
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

An Efficient Approach for Storage of Big Data
Streams in Distributed Stream Processing Systems
Sultan Alshamrani1, Quadri Waseem2, Abdullah Alharbi3, Wael Alosaimi4, Hamza Turabieh5, Hashem Alyami6

Faculty of College of Computers and Information Technology, Taif University, Kingdom of Saudi Arabia1,3,4,5,6
Independent Researcher Srinagar, Jammu and Kashmir, India2

Abstract—Besides, centralized managing, processing and
querying, the storage is one of the important components of a big
data management. There is always a huge requirement of storing
immense volumes of heterogeneous data in different formats. In
big data steam processing applications, the storage is given a
priority and always plays a big role in historical data analysis.
During stream processing, some of the incoming data and the
intermediate results are always a good source of future samples.
These samples can be used for the future evaluation to eliminate
the numerous mistakes of storing and maintaining the big data
streams. Hence, a big data stream application requires an
efficient support for storage of historical queries. The
researchers, scientist and academicians are working hard to
develop a sophisticated mechanism that is needed for storage to
keep the most useful data for the future references by means of
stream archive storage. However, a stream processing system
can’t store the whole incoming stream data for future references.
A technique is needed to get rid of the expired data and free the
space for more incoming data in an archive storage. Hence
keeping in view, the storage space limitation, integration issues
and its associated cost, we try to optimize the stream archive
storage and free more space for future data. The proposed
enhanced algorithm will help to delete the obsolete data
(retention or expired) and free the space for the new incoming
data in a distributed platform. Our paper presents an Enhanced
Time Expired Algorithm (ETEA) for stream archived storage in
a distributed environment for removing the obsolete data based
on time expiration and providing a space for the new incoming
data for historical data analysis during the skew time (Hot
Spots).We also evaluated the efficiency of our algorithm using the
skew factor. The experimental results show that our approach is
98% efficient and fast than other conventional techniques.

Keywords—Distributed stream databases; storage optimization;
stream archive storage; time expiration

I. INTRODUCTION
Big data management is a way of centralized storing,

managing, processing and querying the huge volume of
different available data in numerous formats [1-5]. The
traditional database technologies had failed to manage and
control the flow of data which is overloaded with huge volume,
variety, velocity and variability. However, alternative database
technologies have played a vital role in solving “big data”
issues of managing and processing. Their contribution has
played a vital role in overall big data management [6]. As we
know, big data computing has a huge demand for storage and
processing [7]. Two types of processing can be done on big
data. The first one is Batch processing and the Second one is
Non-Batch processing of big data (real-time processing) [1] [8]

[9], and the Non-Batch processing includes the real-time OLTP
online transaction processing database management DBMS
systems. They possess variable workloads, spike in traffic and
are always dependent on shared nothing architecture besides
using the main memory for the processing and scalability.
Hence, they are best to maintain the acid guarantee of the
transactions [9-16]. Stream processing engines (SPEs) are the
engines that can generate huge and big data streams
continuously on the fly in a cluster of commodity servers.
Stream computing involves the computations for the analytic
purpose. Stream processing engines (SPEs) [17] have achieved
broad adoption in research and industry [18-19] and mainly
focus on scalable cloud computing. In distributed stream
processing systems, most of the stream-based applications are
distributed naturally [20]. One of the difficult problems that
need to address in distributed stream processing systems is a
storage. The large size and a variety of data always creates a
hurdle for an efficient big data storage [21-23]. Data Storage is
one of the crucial processes of big data analytics for real-world
applications. These real-world applications include scientific
experiments, social networks, healthcare and e-business. Till
now, only Amazon, Google, Apache and some companies had
provided the big data storage solutions. However, the available
big data storage technologies are not enough efficient in a
sense to provide consistent, scalable, and available solutions
for the continuously growing heterogeneous data [24].
Distributed Stream Processing Systems (DSPS's) has smartly
evolved to store discovered patterns, analyzed data, and
extracted knowledge from different data processing stages. The
Stored data must be useful data, which must be well controlled,
organized and indexed along with metadata or external
knowledge. The main purpose of storing the data is to get
historical data for future verification and tuning purposes [25-
26]. The stored data is often used for later reference. There is
always a capacity limitation associated with every archive
storage system. None of the systems can store more data than
its capacity. The capacity of each system is directly associated
with cost. Therefore, a sophisticated mechanism is needed to
find the obsolete data (retention or expired), delete that data
and free space for more incoming data in archive storage. Our
proposed algorithm will provide a solution for the space
limitation for the stream archive storage by detecting and
deleting the retention data and free the space for the new
incoming stream data without adding more storage externally
.The algorithm will be beneficial in a way to save the cost of
extra storage and its associated issues of integrating. Our
proposed algorithm will use the skew factor for the retention
policy which will guarantee the strength of the approach.

