49 17.65

 GRU –4 layers 16.64 15.77 17.90 17.19

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

533 | P a g e

www.ijacsa.thesai.org

TABLE VII. PHONE ERROR RECOGNITION RATES WITH DEEPER BGRU AND

CGDNN ARCHITECTURES

Method
PER % (dev core) PER % (test core)

DBGRU CGDNN DBGRU CGDNN

BGRU –2 layers 16.94 16.03 17.87 17.15

BGRU – 3 layers 16.48 15.67 17.42 16.56

BGRU –4 layers 16.04 15.21 17.10 16.19

The objective of testing different layers was to analyze
whether the performance of the proposed CGDNN architecture
may be affected by adding the hierarchical depth. It has been
shown, that a deeper CGDNN architecture may bring further
improvements in the phone recognition accuracies. The lowest
error rates are obtained using 4 GRU layers, however
increasing the number of GRU layers beyond that makes the
training hard and seems to complicate the training without
bringing consistent improvements.

The proposed CGDNN architecture using unidirectional
GRU layers either shallow or deep has shown very interesting
phone recognition rates. In next experiments we propose to use
bidirectional GRU (BGRU) model instead of unidirectional
GRU model to further improve the performances. A set of
experiments with different number of BGRU layers was so
done. The achieved performances according to the number of
BGRU layers are so reported in Table VII.

The robust CGDNN architecture using Bidirectional GRU
(BGRU) layers may bring further improvements over the one
using unidirectional GRU layers. This efficiency is not
surprising; because the bidirectional GRU (BGRU) layers are
able to exploit the bidirectional contextual information
(previous and future context), contrariwise to unidirectional
GRU layers that can exploit only the past history.

A deeper CGDNN architecture allows an efficient
modeling of the long-range history and the non-linear
relationship structures. By increasing the number of BGRU
layers in the CGDNN architecture the phone error recognition
(PER) rates will be further reduced. Nevertheless, adding more
than four bidirectional layers will not bring more significant
improvements and the performances will be saturated.
Theoretically, increasing the number of layers may not harm,
while practically that will let the convergence more slow and
the network may broke after few epochs.

In last step of our work, we have tested the proposed
CGDNN architecture with four BGRU layers by using
different type of features. The used features are 39 dimensional
MFCC features, 40 dimensional filter-bank (FBANK) features
and the LDA+STC+FMLLR features. These later features are
obtained by splicing 11 frames (5 on left and right of the
current frame) of 13 dimensional MFCCs; then we apply a
linear discriminant analysis LDA to reduce the dimension to
40. The MFCCs are normalized with cepstral mean-variance
normalization (CMVN). After that, the semi-tied covariance
(STC) transform is applied on the previous features. Finally,
we apply on these features speaker adaptation using the
feature-space maximum likelihood linear regression (FMLLR).

TABLE VIII. PHONE ERROR RATES WITH CGDNN ARCHITECTURE USING

DIFFERENT FEATURES TYPES

Features PER % (dev core) PER % (test core)

MFCC 15.63 16.58

FBANK 15.21 16.19

FMLLR 14.69 15.72

As shown in Table VIII we notice that using adapted
FMLLR features leads to a phone error rate of 15.72% for the
TIMIT test set which is the most promising and performing
result obtained in this paper. Compared to CLDNN, the
proposed CGDNN architecture brings the highest phone
recognition rates and achieves more improved performances.

V. CONCLUSION

In this paper, we presented two combined architectures,
namely Convolutional Long Short-Term Memory, Deep
Neural Network (CLDNN) and Convolutional Gated Reccurent
Unit, Deep Neural Network (CGDNN). The first architecture
was designed by combining (CNN, LSTM and DNN) and the
second architecture was designed by combining (CNN, LSTM
and GRU). An overview of the performance gain brought by
the deep CGDNN architecture is outlined and compared to all
its sub-networks used alone so as to the CLDNN architecture.
The proposed CGDNN architecture using deep GRU model
(DGRU) achieves a 0.89% relative improvement over the
DGRU model used alone and 0.14% over the CLDNN model
using a DLSTM, for the TIMIT test set. And a CGDNN
architecture using DBGRU model achieves a 0.91% relative
improvement over the DBGRU model used alone. A phone
error rate of 15.72% has been obtained using the proposed
CGDNN architecture with four BGRU layers and using
FMLLR features, which has been shown to give state-of-the-art
performance for the TIMIT phone recognition task.

