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Abstract—Metamorphic testing is the youngest testing ap-
proach among other members of the testing family. It is de-
signed to test software, which are complex in nature and it
is difficult to compute test oracle for them against a given
set of inputs. Metamorphic testing approach tests the software
with the help of metamorphic relations that guide the tester to
check if the observed output can be produced after applying
a certain input. Since its first appearance, a lot of research
has been done to check its effectiveness on different complex
families of software applications like search engines, compilers,
artificial intelligence (AI) and so on. Artificial intelligence has
gained immense attention due to its successfully application in
many of the computer science and even other domains like
medical science, social science, economic, and so on. AI-based
applications are quite complex in nature as compared to other
conventional software applications and because of that they are
hard to test. We have selected specifically testing of AI-based
applications for this research study. Although all the researchers
claim to propose the best set of metamorphic relations to test
AI-based applications but that still needs to be verified. In
this study, we have performed a critical review supported by
rigorous set of parameters that we have prepared after thorough
literature survey. The survey shows that researchers have applied
metamorphic testing on applications that are either based on
Genetic Algorithm (GA) or Machine Learning (ML). Our analysis
has helped us identifying the strengths and weaknesses of the
proposed approaches. Research still needs to be done to design
a generalized set of metamorphic rules that can test a family of
AI applications rather than just one. The findings are supported
by strong arguments and justified with logical reasoning. The
identified problem domains can be targeted by the researchers in
future to further enhance the capabilities of metamorphic testing
and its range of applications.

Keywords—Metamorphic testing; metamorphic relation; test
oracle problem; artificial intelligence; genetic algorithm; machine
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I. INTRODUCTION

Before using any type of machinery or equipment, it is
necessary to make sure that it is needed, that it is accurate,
and that its output is in line with the requirements of whatever
process it will be used in. The same applies to the selection of
any material or device for any given procedure. When it comes
to the use of software, this process of testing and evaluating
becomes even more important. Each software is in some way
contributing to the performance of a system. What this means,
in essence, is that testing software allows one to make sure it
is fulfilling its role properly and thus allowing the system to
run efficiently and without error. As such, to test a software is

to test the system and to test the system is to make sure that
the system will function as it should.

In the world we live in today, many of our day to day
activities are being completed with the help of machines and a
large amount of data and procedures have been digitized and
automated, completely or partially, and this is continuing to
grow. It is sometimes even believed that machine learning will
continue to advance until it can attain near-human proportions
and thus automate as well as improve many aspects of our
lives. This in turn means that much in our everyday lives
depends on the smooth and flawless functioning of these
software and as such the need to test them by maintaining
an input to output log is ever more important. Some software
are extremely difficult to test because of their application and
complex input scenarios like intelligence-based 3D games,
search engines, compilers, machine learning based applications
and so on. For those and similar other applications, it is
very difficult to compute expected outputs for a set of given
inputs. This problem is known as test oracle problem [26] and
conventional testing techniques are not capable to solve it.

Conventional testing approaches like data-flow testing and
control flow testing require test oracle to check and compute
the correctness of a software. Test oracles are quite difficult to
compute in situations when we want to test complex software
as stated earlier. Metamorphic testing [27] uses metamorphic
relations to test complex software that cannot be easily tested
due to test oracle problem. Metamorphic relations help in
verifying whether the executed test cases have produced ex-
pected output or not. Since its origin researchers have proposed
different techniques to apply this approach on various kinds of
software. Literature shows immense variation in the domain of
its applications including Web Services [9], [10], [11], [12],
Computer Graphics [13], [14], [15], Embedded Systems [16],
[17], [18], [19], Simulation and Modeling [20], [21], Artificial
Intelligence [1], [3], [5], [2], [4], Bioinformatics [22], [23],
Compilers [24], [25] and so on. Other than the aforementioned
complex types of software, some authors have even proposed
using metamorphic testing to support conventional structural
testing and mutation testing [28], [29].