91 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Hence, we try to optimize the stream archive storage and
evaluated the accessibility of our approach by implementing it
with the YCSB benchmark. For our experiments, we have used
synthetic data as stream data and has implemented it with H-
store. In our implementation, we have modified the Time
Expired Packets Algorithm (TE) [27] for the optimization of
the stream archive storage in a distributed setup. In summary,
this paper makes the following contributions as 1) We discuss
some of the open issues related to storage of big data streams in
distributed stream processing systems and also elaborates
storage optimization for archived data in a distributed streams
databases (DSDBM’s) (Mentioned in Background Section). 2)
We presented an Enhanced Time Expired Algorithm (ETEA),
for stream archived storage in a distributed set of processing
nodes. The algorithm will remove the obsolete data and will
provide a space for the new incoming data for historical data
analysis. 3) We also maintain the efficiency using Skew factor)
in our experiments.

The rest of this paper is organized as follows: In Section 2,
is a background, Section 3 is the literature review, Section 4 is
related works, Section 5 is the introduction of our proposed
algorithm, Section 6 is our detailed algorithm (Enhanced Time
Expired Algorithm (ETEA), followed by Section 7 will depict
our evaluation and Section 8 which gives our conclusion and
future works.

II. BACKGROUND
Data Storage for stream processing is an important aspect

for future enhancement. In big data steam processing
applications, the incoming data and intermediate results may
need to be stored to enable future analysis [28]. These
applications require genuine support for storage and for
historical queries. These required efforts help them for future
analysis of historical data [29]. A lot of work has been done to
optimize the stream archive storage. We have classified the
stream archive storage optimization into three main
subcategories which include 1) keeping most useful data.
2) Integrate Stored and Streaming Data (join live data).
3) Performance of storage manager.

A. Need of Historic Data
Storage of Big Data Streams in Distributed Stream

Processing Systems plays an important role in today’s online
stream world. One of its important pillars includes stream
archive storage. As we know there is always a need for the
storage of the intermediate data of stream processing in
distributed setups for the enhancements, verification, future
references and for tuning purposes [30]. Hence there is always
a needed to keep the most useful data efficiently [28] for future
analytics.

We try to highlight some of the open issues related to
archive storage optimization.

B. Open Issues of Storage Optimization
1) Keeping most useful data: For distributed stream

databases, to keep the most useful data is always a key to
storage optimization. An efficient storage algorithm is needed
to keep the useful data and delete the obsolete data (retention
or expired) from the archived storage. The optimizing protocol

should be simple and automatic in nature. There is a huge
need to keep the most useful data in order to get future
analysis from the least stored streams [27-28] for
enhancements.

2) Integrate stored and streaming Data (join live data):
Careful management of live and historic data is a basic
requirement for archive storage optimization. The routine task
for most of the stream processing applications (on-line data
mining) is a comparison of live data with historical data.
These applications need seamless switching of both past and
present data for the purpose of comparison within the same
application. Hence, a uniform language is needed to deal with
either type of data for seamless integration. Moreover, there is
a demand [30-33] for automatically switching from historical
to live data without manual intervention.

3) Performance of storage manager: The stream
databases should have the capability to store, access and
modify the state information efficiently and effectively. One
of the primary concerns for any stream database is its storage
and management. The protocols related to storage managers
are regarded as an indictment of determining and preserving
the storage for the future. Most of the research works
pertaining to stream storage have been on the issues related to
the storage manager .On the other hand, storage optimization
and related techniques for live stream databases are a
comparatively new arena of the storage and that too when its
distributed. Thus, maintaining storage becomes a significant
mission. Although storage has continued to be studied for
decades, its maintenance is still at the infant stage of research.
We have studied and mentioned some works related to archive
storage optimization and some related work with references
for further understanding to shape and enhance the basic
protocols of a storage manager, its optimization and related
algorithms [8][34].

The capacity limitation of the archive storage system is
directly associated with the extra cost and integration issues.
Those solutions which are dependent on cost are never
considered as an idle solution. Therefore, we provide an
alternate solution to storage capacity issue. The feasible
solution is to delete the obsolete data (retention or expired) of
archives and make a room for the new data for further future
analysis. Conventional methods like First in First Out (FIFO)
and other related solutions are less efficient to provide the best
solution when the stream databases are under skew time (Hot
tuples-when most of the users and servers are on max
utilization).

III. LITERATURE REVIEW
There is substantial literature available for the data storage

for stream processing related to big data applications. Some of
the research work done in the field of data storage management
aims to improve storage, integrate the live data with archive
data and provide correctness guarantee for big data stream
processing.

