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Abstract—Besides, centralized managing, processing and 
querying, the storage is one of the important components of a big 
data management. There is always a huge requirement of storing 
immense volumes of heterogeneous data in different formats. In 
big data steam processing applications, the storage is given a 
priority and always plays a big role in historical data analysis. 
During stream processing, some of the incoming data and the 
intermediate results are always a good source of future samples. 
These samples can be used for the future evaluation to eliminate 
the numerous mistakes of storing and maintaining the big data 
streams. Hence, a big data stream application requires an 
efficient support for storage of historical queries. The 
researchers, scientist and academicians are working hard to 
develop a sophisticated mechanism that is needed for storage to 
keep the most useful data for the future references by means of 
stream archive storage. However, a stream processing system 
can’t store the whole incoming stream data for future references. 
A technique is needed to get rid of the expired data and free the 
space for more incoming data in an archive storage. Hence 
keeping in view, the storage space limitation, integration issues 
and its associated cost, we try to optimize the stream archive 
storage and free more space for future data. The proposed 
enhanced algorithm will help to delete the obsolete data 
(retention or expired) and free the space for the new incoming 
data in a distributed platform. Our paper presents an Enhanced 
Time Expired Algorithm (ETEA) for stream archived storage in 
a distributed environment for removing the obsolete data based 
on time expiration and providing a space for the new incoming 
data for historical data analysis during the skew time (Hot 
Spots).We also evaluated the efficiency of our algorithm using the 
skew factor. The experimental results show that our approach is 
98% efficient and fast than other conventional techniques. 
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I. INTRODUCTION 
Big data management is a way of centralized storing, 

managing, processing and querying the huge volume of 
different available data in numerous formats [1-5]. The 
traditional database technologies had failed to manage and 
control the flow of data which is overloaded with huge volume, 
variety, velocity and variability. However, alternative database 
technologies have played a vital role in solving “big data” 
issues of managing and processing. Their contribution has 
played a vital role in overall big data management [6]. As we 
know, big data computing has a huge demand for storage and 
processing [7]. Two types of processing can be done on big 
data. The first one is Batch processing and the Second one is 
Non-Batch processing of big data (real-time processing) [1] [8] 

[9], and the Non-Batch processing includes the real-time OLTP 
online transaction processing database management DBMS 
systems. They possess variable workloads, spike in traffic and 
are always dependent on shared nothing architecture besides 
using the main memory for the processing and scalability. 
Hence, they are best to maintain the acid guarantee of the 
transactions [9-16]. Stream processing engines (SPEs) are the 
engines that can generate huge and big data streams 
continuously on the fly in a cluster of commodity servers. 
Stream computing involves the computations for the analytic 
purpose. Stream processing engines (SPEs) [17] have achieved 
broad adoption in research and industry [18-19] and mainly 
focus on scalable cloud computing. In distributed stream 
processing systems, most of the stream-based applications are 
distributed naturally [20]. One of the difficult problems that 
need to address in distributed stream processing systems is a 
storage. The large size and a variety of data always creates a 
hurdle for an efficient big data storage [21-23]. Data Storage is 
one of the crucial processes of big data analytics for real-world 
applications. These real-world applications include scientific 
experiments, social networks, healthcare and e-business. Till 
now, only Amazon, Google, Apache and some companies had 
provided the big data storage solutions. However, the available 
big data storage technologies are not enough efficient in a 
sense to provide consistent, scalable, and available solutions 
for the continuously growing heterogeneous data [24]. 
Distributed Stream Processing Systems (DSPS's) has smartly 
evolved to store discovered patterns, analyzed data, and 
extracted knowledge from different data processing stages. The 
Stored data must be useful data, which must be well controlled, 
organized and indexed along with metadata or external 
knowledge. The main purpose of storing the data is to get 
historical data for future verification and tuning purposes [25-
26]. The stored data is often used for later reference. There is 
always a capacity limitation associated with every archive 
storage system. None of the systems can store more data than 
its capacity. The capacity of each system is directly associated 
with cost. Therefore, a sophisticated mechanism is needed to 
find the obsolete data (retention or expired), delete that data 
and free space for more incoming data in archive storage. Our 
proposed algorithm will provide a solution for the space 
limitation for the stream archive storage by detecting and 
deleting the retention data and free the space for the new 
incoming stream data without adding more storage externally 
.The algorithm will be beneficial in a way to save the cost of 
extra storage and its associated issues of integrating. Our 
proposed algorithm will use the skew factor for the retention 
policy which will guarantee the strength of the approach. 
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Hence, we try to optimize the stream archive storage and 
evaluated the accessibility of our approach by implementing it 
with the YCSB benchmark. For our experiments, we have used 
synthetic data as stream data and has implemented it with H-
store. In our implementation, we have modified the Time 
Expired Packets Algorithm (TE) [27] for the optimization of 
the stream archive storage in a distributed setup. In summary, 
this paper makes the following contributions as 1) We discuss 
some of the open issues related to storage of big data streams in 
distributed stream processing systems and also elaborates 
storage optimization for archived data in a distributed streams 
databases (DSDBM’s) (Mentioned in Background Section). 2) 
We presented an Enhanced Time Expired Algorithm (ETEA), 
for stream archived storage in a distributed set of processing 
nodes. The algorithm will remove the obsolete data and will 
provide a space for the new incoming data for historical data 
analysis. 3) We also maintain the efficiency using Skew factor) 
in our experiments. 