Artificial intelligence is spreading its wings and covering
almost every domain of knowledge where computer-aided
applications can be used. Their application base is grown
with each day passing covering not only computer science
but also other domains like medical science, engineering,
economics, and so on. AI-based applications are difficult to
test as they are extremely complex in nature (implementing
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complex algorithms or may be manipulating huge amount of
data) and its hard to generate test oracles for them. Due to
this very reason, metamorphic testing techniques have been
designed and proposed to test them. Although some studies
exist and researchers do claim their proposed techniques are
good but no review study exists that specifically evaluates them
on the basis on sound justifications and parameters. We have
conducted a thorough survey to evaluate metamorphic testing
techniques and to highlight their strengths and weaknesses on
the basis of well defined benchmark. The findings will guide
the researchers to improve the existing techniques to further
exploit the capabilities of metamorphic testing.

Rest of the paper is organized as follows. In Section II,
we present metamorphic testing concepts briefly. In Section
III we present related research work that has been done in
the domain of artificial intelligence. Section IV describes
evaluation criteria for analysis and Section V presents analysis
of the literature review. We conclude in Section VI and present
future directions in Section VII.

II. METAMORPHIC TESTING

Metamorphic testing is a specific technique or method used
for testing programs and machinery. This method works by
identifying and testing relations (technically called Metamor-
phic Relations) which are generated by executing the software
multiple times. Metamorphic relations actually provide a map-
ping of sample inputs to expected outputs without specifically
stating the actual outputs. The relations are basically set of
rules that show how a given input will be transformed into
one or more possible outputs by the software under test. Fig.
1 explains the metamorphic testing process with the help of a
flow-chart followed by its explanation.

Fig. 1. Metamorphic Testing Process

The testing process begins with the input of software under
test and its key usage scenarios. This helps in devising the
metamorphic relations. In order to determine what Metamor-
phic Relations are to be used, one must first identify the key
points that must be verified and validated in order for the

program to work. In other words, one must identify those
key points which determine the smooth functioning of the
equipment, any error in which would cause the software to
malfunction. As such, the metamorphic relations are found
using or are built on these key points. On the basis of
metamorphic relations, tester then can generate source test
cases that will be run on the software to validate its correctness.
Test cases are generated for every execution scenario with the
help of corresponding metamorphic relation. Then they are
executed and results are recorded, which later can be verified
with the help of metamorphic relations to ensure if a give test
case is passed or failed.

III. RELATED WORK

In this section, we will briefly discuss various metamor-
phic testing methodologies that we have encountered in the
literature available on testing AI-based applications. The total
number of techniques and studies reviewed amounts to eight,
with all of them being located within a time-frame of ten years.

Building on the basic ideas of metamorphic testing, Mur-
phy et al. [1] have, in this paper, attempted to test the
usefulness of this methods by applying it on specific algorithms
and machine learning applications. They have, in their analysis,
tried to identify the metamorphic properties of these applica-
tions and then to use them for the purpose of testing and for
the identification of defects and faults. Based on this analysis,
they have also attempted to find specific properties that could
be used for the identification of metamorphic relationships and
thus endow the process with much greater applicability in the
area of testing.

The applications that were used for this analysis were Marti
Rank and, a machine learning application that is used for
the purpose of ranking, and PAYL, which is used for the
purpose of detecting intrusion. A similar analysis that the
authors had conducted previously was also considered, this
one involving Marti Rank and SVM Light and being focused
on making use of pseudo-code and runtime options. Using the
observations thus obtained, the authors were able to identify
the metamorphic properties of these applications and then use
them for the purpose of testing. In the case of Marti Rank, for
instance, the authors were able to identify and pinpoint certain
problems in its code. One thing that they did, for instance,
was to multiply each value in the data by -1, thus creating
a new dataset that was a negative version of the original.
The expected result, in this case, was that the same results
would be obtained as with the original, but the cases that were
considered “worst” originally would now have become the
“best” and the ones that were originally taken as “best” would
now have become the “worst”, thus resulting in a complete
inversion of the original order. Unfortunately, the developers
of the application had not considered such a scenario and as
such the results obtained by the authors of this study were not
in accordance with the expected results. Investigating further,
the authors were also able to identify the actual fault which
was causing this to happen and were thus able to make use
of metamorphic testing to successfully test and evaluate this
application.