In [8], Fred Douglis et al. proposed a storage system that
optimizes not only reading and writing but the creation and

92 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

deletion as well. Efficiency is achieved, by automating deletion
based on relative retention values rather than requiring data to
be deleted explicitly by an application. It works mostly on
retention value functions, which effectively assign each data
object a value that changes over time. In paper [28], Kirsten
Hildrum et al. proposed an effective scheme for optimizing the
placement of data within a distributed storage subsystem
employing retention value functions. The goal is to keep the
data of the highest overall value, while simultaneously
balancing the read load to the file system. In paper [29],
Nesime Tatbul, et al. proposed an S-Store which is designed to
address the correctness aspect of a streaming application. In the
paper, they prove the only way to achieve good performance is
by tightly integrating storage management with the streaming
infrastructure which supports correctness without serious
performance degradation. The paper represents the exactly one
processing, exactly one delivery, and transactional workflows.
In paper [34], Irina Botan et al. proposed an optimized general-
purpose storage management interface based on the parameters
from the application requirement at different granularities.
Using the interface and SMS (Storage Manager for Streams)
can generate a customized storage manager for streaming
applications. It uses information about the access patterns of
streaming applications to tune and customize the performance
of the storage manager. It efficiently handles time-critical tasks
such as managing internal states of continuous query operators,
traffic on the queues between operators, as well as providing
storage support for shared computation and archived data. In
Paper [8], Fred Douglis et al. proposed a storage system that
optimizes not only the reading and writing but the creation and
deletion as well. The papers use the concept of the relative
value to retain the data items rather than deleting the data
explicitly.

Therefore, keeping in view the necessity and the
importance of the archive storage in distributed setups. It seems
that there is a need for more research and a lot of work needs to
be done for the archive storage and its optimization. We have
designed an algorithm for the distributed stream processing
engines which will help to optimize the stream archive storage
by removing the expired data and free more space for incoming
streams for the purpose of historical analysis during the skew
time (hot tuples).

IV. RELATED WORKS
For research and a commercial purpose, there are many big

data storage and analysis models available in a market. The
challenges of big data storage are widely understood. At
present, a lot of work is going on related to datacenter storage.
Storage and processing through different data centers are
growing as fast as the big data itself. A huge amount of data is
created by a variety of users and devices. For storing and
processing big data, the data center is always needed to
establish network infrastructure which helps to gather this
rapidly generated data [23]. In another work [35], the authors
highlighted and classify the components of the network that
must be established for better storage and communication in
data centers such as the original data network, the bridges and a
datacenter. Another related study [36], identifies the issues in
using big data through specific locations.

We have categorized some of the related works especially
related to resource management and storage optimization for
easy understanding.

A. Resource Management
A lot of work has been done for storage load management

of data stream processing systems. The proposed system uses
the up-date queues for minimizing memory consumption and
the impact of overload on QoS [37]. Another related research
for resource allocation in the stream database includes the
minimum spanning tree-based algorithms to discover and
allocate the resources to meet real-time constraints [38].One
more connected work aims to maximize the quality of the
results in stream processing systems using overload
management concept. This concept of overload management
related to distribution in stream processing system uses the
resource allocation technique. That includes the distributed
algorithms for reallocating the system resources (i.e., CPU)
based on their utilization [39]. Another related contribution
[40] handles the query optimization, scheduling, resource
allocation and especially the source availability. The proposed
system interacts between resource availability and the
approximation.

B. Storage Optimization
Similarly, researchers investigated the storage optimization

for data streams. One of the works includes a sluggish ladder
queue that handles the long-running queries/continuous queries
in real-time over a high-volume of data streams. Hence focuses
on the latest data and control infinite streams overflow [41].
Some of the related work includes model integration of
distributed stream processing system with state management.
The model transitionally extends with sub-graphs, integrity
constraints and consistency guarantees [42]. Some of the
similar contributions include a high-performance stream
processing engine I/O architecture which allowed the
simultaneous persistence and communication of live and past
(retrieved from storage) data streams [32]. Another related
work [43] includes a system which constructs models and
algorithms for overload prediction for heterogeneous data. The
system scales up the performance and reduces the data loss
without allocating additional servers.

Moreover, there has been a lot of works that deal with
storage and is related to relational databases, data marts, data
warehouses, and longer-term storage using Extract, Transform,
Load (ETL) or Extract, Load, Transform (ELT) tools [15][21].
Another related work includes the development of an elastic
cloud data storage system to support both OLTP and OLAP
workloads efficiently within the same storage and processing
system [44]. Enterprise Data Warehouse (EDW) traditional
environment and its association with the data storage is another
related work that needs a genuine consideration to enhance the
big data storage [11][45]. Lastly, a review paper [46] has
elaborated many data streams processing systems in depth that
include their data models, continuous query processing,
languages and query optimization.

V. PROPOSED ALGORITHM
This section describes the Enhanced Time Expired

Algorithm based on a skew time (Hot Spots) by utilizing the

93 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

skew factor, generation time and expired time of the stream
data.