The rest of this paper is organized as follows: In Section 2, 
is a background, Section 3 is the literature review, Section 4 is 
related works, Section 5 is the introduction of our proposed 
algorithm, Section 6 is our detailed algorithm (Enhanced Time 
Expired Algorithm (ETEA), followed by Section 7 will depict 
our evaluation and Section 8 which gives our conclusion and 
future works. 

II. BACKGROUND 
Data Storage for stream processing is an important aspect 

for future enhancement. In big data steam processing 
applications, the incoming data and intermediate results may 
need to be stored to enable future analysis [28]. These 
applications require genuine support for storage and for 
historical queries. These required efforts help them for future 
analysis of historical data [29]. A lot of work has been done to 
optimize the stream archive storage. We have classified the 
stream archive storage optimization into three main 
subcategories which include 1) keeping most useful data. 
2) Integrate Stored and Streaming Data (join live data). 
3) Performance of storage manager. 

A. Need of Historic Data 
Storage of Big Data Streams in Distributed Stream 

Processing Systems plays an important role in today’s online 
stream world. One of its important pillars includes stream 
archive storage. As we know there is always a need for the 
storage of the intermediate data of stream processing in 
distributed setups for the enhancements, verification, future 
references and for tuning purposes [30]. Hence there is always 
a needed to keep the most useful data efficiently [28] for future 
analytics. 

We try to highlight some of the open issues related to 
archive storage optimization. 

B. Open Issues of Storage Optimization 
1) Keeping most useful data: For distributed stream 

databases, to keep the most useful data is always a key to 
storage optimization. An efficient storage algorithm is needed 
to keep the useful data and delete the obsolete data (retention 
or expired) from the archived storage. The optimizing protocol 

should be simple and automatic in nature. There is a huge 
need to keep the most useful data in order to get future 
analysis from the least stored streams [27-28] for 
enhancements. 

2) Integrate stored and streaming Data (join live data): 
Careful management of live and historic data is a basic 
requirement for archive storage optimization. The routine task 
for most of the stream processing applications (on-line data 
mining) is a comparison of live data with historical data. 
These applications need seamless switching of both past and 
present data for the purpose of comparison within the same 
application. Hence, a uniform language is needed to deal with 
either type of data for seamless integration. Moreover, there is 
a demand [30-33] for automatically switching from historical 
to live data without manual intervention. 