Similar results were obtained when testing the PAYL
application, in which the authors were able to identify errors by
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using data of various kinds as input. In one case, for instance,
they removed all payloads of 274 bytes from the data, but
the error alert that was raised by the system was not the one
that was supposed to have been raised. Similarly, when they
added extra payload data of 1448 bytes, the system, instead
of raising a “length-never-seen-before” alert, raised both the
required alert as well as an additional one that originally should
not have been raised. In short, they were able to identify
cases where the required outcome was not obtained as well
as those in which the required outcome was accompanied
by another unexpected one. As such, the authors’ study was
able to confirm the possibility of using metamorphic testing
for the use of analyzing and evaluating Machine Learning
applications.

The main goal, however, of the study was not to simply test
the possibility of using metamorphic testing for the purpose of
evaluating Machine Learning applications, but to also explore
if any specific properties could be singled out for the general
purpose of analyzing such applications. For this purpose, the
authors also compared the specific properties that were used in
both cases and were able to identify six specific properties that,
in their words, could be found in a number of machine learning
applications and could be taken as the properties which one
would go for when having to test such applications. The iden-
tified metamorphic properties were multiplicative, additive,
invertive, permutative, exclusive, and inclusive. The authors,
on this basis, conclude that metamorphic testing may be used
for the purpose of testing machine learning applications and
they suggest that the six properties identified by tested and
evaluated further in later studies so as to determine just how
useful they might be for the purpose of metamorphic testing.

Barus et al. [2] have, in their study, attempted to deal with
the “oracle problem” by making use of Metamorphic Testing.
Their specific concern is with whether this testing method can
be employed for the testing of heuristic methods, and for this
they have applied Metamorphic Testing to a heuristic algorithm
known as Greedy Algorithm. The reason why this had to be
done is that heuristic algorithms are usually based on educated
guesswork, experimental and use experience, and from general
observations on the process. When testing such algorithms, it
is not possible for one to have an exact solution, which, in turn,
makes it difficult to verify the results obtained. To overcome
this problem, the authors have made use of Metamorphic
Testing by identifying nine separate Metamorphic Relations for
the Greedy Algorithm, and then have implemented the process
on five separate versions of a programme that makes use of
it. In each case, they have observed that the Metamorphic
Testing process was able to identify at least one fault, and,
in some cases, they have also found the careful selection of
appropriate Metamorphic Relations can reveal more than one
failure. They also mention, at the same time, that their study
has experimented with Metamorphic Testing by applying it on
only one specific algorithm, and that much more needs to be
done before a final conclusion may be drawn.

Machine Learning software are used oftentimes in fields
relating to the computation of scientific data. These fields
include, for instance, areas such as computational biology,
linguistics, and so on. The problem, it would seem, is the
absence of a test oracle that one might employ in the testing
and validation of these software. When there is no oracle, it is

impossible for one to know what the correct answer would be
to a randomly provided input. As such, one is not able to test,
validate, and thus rely on the use of such software, which may
be involved in many crucial scientific studies. Addressing this
issue, Xie et al. [3] have presented a solution to the issue
of testing these Machine Learning software. They have, in
their study, made use of metamorphic testing as a possible
solution to the oracle problem and have also practically tested
it on specific Machine Learning software. The software which
they have used have been chosen on their common usage
in areas relating to bioinformatics. Their essential hypothesis
is that metamorphic testing procedures can be used for both
verifying and validating software and algorithms. They have
also delineated major problems and pitfalls that one might
face when implementing metamorphic testing and have also
suggested that the method they have proposed may also be
used for testing and validation for software being used in fields
that do not have to do with scientific computation.