From this work we will open several future research issues.
The combined CGDNN architecture investigated in this study
is found very efficient. Future researches can be conducted by
stacking layers with some optimization algorithms to get better
performance.

REFERENCES

[1] H. Bourlard, N. Morgan, “Connectionist speech recognition. A hybrid
approach”, The Kluwer International Series in Engineering and
Computer Science, vol.247,1993.

[2] G. Dahl, D. Yu, L. Deng, and A. Acero, “Large vocabulary continuous
speech recognition with context-dependent DBN-HMMs,” in
Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP) (2011).

[3] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, pp. 1527–1554, 2006.

[4] D. Yu, L. Deng, and G. Dahl, “Roles of pre-training and fine-tuning in
context-dependent DBN-HMMs for real-world speech recognition,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
(2010).

[5] A. Mohamed, G. Hinton and G. Penn, “Understanding how deep belief
networks perform acoustic modeling,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp.4273-4276 (2012).

[6] A. Mohamed, T. Sainath, G. Dahl, B. Ramabhadran, G. Hinton and M.
Picheny, “Deep Belief Networks Using Discriminative Features for
Phone Recognition,” in Proceedings of the International Conference on

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

534 | P a g e

www.ijacsa.thesai.org

Acoustics, Speech, and Signal Processing (ICASSP), pp. 5060-5063
(2011).

[7] G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton, “Phone
recognition with the mean-covariance restricted Boltzmann machine,” in
Advances in Neural Information Processing Systems.

[8] G. E. Dahl, D. Yu, L. Deng, and Al. Acero,“Context-Dependent Pre-
trained Deep Neural Networks for Large Vocabulary Speech
Recognition,” in IEEE Transactions on Audio, Speech, and Language
Processing, pp. 30-42 (2012).

[9] A. Mohamed, “Deep Neural Network acoustic models for ASR,” Ph.D.
dissertation, Computer science. Dept., Toronto Univ., Toronto, U.K.,
2014.

[10] D. Povey, “Discriminative training for large vocabulary speech
recognition,” Ph.D. dissertation, Eng. Dept., Cambridge Univ.,
Cambridge, U.K., 2003.

[11] N. Jaitly, P. Nguyen, AW. Senior, and V. Vanhoucken, “Application of
pretrained deep neural networks to large vocabulary speech
recognition,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH) (2012).

[12] O. A. Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying
Convolutional Neural Network Concepts to Hybrid NN-HMM Model
for Speech Recognition,” in Proceedings of the International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), pp. 4277-4280
(2012).

[13] O. A. Hamid, L. Deng, and D. Yu, “Exploring Convolutional Neural
Network Structures and Optimization Techniques for Speech
Recognition,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH) (2013).

[14] T. N. Sainath, A. Mohamed, B. Kingshury, and B. Ramabhadran, “Deep
Convolutional Neural Networks for LVCSR,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp. 8614-8618 (2013).

[15] D. Palaz, R. Collobert, and M. Magimai.-Doss, “Estimating phoneme
class conditional probabilities from raw speech signal using
convolutional neural networks,” in Proceedings of the Annual
Conference of International Speech Communication Association
(INTERSPEECH), pp. 1766-1770 (2013).

[16] D. Palaz, R. Collobert, and M. Magimai. -Doss, “End-to-end Phoneme
Sequence Recognition using Convolutional Neural Networks,” ArXiv e-
prints, Dec. 2013.