3) Performance of storage manager: The stream 
databases should have the capability to store, access and 
modify the state information efficiently and effectively. One 
of the primary concerns for any stream database is its storage 
and management. The protocols related to storage managers 
are regarded as an indictment of determining and preserving 
the storage for the future. Most of the research works 
pertaining to stream storage have been on the issues related to 
the storage manager .On the other hand, storage optimization 
and related techniques for live stream databases are a 
comparatively new arena of the storage and that too when its 
distributed. Thus, maintaining storage becomes a significant 
mission. Although storage has continued to be studied for 
decades, its maintenance is still at the infant stage of research. 
We have studied and mentioned some works related to archive 
storage optimization and some related work with references 
for further understanding to shape and enhance the basic 
protocols of a storage manager, its optimization and related 
algorithms [8][34]. 

The capacity limitation of the archive storage system is 
directly associated with the extra cost and integration issues. 
Those solutions which are dependent on cost are never 
considered as an idle solution. Therefore, we provide an 
alternate solution to storage capacity issue. The feasible 
solution is to delete the obsolete data (retention or expired) of 
archives and make a room for the new data for further future 
analysis. Conventional methods like First in First Out (FIFO) 
and other related solutions are less efficient to provide the best 
solution when the stream databases are under skew time (Hot 
tuples-when most of the users and servers are on max 
utilization). 

III. LITERATURE REVIEW 
There is substantial literature available for the data storage 

for stream processing related to big data applications. Some of 
the research work done in the field of data storage management 
aims to improve storage, integrate the live data with archive 
data and provide correctness guarantee for big data stream 
processing. 

In [8], Fred Douglis et al. proposed a storage system that 
optimizes not only reading and writing but the creation and 
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deletion as well. Efficiency is achieved, by automating deletion 
based on relative retention values rather than requiring data to 
be deleted explicitly by an application. It works mostly on 
retention value functions, which effectively assign each data 
object a value that changes over time. In paper [28], Kirsten 
Hildrum et al. proposed an effective scheme for optimizing the 
placement of data within a distributed storage subsystem 
employing retention value functions. The goal is to keep the 
data of the highest overall value, while simultaneously 
balancing the read load to the file system. In paper [29], 
Nesime Tatbul, et al. proposed an S-Store which is designed to 
address the correctness aspect of a streaming application. In the 
paper, they prove the only way to achieve good performance is 
by tightly integrating storage management with the streaming 
infrastructure which supports correctness without serious 
performance degradation. The paper represents the exactly one 
processing, exactly one delivery, and transactional workflows. 
In paper [34], Irina Botan et al. proposed an optimized general-
purpose storage management interface based on the parameters 
from the application requirement at different granularities. 
Using the interface and SMS (Storage Manager for Streams) 
can generate a customized storage manager for streaming 
applications. It uses information about the access patterns of 
streaming applications to tune and customize the performance 
of the storage manager. It efficiently handles time-critical tasks 
such as managing internal states of continuous query operators, 
traffic on the queues between operators, as well as providing 
storage support for shared computation and archived data. In 
Paper [8], Fred Douglis et al. proposed a storage system that 
optimizes not only the reading and writing but the creation and 
deletion as well. The papers use the concept of the relative 
value to retain the data items rather than deleting the data 
explicitly. 

Therefore, keeping in view the necessity and the 
importance of the archive storage in distributed setups. It seems 
that there is a need for more research and a lot of work needs to 
be done for the archive storage and its optimization. We have 
designed an algorithm for the distributed stream processing 
engines which will help to optimize the stream archive storage 
by removing the expired data and free more space for incoming 
streams for the purpose of historical analysis during the skew 
time (hot tuples). 

IV. RELATED WORKS 
For research and a commercial purpose, there are many big 

data storage and analysis models available in a market. The 
challenges of big data storage are widely understood. At 
present, a lot of work is going on related to datacenter storage. 
Storage and processing through different data centers are 
growing as fast as the big data itself. A huge amount of data is 
created by a variety of users and devices. For storing and 
processing big data, the data center is always needed to 
establish network infrastructure which helps to gather this 
rapidly generated data [23]. In another work [35], the authors 
highlighted and classify the components of the network that 
must be established for better storage and communication in 
data centers such as the original data network, the bridges and a 
datacenter. Another related study [36], identifies the issues in 
using big data through specific locations. 