The basic principle behind metamorphic testing, as has
been discussed earlier, is to make use of certain properties
and the relationship between the input and the output. When
making a specific change to the input, the changes that will
come about in the output for which can be predicted, one
can detect any errors or problems when the system does
not produce the expected results. In case this does happen,
then there is most probably some issue in the implementation
process, the software itself, or even in the selection of the
algorithm. As such, the authors believe that the process can
be used both to test software and to see if the software being
used is the one that is required.

An alternative method is to make use of a “pseudo-oracle”,
which basically involves making use of various implemen-
tations of the same algorithm and observing the results the
give when processing the same input. Unfortunately, this may
not always be advisable, for the simple reasons that, firstly,
there might be just one implementation of the algorithm, and
secondly, various implementations may, regardless of whether
produced by the same or by different people, may share similar
faults, especially when the fault is somewhere deeper and not
just in the implementation. Metamorphic testing gets around
this problem by focusing instead on the various properties of
the software and, on their basis, seeing if the software reacts to
changes in input as it is expected to. If not, then the observer
may proceed to search for and identify the problem.

The authors have, in their study, tried to gauge the ben-
efit of using metamorphic testing in the area of Machine
Learning, specifically with regards to the use of machine
learning applications in areas of computational science. Their
target applications are k-Nearest Neighbors (kNN) Classifier
and Naı̈ve Bayes Classifier (NBC). Both of these are used
in the field of bioinformatics and are implemented in Weka.
They also do not have a test oracle. Alongside their report,
they have also discussed how metamorphic testing might
be implemented and have pointed out common pitfalls and
methods for avoiding them. They have come up with a set
of metamorphic relations and techniques that could be used
for the evaluation of Classifiers. They also believe that the
process would be equally applicable to other machine learning
software, and as such have suggested that it be used to improve
the quality of the software being produced.
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In what is perhaps a follow up to the previously cited
study, Xie et al. [4] have attempted, once again, to evaluate
metamorphic testing as a viable solution to the oracle problem.
They have, in the study, discussed what metamorphic testing is,
identified relations that can and cannot be of use in the testing
process, delineated major faults and pitfalls, and tested the
viability of the method on two specific classifiers. Alongside
this, they have also conducted mutation analysis as well as
cross validation. They conclude that the method proposed is
quite handy when it comes to killing mutants and also that it
serves as a good complement to cross-validation, which, they
point out, in itself is not enough when it comes to testing
classifiers.

The reason why the authors chose to work on classifiers, it
would seem, is that such software are used often in scientific
inquiries and are also being implemented in and becoming a
part of the devices that human beings use in their everyday
lives. The authors make reference to the fact that most studies
try to find ways to improve machine learning processes, but
the attention paid to the accurate testing and evaluation of
machine learning applications has received comparatively less
attention. To bridge this gap and thus pave way for further
improvements and developments, they have attempted to work
on precisely this issue. As far as testing the metamorphic
testing process is concerned, they have tested it by using it
for the evaluation and testing of two specific classifiers: k-
Nearest Neighbors and Naı̈ve Baye Classifier. In doing so,
they have also tried to isolate those metamorphic relations
which are most useful, or which are necessarily violated,
when a problem is found. If any relation other than these
“necessary” ones shows an error, it may or may not be because
of an error in implementation, or, to put it more simply, it
would simply represent a deviation from “expected” behavior,
whereas violations in the necessary relations would always
correspond to an error in implementation.

This division between necessary relations and otherwise
also allows the authors to confirm whether or not metamorphic
testing can be used for both verification and validation. The
authors conclude, in short, that relations that are marked with
“necessary properties”, or those properties which help indicate
the existence of faults, are useful for verification, whereas those
which are not marked can be used for validation. Furthermore,
the systematic nature of the proposed procedure increases its
applicability overall. The method, successful as it has been in
its application on the software used for the study, may just as
easily be used to test other software, and one need not have
a detailed understanding of the software, its problems, and
testing procedures, but work on a simple understanding of the
test procedure. Furthermore, the process has also been shown
to be quite effective in killing mutations, which further proves
its reliability, and can also be used as a good complement to
cross-validation, which, in itself is not sufficient as a means
for verification.