A. Problem Defnition
The problem of optimizing the archive storage in

distributed stream databases is one of the big issues to tackle. A
big concern in-stream archive storages is its limited storage
space. One way to get rid of this problem is to increase the
archive memory but that too has its limitations of cost and
integration issues. Another way is to delete the expired data
and make space for the new incoming streams. If there will be
more space, more incoming data can be stored for future
verification and tuning purposes. The storage space limitation
has a direct impact on the storage and effects indirectly to
historic data storage. Lots of techniques have been used to do
the same work. Even a normal deletion technique would be an
idle solution to free up the previous retention data and make
space for the new incoming data based on normal retention
policies as mentioned in [8]. However, these conventional
solutions are not effective when it comes to the peak time
(when most of the users are active and huge data is coming in).
To our knowledge, none of the techniques had worked under
the skew time. So a mechanism is needed which should
automatically detect and delete the expired data and free the
archive space for more incoming data for future historical data
analysis under the skew time (Hot tuples-when most of the
users and servers are on max utilization).

The problem of stream archive storage during peak hours
needs a genuine optimized solution to automatically manage
the storage space for huge incoming data by deleting the
retention data and freeing up the space for huge incoming
streams for historic analysis.

Thus, we define our algorithm to solve the problem of
detecting and deleting the expired data based on the prescribed
retention policy (Rp) which we keep 4 in our test environment
(quarterly-4). A skew factor as Sf = {states*}, which includes
the peak time of skews. Its value can be +ve or -ve based on
the server and user load. The Tg* denotes a Time Generation
of the stream and Et* denotes the Expire Time based on the
retention policy. When retention value is found, the data is
deleted and if not, the data is retained, and no action is taken
till loop checks and continues to the whole archived storage.

B. Enhanced Time Expired Algorithm (ETEA)
The Enhanced algorithm is derived from [27], a skew factor

in addition to the generation time and the expired time of the
streams is added. The skew factor represents the peak mode
and the expired time represents the maximum allowable time
for the stream to be available in an archive (based on the
retention policy). The algorithm helps to recognize and remove
the obsolete data (retention or expired) so as to free the space
for more incoming data for archive storage in the future for
historical data analysis. Therefore, it optimizes the archive
storage. Based on positive and negative value criteria of time
retention, the algorithm will discard expired data which is of no
benefit and has occupied the archive space. Thus, freeing the
archive's storage for more new incoming data.

The overview of an Enhanced Time Expired Algorithm
(ETEA) is represented as:

Algorithm: Enhanced Time Expired Algorithm (ETEA)
1: is skew ← true // check for skew factor Sf

2: Get the “time generation” and generate “expire time” (Tg
and Et)

3.Calculate the remaining Time Rt //based on retention policy
4: while skew do
5: Remove the retention stream //delete the stream based on
retention policy
6: Update the value of skew
7: if not skew then
8: return false//no deletion done
9: end if
10: end while
11: return true//the system is still checking

C. Our Contribution
The main contribution of this paper is that we propose an

enhanced algorithm, called Enhanced Time Expired Algorithm
(ETEA), to detect and delete the expire data automatically in a
stream archive storage for distributed setup. Our algorithm is
efficient and effective in detecting and deleting the retention
data and free the space for new storage for future verification
and tuning purposes.

During a stream processing in a distributed environment
(distributed set of processing nodes) commonly known as
Distributed Stream Processing Systems (DSPS's) for example
OLTP, when a skew factor (Sf) is found, which represents the
peak time for incoming data from different types of online
servers and users. The proposed algorithm gets the Time
Generation and Expire Time (Tg and Et) for each stream using
a function: Get Time Generation (Tg) and Get Expire Time
(Et). The Tg= initial time of the stream and Et=Expired time or
retention policy time (it might be monthly or quarterly)-in our
case we take it as quarterly for a test environment. When Rt
Expired is found, the algorithm destroys the data stream in the
archive using the following function: DELETE=Stream. If no
Rt Expired match is found, no action is taken, then a second
stream in the loop (Lp) is checked for the Rt Expired values
onwards.

Our main contribution is our proposed algorithm for
storage optimization (memory and cost efficient) and works
efficiently during the skew time to find (detect) the expired
data and delete the expired data based on the retention policy to
release the memory for the new incoming stream data.

VI. ALGORITHM DETAILS
In this section, we explain the working of our proposed

algorithm. As we know that many OLTP workloads are heavily
skewed to “hot” tuples or ranges of the tuple. So, first, we try
to identify the skew mode using the lightweight threshold
mechanism based on several streams (transactions or stored
procedures). For our experiments, we have assumed that if the
maximum no of streams is 1000 per minute, we consider this
as the maximum threshold. Once this threshold is achieved, a
skew mode is triggered with a value representation. These
values can either be 1 or 0 based on a condition whether the
skew mode is true or false (+ve or -ve). If the value is found
true, a skew factor is assigned with a timesheet which means

94 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

more space is needed for the incoming data flow of streams. Sf
= { states*}=1 or 0.The initial values for Time Generation
decide the Expire Time for the streams based on the retention
policy of four (4) months in our experiments, which means
4*30=120+2=(122) days. The data is deleted automatically
once this value is found on matching. The whole process is
repeated and cross-checked for any missing values until it
checks the whole archive storage.

The Algorithm working is explained through below-
mentioned phases:

• Phase 1: The working of the algorithm is based on the
concept of checking for the skew factor (+ve/1 or -
ve/0).