We have categorized some of the related works especially 
related to resource management and storage optimization for 
easy understanding. 

A. Resource Management 
A lot of work has been done for storage load management 

of data stream processing systems. The proposed system uses 
the up-date queues for minimizing memory consumption and 
the impact of overload on QoS [37]. Another related research 
for resource allocation in the stream database includes the 
minimum spanning tree-based algorithms to discover and 
allocate the resources to meet real-time constraints [38].One 
more connected work aims to maximize the quality of the 
results in stream processing systems using overload 
management concept. This concept of overload management 
related to distribution in stream processing system uses the 
resource allocation technique. That includes the distributed 
algorithms for reallocating the system resources (i.e., CPU) 
based on their utilization [39]. Another related contribution 
[40] handles the query optimization, scheduling, resource 
allocation and especially the source availability. The proposed 
system interacts between resource availability and the 
approximation. 

B. Storage Optimization 
Similarly, researchers investigated the storage optimization 

for data streams. One of the works includes a sluggish ladder 
queue that handles the long-running queries/continuous queries 
in real-time over a high-volume of data streams. Hence focuses 
on the latest data and control infinite streams overflow [41]. 
Some of the related work includes model integration of 
distributed stream processing system with state management. 
The model transitionally extends with sub-graphs, integrity 
constraints and consistency guarantees [42]. Some of the 
similar contributions include a high-performance stream 
processing engine I/O architecture which allowed the 
simultaneous persistence and communication of live and past 
(retrieved from storage) data streams [32]. Another related 
work [43] includes a system which constructs models and 
algorithms for overload prediction for heterogeneous data. The 
system scales up the performance and reduces the data loss 
without allocating additional servers. 

Moreover, there has been a lot of works that deal with 
storage and is related to relational databases, data marts, data 
warehouses, and longer-term storage using Extract, Transform, 
Load (ETL) or Extract, Load, Transform (ELT) tools [15][21]. 
Another related work includes the development of an elastic 
cloud data storage system to support both OLTP and OLAP 
workloads efficiently within the same storage and processing 
system [44]. Enterprise Data Warehouse (EDW) traditional 
environment and its association with the data storage is another 
related work that needs a genuine consideration to enhance the 
big data storage [11][45]. Lastly, a review paper [46] has 
elaborated many data streams processing systems in depth that 
include their data models, continuous query processing, 
languages and query optimization. 

V. PROPOSED ALGORITHM 
This section describes the Enhanced Time Expired 

Algorithm based on a skew time (Hot Spots) by utilizing the 
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skew factor, generation time and expired time of the stream 
data. 

A. Problem Defnition 
The problem of optimizing the archive storage in 

distributed stream databases is one of the big issues to tackle. A 
big concern in-stream archive storages is its limited storage 
space. One way to get rid of this problem is to increase the 
archive memory but that too has its limitations of cost and 
integration issues. Another way is to delete the expired data 
and make space for the new incoming streams. If there will be 
more space, more incoming data can be stored for future 
verification and tuning purposes. The storage space limitation 
has a direct impact on the storage and effects indirectly to 
historic data storage. Lots of techniques have been used to do 
the same work. Even a normal deletion technique would be an 
idle solution to free up the previous retention data and make 
space for the new incoming data based on normal retention 
policies as mentioned in [8]. However, these conventional 
solutions are not effective when it comes to the peak time 
(when most of the users are active and huge data is coming in). 
To our knowledge, none of the techniques had worked under 
the skew time. So a mechanism is needed which should 
automatically detect and delete the expired data and free the 
archive space for more incoming data for future historical data 
analysis under the skew time (Hot tuples-when most of the 
users and servers are on max utilization). 