One must keep in mind, however, that metamorphic testing
is used for testing software, and as such it has one specific
limitation: it reveals faults, it does not prove correctness. It
is possible that one received no errors but the software or
the algorithm chosen are not appropriate for the specific task.
Furthermore, it is also important to note that metamorphic
testing relies on one’s choice of appropriate relations. It is

possible for one to overlook some crucial factors in this
case, and as such, the process is, despite all of its benefits,
only usable for the purpose of finding and identifying faults
and does not help us decide whether or not the software is
working perfecting or if it even is the software we should be
using. Furthermore, the authors have tested the method on two
specific software, and future work might be needed to test it
on other software as well, and in doing so corroborate or add
to these observations.

Evolutionary Testing is a process that allows one to au-
tomate and systematize the testing process and thus make it
much more efficient. It works by generating test data through
the use of genetic algorithms. These algorithms work by
searching for best fit specific solutions or functions through
a process that mirrors the biological theory of evolution. In a
world where machines are playing an increasingly important
role, both in research and in everyday areas of work, it is
important that these software be tested properly so that they
can deliver results and thus keep the system from falling apart.
In their study Dong et al. [5] have attempted to improve
the process of evolutionary testing by involving metamorphic
relations during the construction of fitness functions. The
purpose of evolutionary testing, as was mentioned earlier, is
to automate and systematize the testing process. It works by
making use of genetic algorithms for the purpose of generating
test data. This data is then tested in accordance with a fitness
function, which, in turn, is based on the specifics of the
software’s structure. The algorithm continues to renew the
test input population until an optimum has been achieved.
The authors have attempted to add to the current iteration of
this process by making use of metamorphic testing principles.
Since metamorphic testing allows one to overcome the oracle
problem, the authors believe that considering metamorphic
relations during the construction of fitness functions would
allow one to improve the evolutionary testing procedure. After
testing this hypothesis, they conclude that their “improved”
version of the evolutionary testing process is superior in three
ways: firstly, it requires a smaller amount of iterations in
reaching the optimum; secondly, it has a higher hit percent;
and lastly, it enlarges the search region and the test area, thus
making it better when it comes to detecting faults.

Yoo [6] has, in his work, proposed a testing proce-
dure which combines metamorphic testing with statistical
approaches, thus creating a test procedure for stochastic opti-
mization algorithms. The problem with stochastic optimization
algorithms is many-fold. First of all, there base algorithms
themselves come in may forms and each iteration can be
different from the other. Secondly, they are non-testable, in
that their results cannot be predicted and as such one cannot
and does not have a test oracle to compare to. Thirdly, even
metamorphic testing cannot be applied to such algorithms
without facing certain challenges, namely, that the nature of
these algorithms makes direct comparison problematic and that
the results obtained are affected not just by implementation
but also by the specific problem being considered. The first
challenge is addressed primarily by combining metamorphic
testing procedures with statistical hypothesis testing, creating
a new variant of metamorphic testing that has been dubbed as
“statistical” metamorphic testing. As for the second problem,
the author proposes, in this study, to observe and evaluate
the effect that different problem instances have on the results

www.ijacsa.thesai.org 757 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 4, 2020

obtained and the usefulness of the procedure. The author
tests the proposed procedure by applying it to a specific
algorithm called Next Release Problem. Multiple instances
of this algorithm are used and tested on various datasets,
some of them real and some of them artificially prepared.
Faults have also been placed in the algorithm to see how the
procedure responds. This has been done through a mutation
tool known as Mujava. The overall conclusion of the work is
that the procedure can effectively be used for the identification
of specific types of faults. Some, however, were identified as
non-killable mutations. Finally, the author proposes that further
study be used to identify effective metamorphic relations and
also to test the procedure on more complicated and sophisti-
cated algorithms.