• Phase 2: Assigning the Time Generation and Expire
Time for the streams. When the expired data is found,
based on the retention policy, the long-stayed data is
deleted automatically.

• Phase 3: The data is checked again for all streams if no
match values of Expiration Time is found, the checking
proceeds until it checks the whole archive storage.

The logic for (Sf) phase1: Sf = {states*}, which includes
the peak time of skews. Its value can be +ve or -ve based on
the server and user load. When the skew factor (Sf) is +ve,
which represents the peak time during the online transactions
of the distributed environment, the initial values are generated
and set as 1 for +ve value and vice versa for 0 for -ve value.

The logic for (Tg and Et) phase2: The Tg* gets the Time
Generation of the streams i.e. their initial time. Therfore based
on it, Et* gets the Expire Time from the retention value (which
is based on its policy). We are using Expire time (4 months in
case of our experiments). Hence in our case it is calculated as
4*30=120+2=122 days. When this value (122) is found, the
data is deleted automatically and if not, the data is retained, and
no action is taken. Therefore, data of more than 122 days is
deleted automatically.

The logic for (Lp) phase3: The data is checked again for all
streams using a loop function, if no match values of Expiration
Time is found, no action is taken, and the checking proceeds
till it checks the whole archive storage is checked.

VII. PERFORMANCE EVALUATION
In this section, we provide an experimental evaluation of

the stream archive storage techniques using our proposed
algorithm. The main goals of our experimental study are as
follows:

• to show working of our Enhanced Time Expired
Algorithm (ETEA) for stream archived storage in a
distributed environment. The algorithm uses a skew
factor based on hot spots and is compared against the
state-of-the-art retention policy like conventional
approaches First in First Out (FIFO), in terms of storage
optimization (memory and cost efficient) for stream
archive storage.

• to evaluate how effectively we can manage the memory
space during the skew time.

We first investigate the impact of skews of incoming data
rates. We found that there is a need for more archive storage
for the stream data during peak time. Second, we consider the
need for data deletion for skew. If more data will be deleted
automatically, more space will be free for the future tuning
purpose of historic data in archive stream storage. Thirdly, we
detect the data automatically using our retention policy in the
proposed algorithm. Fourthly, the expired data was deleted,
and more space was available free. We can see from Fig. 1 and
Fig. 2 that our algorithm had increased the effectiveness as
well as memory optimization for stream archive storage. We
observe all differences in performance (in terms of skew time
and normal incoming data). Nevertheless, the conclusion is that
we start with skew formulation, observe the impact of skews,
provide the retention policy, detect the expired data to be
deleted and lastly delete the expired data. Finally, we compare
our proposed algorithm with one of the conventional
approaches First in First Out (FIFO).

In Table I, we can see Time results for data deletion, which
keeps increasing with the passage of time and Table II
represents the values for Space (memory) results for data
deletion).

Within a time of 3ms, the deletion was done with a value of
1 tuple deleted with an efficiency of 30.3 percent. The
efficiency keeps increasing and decreasing with the time slots
until it verifies the whole deletes of memory chunk (memory
block).

In Table II, with the first deletion of 1 tuple, a space of 0.3
bits was released i.e. space(memory). The value of efficiency
goes on increasing depending upon the memory released. The
rest values of the table represent the respective space released
with the efficiency.

In Fig. 1, we can see that in less time, the efficiency has
increased, while as in Fig. 2, during the same time, more
expired data is deleted, hence releasing the memory(space).In
both cases (Fig. 1 and Fig. 2), which are related to efficiency
improvement and memory improvement, the frequency is
common. The Node values represent the nodes numbers, the
time is represented in milliseconds (ms) and the deletion is
measured in percentages in aggregate.

TABLE I. BLOCK WISE TIME RESULTS FOR DATA DELETION

 Time Deletion Efficiency

N
od

e
V

al
ue

 1.00 3ms 1.00 30.3

2.00 6ms 2.00 60.3

4.00 1ms 0.3 10.1

6.00 9ms 3.00 98.0

TABLE II. BLOCK WISE SPACE (MEMORY) RESULTS FOR DATA DELETION

 Deletion Space (Memory) Efficiency

N
od

e
V

al
ue

1.00 1.00 0.3 30.3

2.00 2.00 0.6 60.3

4.00 0.3 0.1 10.1

6.00 3.00 6.0 98.0

95 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 1. Efficiency vs Time.

Fig. 2. Efficiency vs Memory (Data Deleted).

Next, we will first describe our experimental setup, then we
will present our results.

A. Experimental Setup
We implemented our ETEA algorithm as part of the H-

store [47], mostly used for the OLTP workload. We monitor
the flow of skews using its storage manager component and the
memory usage was taken into consideration. We configured the
monitoring component of H-store processing system to check
the skew mode (hot tuple) and monitor the flow of incoming
data into the archive storage.