[17] L. Tôth. “Combining time and frequency domain convolution in
convolutional neural network-based phone recognition,” in Proceedings
of the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 190-194 (2014).

[18] S. Basalamah, S.D. Khan, H.Ullah, “Scale Driven Convolutional Neural
Network Model For People Counting and Localization in Crowd
Scenes,” in IEEE access,2019.

[19] F. Saeed, A. Paul, P. Karthigaikumar and A. Nayyar, “Convolutional
neural network based early fire detection,” in Multimedia Tools and
Applications, 1-17, 2019.

[20] D. Palaz, R. Collobert, and M. Magimai. -Doss, “End-to-end Phoneme
Sequence Recognition using Convolutional Neural Networks,” ArXiv e-
prints, Dec. 2013.

[21] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in
Proceedings of the Annual Conference of International Speech
Communication Association (INTERSPEECH) (2014).

[22] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long
short-term memory recurrent neural networks,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (2014).

[23] A. Graves and J. Schmidhuber, “Framewise phoneme classification
with bidirectional LSTM and other neural network architectures,”
Neural Networks, vol. 12, pp. 5–6, 2005.

[24] F. A. Gers and J. Schmidhuber, “LSTM recurrent networks learn simple
context free and context sensitive languages”, in IEEE Transactions on
Neural Networks, vol. 12, no. 6, pp. 1333–1340, 2001.

[25] D.Bahdanau, J.Chorowski, D.Serdyuk, P.Brakel and Y.Bengio “End-to-
end attention-based large vocabulary speech recognition”, in
Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 4945-4949 (2016).

[26] A.Graves, A. Mohammed and G. Hinton. “Speech recognition with deep
recurrent neural networks,” in Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.
6645-6649 (2013).

[27] M.Ullah, H.Ullah, S.D. Khan and F.A. Cheikh, “Stacked Lstm Network
for Human Activity Recognition Using Smartphone Data,” in IEEE,
EUVIP 2019.

[28] A. Kumar, S.R. Sangwan, A. Arora, A. Nayyar and M. Abdel-Basset,
“Sarcasm detection using soft attention-based bidirectional long short-
term memory model with convolution network,” in IEEE Access, 7,
23319-23328, 2019.

[29] J. Chung, C.Gulçehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proceeding
of NIPS, 2014.

[30] L. Deng and J. Platt, “Ensemble Deep Learning for Speech
Recognition,” in Proceedings of the 15th Annual Conference of
International Speech Communication Association (INTERSPEECH),
pp. 1915-1919 (2014).

[31] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, Long
Short-Term Memory, Fully Connected Deep Neural Networks,” in
Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pp. 4580-4584 (2015).

[32] R. Zazo, T. N. Sainath, G. Simko and C. Parada, “Feature learning with
raw-waveform CLDNNs for Voice Activity Detection,” in Proceedings
of the Annual Conference of International Speech Communication
Association (INTERSPEECH), pp. 3668-3672 (2016).

[33] S.Y. Chang, B. Li, T.N . Sainath, G. Simko and C. Parada, “Endpoint
Detection using Grid Long Short-Term Memory Networks for
Streaming Speech Recognition,” in Proceedings of the Annual
Conference of International Speech Communication Association
(INTERSPEECH), (2017).

[34] J. Guo, N. Xu, L.J. Li, A. Alwan, “Attention based CLDNNs for short-
duration acoustic scene classification,” in Proceedings of the Annual
Conference of International Speech Communication Association
(INTERSPEECH), (2017).

[35] W. Hsu, Y. Zhang, A. Lee, and J. Glass, “Exploiting depth and highway
connections in convolutional recurrent deep neural networks for speech
recognition,” in Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH), (2016).

[36] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G.
Stemmer, and K. Vesely, “The Kaldi speech recognition toolkit”, in
IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding. IEEE Signal Processing Society, 2011.

javascript:void(0)
javascript:void(0)