Another study on the testing and evaluation of genetic (and,
by extension, other randomised) algorithms was conducted by
Rounds et al. [7]. Their primary motive for doing so was that
even though such software are used in testing and optimizing
machine learning applications, very little has been done on the
process of testing these algorithms themselves. This problem
becomes even more serious when one takes in to consideration
the fact that many of these are being used to test and evaluate
software in areas of everyday life, including even such sensitive
and critical areas as medicine, traffic, and so on.

The main problem in testing genetic algorithms, it would
seem, is that these algorithms are “randomised”, or, to put it
simply, there is no fixed answer that they can be tested against.
Each time the software is run, the answer is different. The
very goal of these software, it would seem, is to find optimal
solutions by testing and evaluating a string of possible answers.
In other words, one cannot, for the purpose of evaluation,
compare the final answer to a predefined “correct” one, and if
the data provided is in any way misleading or problematic, then
it will become even more difficult to get the desired output.
The authors propose to deal with this situation by making use
of metamorphic testing, a process that has already been used
on some comparatively less complex applications and thus
to propose a solution to the given problem. Their suggested
process combines metamorphic testing with statistical testing
(aka “statistical” metamorphic testing) to create a relatively
more reliable process. This process is then evaluated in a
number of ways, particularly through mutation testing, or the
generation of “mutants” by altering a single line of code and
then testing to see if the software is able to identify it or not.

Through their study, the authors were able to identify a
set of metamorphic relations that, in their observation, are
more useful than the others. They also checked these relations
in relation to genetic algorithms, genetic algorithm operators,
and algorithms involving differential evolution. They have, in
total, identified 17 different relations, 5 of which are useful
for fitness functions, 9 for the entire genetic algorithm, and
3 for the operators. They also compare the performance of
these relations for deterministic unit tests, concluding that the
metamorphic relations have a higher mutation score. They also
found a specific relation that worked well with a specific
function and two that had to be replaced with new ones.
All in all, they consider their work to have been successful
and suggest that future work test these relations with other
genetic algorithms and operators and that more relations be
established for the testing of various applications, algorithms,

and implementations.

Dwarakanath et al. [8] have also evaluated the usefulness
of the metamorphic testing process for the purpose of testing
machine learning applications. The reason why they opted
to do that was, like many other before them, because of
the widespread and ever-increasing involvement of machine
learning applications in matters of everyday life and society.
The problem, however, is that while such applications are used
for many different everyday purposes, they cannot be tested
by comparing results to some sort of an “expected” output,
the reasons primarily being that: firstly, the application would
involve too many possible inputs for one to be able to create a
test; secondly, that the specific output for a given input itself
may not be known; and finally, because an incorrect result may
not really be caused by a bug, but may also have been caused
by one of three other possible reasons—insufficient training,
poor architecture, and incorrect function. As such, the authors
have tried to apply metamorphic testing to deal with this issue
by testing it on two specific programs: support vector machines
(with both linear and non-linear kernel functions) and an
image classifier that makes use of deep learning, the latter
of which also makes use of a convolutional neural network
in its processing. The actual process of testing involved the
introduction of artificially produced bugs, a technique that is
more commonly known as Mutation testing, from which it
was observed that around 71% were successfully identified.
The researchers have also tried to develop certain metamorphic
relations for the analysis and testing of these and other
applications, with the ones developed for the SVM being
able to identify all 12 mutants and the one designed for
the ResNet application (i.e. the classifier making use of this
specific convoluted neural network) was able to identify half
of its 16 mutants. The authors, however, also mention that the
complexity of the ResNet application forced them to stick with
a subset of the actual data for the current experiment, and that
future work would have to rely on a greater chunk of and
maybe even the complete dataset and also that the relations
defined would have to be tested for other similar applications.

IV. EVALUATION CRITERIA

In this section we present evaluation criteria by which we
analyze the surveyed literature on the metamorphic testing
of various AI-based techniques. We have discussed each of
the parameters from the devised benchmark in the discussion
below.