In all our experiments, we have used a double-node set up
for running on a window on an Intel Quad-Core Intel Xeon
3360 2.8GHz processor and 8GB of memory. To understand
the impact of skew on an OLTP DBMS, we conducted a basic
benchmark using the YCSB workload [48] on four (4) node H-
Store clusters.

For this setup, we used a database with 2 million tuples
(Each 1KB in size (∼2GB in total) that are deployed on two (2)
partitions.

1) Workload: In all experiments, we have used
synthetically generated tuples (Streams). The input rates were
set according to the desired level of threshold to be exerted on
the system. The input is ordered by a time-based factor that
decides the initial time of the streams and accordingly using
the initial time. The expired time is calculated based on the
retention value. The number of values can be altered and can

range from 122 to any value depending on the experiment.
The actual initial value of the streams does not have any
significance, it is only what we measure in the experiments.
To be able to control the processing cost of this query, we use
the retention value to free the space which directly affects the
cost of maintaining the more space unnecessarily for the
expired data.

2) Performance Metrics: We have primarily used two
performance metrics in our experiments:

• Effectiveness during Skews: Average effectiveness is
computed on streams based on the no of tuples deleted
and then, an overall average is computed across all the
skews, which is measured in seconds.

• Storage (Memory optimization): Maximum memory
deleted for the stream archive is recorded between
output deliveries. Then we compute a maximum overall
memory calculation based on deletion across a given
run. Memory deleted is measured in the number of
deleted tuples.

B. Results
In Fig. 1 and in Fig. 2 we can see that the effectiveness, as

well as the memory optimization for the stream archive storage
during the skew time. The effectiveness is increased due to a
continuous deletion of the expired data. The situation looks
improved for all possible scenarios. As expected, during the
skew time, the more expired data is removed, the more archive
storage memory is released. The reason for this is the response
to streams (keep it or delete it) method of our proposed
algorithm, which avoids the need for redundancy in rechecking
the memory chunk again. This result clearly shows that
deleting expired data increase the archive storage for the new
incoming streams. Our approach is 98% efficient and fast than
other conventional techniques like First in First Out FIFO
(which cannot be used for skew workloads). We have
benchmarked our algorithm against FIFO in a skew
environment. We had concluded with the results which prove
our proposed algorithm is well suited for the skews with 98%
efficiency and memory optimization. The details of the
benchmark are mentioned.

Table III represents the detailed information about the
ETEA. We observe the efficiency of ETEA (which works
under the skews). We found that in less time, more expired
data is deleted, and 98% efficiency is achieved which was not a
case with the FIFO showing in Table IV. Fig. 3 and Fig. 4
presents the graphical representation of the efficiencies
between the two algorithms.

TABLE III. EFFICIENCY UNDER SKEWS

Enhanced Time Expired Algorithm (ETEA)

 Time Deletion Space
(Memory) Efficiency

N
od

e
V

al
ue

 3.00 2 28.6 28.6 98.0

5.00 6 71.4 71.4 96.0

6.00 9 100.0 100.0 98.0

96 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

TABLE IV. EFFICIENCY WITHOUT SKEWS

First in First out (FIFO)

 Time Deletion Space
(Memory) Efficiency

N
od

e
V

al
ue

 3.00 2 18.0 28.6 43.6

5.00 6 71.4 71.4 54.0

6.00 9 100.0 100.0 54.0

Fig. 3. Efficiency of ETEA.

Fig. 4. Efficiency of FIFO.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we presented an algorithm, Enhanced Time

Expired Algorithm (ETEA) for the distributed stream
databases, which will help to optimize the stream archive
storage and will detect and delete the expired data. Hence it
provides the free space for new incoming streams for the
purpose of historical data analysis during the skew time (hot
tuples) in a distributed platform. Extensive evaluation on four
(4) node cluster demonstrates the superiority of the approach
compared to normal prior efforts which doesn’t include the
skew time (conventional retention techniques like First in First
Out (FIFO). Hence, our solution is fully optimized based on
effectiveness of memory and cost efficient factors of storage.

In the future, we will try to apply the other retention
policies by using a machine learning algorithm (time series) to
enhance the effectiveness and the performance of the stream
archive storage. In our next series of optimizing the stream
archive storage, we plan to design an architecture that will
integrate the live data with historic data. Furthermore, we can
also try the Pinwheel scheduling algorithm and Reduce-Max
algorithm for the best results in our future experiments.

REFERENCES
[1] Waseem, Q., Maarof, M. A., Idris, M. Y., & Nazir, A. A Taxonomy and

Survey of Data Partitioning Algorithms for Big Data Distributed
Systems. Micro-Electronics and Telecommunication Engineering, 447:
(2020).

[2] Kaur, P., and Awal Adesh Monga. "Managing Big Data: A Step towards
Huge Data Security." International Journal of Wireless and Microwave
Technologies 2 (2016).

[3] Emani, C. K., Cullot, N., & Nicolle, C. (2015). Understandable big data:
a sur-vey. Computer science review, 17, 70-81.

[4] Hu, Han, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. "Toward
scalable systems for big data analytics: A technology tutorial." IEEE
access 2 (2014): 652-687.

[5] M. Serafini, E. Mansour, A. Aboulnaga, K. Salem, T. Rafiq, and U. F.
Minhas. Accordion: Elastic Scalability for Database Systems Supporting
Distributed Transactions. Proc. VLDB Endow., 7(12):1035–1046, Aug.
2014.

[6] Moniruzzaman, A. B. M. "Newsql: Towards next-generation scalable
rdbms for online transaction processing (oltp) for big data
management." arXiv preprint arXiv:1411.7343 (2014).

[7] Kune, Raghavendra, et al. "The anatomy of big data
computing." Software: Practice and Experience 46.1 (2016): 79-105.

[8] Douglis, Fred, et al. "Position: short object lifetimes require a delete-
optimized storage system." Proceedings of the 11th workshop on ACM
SIGOPS European workshop. 2004.

[9] Zhang, Hao, et al. "In-memory big data management and processing: A
survey." IEEE Transactions on Knowledge and Data Engineering 27.7
(2015): 1920-1948.

[10] Bakshi, K., 2012. Considerations for big data: Architecture and
approach conference. s.l., IEEE, pp. (1-7).

[11] Hartmann, T., Fouquet, F., Moawad, A., Rouvoy, R. and Le Traon, Y.,
2019. GreyCat: Efficient what-if analytics for data in motion at scale.
Information Systems journal.

[12] Hu, H., Wen, Y., Chua, T., & Li, X. (2014). Toward Scalable Systems
for Big Data Analytics: A Technology Tutorial. IEEE Access, 2, 652-
687.

[13] Singh, Dilpreet, and Chandan K. Reddy. "A survey on platforms for big
data analytics." Journal of big data 2, no. 1 (2015).

[14] R. Taft. Elastic Database Systems. PhD thesis, MIT, Cambridge, 2017.
[15] Aubrey L. Tatarowicz, Carlo Curino, Evan P. C. Jones, and Sam

Madden. Lookup tables: Fine-grained partitioning for distributed
databases. In ICDE. IEEE Computer Society, 2012.

[16] Phansalkar, Shraddha, and Swati Ahirrao. "Survey of data partitioning
algorithms for big data stores." In 2016 Fourth International Conference
on Parallel, Distributed and Grid Computing (PDGC), pp. 163-168.
IEEE, 2016.

[17] Huang, Qun, and Patrick PC Lee. "Toward high-performance distributed
stream processing via approximate fault tolerance." Proceedings of the
VLDB Endowment 10.3 (2016): 73-84.

[18] Fu, Xinwei, et al. "Edgewise: a better stream processing engine for the
edge." 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19). 2019.

[19] Zhao, Xinwei, et al. "A taxonomy and survey of stream processing
systems." Software Architecture for Big Data and the Cloud. Morgan
Kaufmann, 2017. 183-206.

[20] Alshamrani, Sultan, et al. "High availability of data using Automatic
Selection Algorithm (ASA) in distributed stream processing

97 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

systems." Bulletin of Electrical Engineering and Informatics 8.2 (2019):
690-698.

[21] Elgendy, N. and Elragal, A., 2014. Big data analytics: a literature review
paper. s.l., Springer, cham, pp. 214-227.

[22] Zhong, R.Y., Newman, S.T., Huang, G.Q. and Lan, S., 2016. Big Data
for supply chain management in the service and manufacturing sectors:
Challenges, opportunities, and future perspectives. Computers &
Industrial Engineering journal, pp. 572-591.

[23] Lv, Zhihan, et al. "Next-generation big data analytics: State of the art,
challenges, and future research topics." IEEE Transactions on Industrial
Informatics 13.4 (2017): 1891-1899.

[24] Siddiqa, Aisha, Ahmad Karim, and Abdullah Gani. "Big data storage
technologies: a survey." Frontiers of Information Technology &
Electronic Engineering 18.8 (2017): 1040-1070.

[25] Kamburugamuve, Supun, et al. "Survey of distributed stream processing
for large stream sources." Grids Ucs Indiana Edu 2 (2013): 1-16.

[26] Isah, Haruna, et al. "A Survey of Distributed Data Stream Processing
Frameworks." IEEE Access 7 (2019): 154300-154316.

[27] Abdullah, Mohammed B., and YazenS Sheet. "Refine Priority Queuing
Scheduling Algorithm By Applying Time Expired Packets
Algorithm." AL Rafdain Engineering Journal 20.2 (2012): 150-163.

[28] Kirsten Hildrum, Fred Douglis, Joel L. Wolf, Philip Yu, Lisa Fleischer,
and Akshay Katta,” Storage Optimization for Large-Scale Distributed
Stream Processing Systems,” ACM Transactions on Storage (TOS) TOS
Homepage archive Volume 3 Issue 4, February 2008.