A. Metamorphic Relations

Metamorphic testing aims at solving the test oracle
problem. In metamorphic testing, we identify certain
metamorphic relations that we can later on use to generate
test cases. These test cases should conform to the identified
metamorphic relations in order to show the correctness of
the software that is being tested. Failure to conform with
these relations may help us uncovering logical bug(s) in
the software. Techniques that make use of metamorphic
relations are more useful in our opinion than the ones that
do not. Table I shows the evaluation criteria for this parameter.
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TABLE I. EVALUATION CRITERIA FOR METAMORPHIC RELATIONS

Value Criteria
Yes The value Yes means that the technique has identified

the metamorphic relations and are presented in the
paper.

No The value No means that the technique has not
identified and presented the metamorphic relations.

B. Literature Reviewed

A research study with thorough literature review gives
the reader more confidence in the findings of the study. As
such, we have included this parameter to evaluate the selected
research studies on the basis of the amount of literature that
has been reviewed by the researchers in trying to identify the
research gap. Table II gives the evaluation criteria for Literature
Reviewed.

TABLE II. EVALUATION CRITERIA FOR LITERATURE REVIEWED

Value Criteria
Low The value Low means the researchers have reviewed

and cited less than or equal to 10 research studies.
Medium The value Medium means the researchers have re-

viewed and cited more than 10 and less than or equal
to 30 research studies.

High The value High means the researchers have reviewed
and cited more than 30 research studies.

C. Domain of the Subject

The domain of the subject is important to consider because
every domain has its own attributes and strengths that separate
it from others, and which, as a result, cause a change or
variation in the specific requirements of the testing process.
During this study, we have found two different domains: Meta-
heuristics (Genetic Algorithm) and Machine Learning. Table
III describes the criteria for this parameter.

TABLE III. EVALUATION CRITERIA FOR DOMAIN OF THE SUBJECT

Value Criteria
GA The study has used Metamorphic Testing on Genetic

Algorithms.
ML The study has used Metamorphic Testing on Machine

Learning or deep Learning.

D. Complexity

Once a new technique has been successfully tested, it is
very important to note how complex it is for a new user willing
to use or work on the technique and thus to learn and master
it. The more complex a technique, the less the chances will be
of it being adopted as compared to any other comparatively
less complex technique. Table IV presents the criteria for this
parameter.

E. Time Efficiency

The time taken by a technique to complete a task is one
of the most important factors for evaluation. Techniques that

TABLE IV. EVALUATION CRITERIA FOR COMPLEXITY

Value Criteria
Low It is very easy to learn and master the technique. The

time required can range from minutes to couple of
hours.

Medium It takes average efforts and time to learn and master
the technique. The time required may range from
more than couple of hours to 5-6 hours on average.

High It is very difficult to learn and master the technique.
The time required on average by a person exceeds 6
hours.

save more time are considered to be more efficient than those
that are not able to save as much. Table V gives the evaluation
criteria for this parameter.

TABLE V. EVALUATION CRITERIA FOR TIME EFFICIENCY

Value Criteria
Low The value Low means that by applying this technique

not a lot of time is saved. One of the reasons can be
the complexity of the technique itself that requires a
lot of effort and time.

Average The Average value means that on some applications
the technique will help in saving time and in some
applications it will not.

High The High value means that the technique is so
comprehensive and quite easy to learn and offers
some tool support that helps in saving a lot of testing
effort.

F. Automation

An automation serves as the proof of a concept and it also
helps in reducing the time and effort required in testing. In
other words, a technique that offers automation is considered
better than one that does not. Table VI provides evaluation
criteria for this parameter.

TABLE VI. EVALUATION CRITERIA FOR AUTOMATION

Value Criteria
Yes The value Yes means the technique has either devel-

oped a new tool or has customized an existing one
to validate the approach.

No The value No means the technique has neither de-
veloped a new tool nor has customized any existing.
Hence, no validation.

G. Case Study

The number of case studies determines how well the
proposed technique has been tested. A larger number of case
studies means that the technique has been tested more often
and as such it provides one with a guarantee regarding the
flexibility of this technique. A such, it provides reassurance
that the technique is reliable and that it can be used for a
varying number of situations. Table VII gives the evaluation
criteria for this parameter.
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TABLE VII. EVALUATION CRITERIA FOR CASE STUDY

Value Criteria
Low if number of case studies used in the research study

for validation is less than 10, then the value Low will
be assigned.

Medium If total number of case studies used for validation
range between 11 and 30, then Medium value will
be assigned.

High The value High will be assigned if total number of
case studies used for validation are more than 30.

V. ANALYSIS

In this section we present our analysis on the use of
metamorphic testing on AI-based applications related to both
Machine Learning and Genetic Algorithm. We analyze the
techniques proposed in different studies on the basis of the
seven parameters discussed in the evaluation criteria section
above. Table VIII gives the summary of the analysis in a
tabular form for easy understanding.

Among the main limitations of metamorphic testing is the
highly wide spectrum of the possible “Metamorphic Relations”
that need to be identified. Even within the same domain, it is
not necessary that the same Relations can be used for different
applications. This makes it difficult for testers to learn how
to identify and short-select the “Relations” that are beneficial
in testing. None of the surveyed techniques [1], [3], [4], [7],
[5], [2], [6], [8] have paid attention of devising generic set of
metamorphic relations that can be applied on every of large set
of AI-based applications. This seems to be one of the biggest
limitations in existing research.

A Reasonable number of papers have been studied in each
case, giving more reliability to the findings of the study. Al-
though all of them have developed tools to validate the results,
but most of the automated solutions are usually prototype and
are not available for download and use. In that case users
(testers) have to either develop them on their own or have
to shift to other available tools even though they may not be
as effective as they should be.

In case users (testers) opt to develop the most recent
or comprehensive technique so they can use it to test AI-
based applications, they find it difficult to understand them.
It has been observed that the techniques used are very hard to
learn except proposed by Dong et al. [5]. This high learning
curve makes it very difficult for new researchers and testers
to learn and implement the techniques and as such becomes
problematic when it comes to wide-spread use.

Testing these days require huge amount of effort not only
because of the complexity, which can be inherent but also due
to the size of he software under test. So reducing the total effort
required has been a concern for the researchers and testers. The
time efficiency achieved is also low or medium in all of these
studies, with the exception of only [3], [7]. Researchers need
to pay some attention in the domain of metamorphic testing
to make it more effective and practical for use.

Using a large number of case studies gives more authentic-
ity and confidence in the technique developed. Unfortunately,
in most of the studies, this number is found to be low and

sometimes medium, which, in turn, raises questions on the
applicability of the techniques on a wider scale.

The comforting fact, however, is that metamorphic testing
seems to be effective in both Machine Learning and Genetic
Algorithm domains, giving room for more research in the area
and thus creating possibilities.

VI. CONCLUSION

Testing AI-based applications is a highly challenging task
because these applications may not necessarily follow a certain
known pattern for every set of input. Consequently, the output
might differ for each execution. Most of the time, it is not
possible for one to be able to determine the correct output for
a particular input. Moreover, a change of input may result in an
unexpected change in the output. As such, what is required is
an approach that exploits the properties of these application to
generate accurate and reliable transformation functions. One
such approach is called metamorphic testing. This approach
works by identifying some “Relations” that can be used to test
applications that work on data sets having ambiguous accuracy.
Although the identification of these relations is a challenge
and the learning curve for new testers is high, metamorphic
testing is still a very effective approach that provides one
with an opportunity to overcome the issues of testing such
applications. After conducting detailed survey and analysis
we have found that although some research has been done in
the domain of Machine Learning and Genetic Algorithm but
none of them provides a standard set of generic metamorphic
relations that can be applied on all or a large number of
applications. Other than that metamorphic testing has not been
applied on other AI techniques like Deep Learning and other
optimization algorithms.

VII. FUTURE WORK

Very little has been done when it comes to the application
of Metamorphic Testing on AI applications, and as such there
is a lot of room for researchers to work on new techniques
that can be adopted very easily by testers and which can be
applied very easily on a large number of case studies.
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