[29] Nesime Tatbul, Stan Zdonik, John Meehan, Cansu Aslantas, Michael
Stonebraker, Kristin Tufte, Chris Giossi, Hong Quach,”Handling
Shared, Mutable State in Stream Processing with Correctness
Guarantees,”IEEE Data Engg.Bull ,2015.

[30] Antoniu, Gabriel, et al. "The Sigma Data Processing Architecture:
Leveraging Future Data for Extreme-Scale Data Analytics to Enable
High-Precision Decisions." (2018).

[31] Stonebraker, Michael, Uǧur Çetintemel, and Stan Zdonik. "The 8
requirements of real-time stream processing." ACM Sigmod
Record 34.4 (2005): 42-47.

[32] Sebepou, Zoe, and Kostas Magoutis. "Scalable storage support for data
stream processing." 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST). IEEE, 2010.

[33] Tatbul, Nesime, et al. "Handling Shared, Mutable State in Stream
Processing with Correctness Guarantees." IEEE Data Eng. Bull. 38.4
(2015): 94-104.

[34] Irina Botan, Gustavo Alonso, Peter M. Fischer, Donald Kossmann, and
Nesime Tatbu l,”Flexible and Scalable Storage Management for Data-

intensive Stream Processing,”ACM Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology,” Pages 934-945.

[35] Yi, X., Liu, F., Liu, J. and Jin, H., 2014. Building a network highway for
big data: architecture and challenges. IEEE Network journal, Volume
28, pp. 5-13.

[36] H. Eszter, 2015.Is bigger always better? Potential biases of big data
derived from social network sites. The ANNALS of the American
Academy of Political and Social Science journal, Volume 659, pp. 63-76

[37] Moga, Alexandru. "UpStream: Storage-centric Load Management for
Data Stream Processing Systems." Proceedings of the VLDB 2010 PhD
Workshop. VLDB, 2010.

[38] L. Chen and G. Agrawal, “Resource Allocation in a Middleware for
Streaming Data,” in Proceedings of the 2Nd Workshop on Middle ware
for Grid Computing. NY, USA: ACM, 2004.

[39] A. Tang, Z. Liu, C. Xia, and L. Zhang, Distributed Resource Allocation
for Stream Data Processing. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 91–100].

[40] Motwani, Rajeev, et al. "Query processing, resource management, and
approximation ina data stream management system." CIDR 2003.
Stanford InfoLab, 2002.

[41] Tang, Xiang-Hong, et al. "Storage Optimization for Query Processing
over Data Streams." Journal of Chongqing University 9.2 (2010): 79-92.

[42] Affetti, Lorenzo, Alessandro Margara, and Gianpaolo Cugola.
"FlowDB: Integrating stream processing and consistent state
management." Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems. 2017.

[43] Nguyen, Nhan, et al. "Arion: A Model-Driven Middleware for
Minimizing Data Loss in Stream Data Storage." 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD). IEEE, 2017.

[44] Cao, Yu, et al. "Es 2: A cloud data storage system for supporting both
oltp and olap." 2011 IEEE 27th International Conference on Data
Engineering. IEEE, 2011.

[45] Al-Shiakhli, Sarah. "Big Data Analytics: A Literature Review
Perspective." (2019).

[46] Golab, Lukasz, and M. Tamer Özsu. "Issues in data stream
management." ACM Sigmod Record 32.2 (2003): 5-14.

[47] Kallman, Robert, et al. "H-store: a high-performance, distributed main
memory transaction processing system." Proceedings of the VLDB
Endowment 1.2 (2008): 1496-1499.

[48] Cooper, Brian F., et al. "Benchmarking cloud serving systems with
YCSB." Proceedings of the 1st ACM symposium on Cloud computing.
2010.

98 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Background
	A. Need of Historic Data
	B. Open Issues of Storage Optimization
	1) Keeping most useful data: For distributed stream databases, to keep the most useful data is always a key to storage optimization. An efficient storage algorithm is needed to keep the useful data and delete the obsolete data (retention or expired) from t�
	2) Integrate stored and streaming Data (join live data): Careful management of live and historic data is a basic requirement for archive storage optimization. The routine task for most of the stream processing applications (on-line data mining) is a compar�
	3) Performance of storage manager: The stream databases should have the capability to store, access and modify the state information efficiently and effectively. One of the primary concerns for any stream database is its storage and management. The protoco�

	III. Literature Review
	IV. Related Works
	A. Resource Management
	B. Storage Optimization

	V. Proposed Algorithm
	A. Problem Defnition
	B. Enhanced Time Expired Algorithm (ETEA)
	C. Our Contribution

	VI. Algorithm Details
	VII. Performance Evaluation
	A. Experimental Setup
	1) Workload: In all experiments, we have used synthetically generated tuples (Streams). The input rates were set according to the desired level of threshold to be exerted on the system. The input is ordered by a time-based factor that decides the initial t�
	2) Performance Metrics: We have primarily used two performance metrics in our experiments:

	B. Results

	VIII. Conclusion and Future Work