The problem of stream archive storage during peak hours 
needs a genuine optimized solution to automatically manage 
the storage space for huge incoming data by deleting the 
retention data and freeing up the space for huge incoming 
streams for historic analysis. 

Thus, we define our algorithm to solve the problem of 
detecting and deleting the expired data based on the prescribed 
retention policy (Rp) which we keep 4 in our test environment 
(quarterly-4). A skew factor as Sf = {states*}, which includes 
the peak time of skews. Its value can be +ve or -ve based on 
the server and user load. The Tg* denotes a Time Generation 
of the stream and Et* denotes the Expire Time based on the 
retention policy. When retention value is found, the data is 
deleted and if not, the data is retained, and no action is taken 
till loop checks and continues to the whole archived storage. 

B. Enhanced Time Expired Algorithm (ETEA) 
The Enhanced algorithm is derived from [27], a skew factor 

in addition to the generation time and the expired time of the 
streams is added. The skew factor represents the peak mode 
and the expired time represents the maximum allowable time 
for the stream to be available in an archive (based on the 
retention policy). The algorithm helps to recognize and remove 
the obsolete data (retention or expired) so as to free the space 
for more incoming data for archive storage in the future for 
historical data analysis. Therefore, it optimizes the archive 
storage. Based on positive and negative value criteria of time 
retention, the algorithm will discard expired data which is of no 
benefit and has occupied the archive space. Thus, freeing the 
archive's storage for more new incoming data. 

The overview of an Enhanced Time Expired Algorithm 
(ETEA) is represented as: 

Algorithm: Enhanced Time Expired Algorithm (ETEA) 
1: is skew ← true // check for skew factor Sf 

2: Get the “time generation” and generate “expire time” (Tg 
and Et) 

3.Calculate the remaining Time Rt //based on retention policy 
4: while skew do 
5: Remove the retention stream //delete the stream based on 
retention policy 
6: Update the value of skew 
7: if not skew then 
8: return false//no deletion done 
9: end if 
10: end while 
11: return true//the system is still checking 

C. Our Contribution 
The main contribution of this paper is that we propose an 

enhanced algorithm, called Enhanced Time Expired Algorithm 
(ETEA), to detect and delete the expire data automatically in a 
stream archive storage for distributed setup. Our algorithm is 
efficient and effective in detecting and deleting the retention 
data and free the space for new storage for future verification 
and tuning purposes. 

During a stream processing in a distributed environment 
(distributed set of processing nodes) commonly known as 
Distributed Stream Processing Systems (DSPS's) for example 
OLTP, when a skew factor (Sf) is found, which represents the 
peak time for incoming data from different types of online 
servers and users. The proposed algorithm gets the Time 
Generation and Expire Time (Tg and Et) for each stream using 
a function: Get Time Generation (Tg) and Get Expire Time 
(Et). The Tg= initial time of the stream and Et=Expired time or 
retention policy time (it might be monthly or quarterly)-in our 
case we take it as quarterly for a test environment. When Rt 
Expired is found, the algorithm destroys the data stream in the 
archive using the following function: DELETE=Stream. If no 
Rt Expired match is found, no action is taken, then a second 
stream in the loop (Lp) is checked for the Rt Expired values 
onwards. 

Our main contribution is our proposed algorithm for 
storage optimization (memory and cost efficient) and works 
efficiently during the skew time to find (detect) the expired 
data and delete the expired data based on the retention policy to 
release the memory for the new incoming stream data. 

VI. ALGORITHM DETAILS 
In this section, we explain the working of our proposed 

algorithm. As we know that many OLTP workloads are heavily 
skewed to “hot” tuples or ranges of the tuple. So, first, we try 
to identify the skew mode using the lightweight threshold 
mechanism based on several streams (transactions or stored 
procedures). For our experiments, we have assumed that if the 
maximum no of streams is 1000 per minute, we consider this 
as the maximum threshold. Once this threshold is achieved, a 
skew mode is triggered with a value representation. These 
values can either be 1 or 0 based on a condition whether the 
skew mode is true or false (+ve or -ve). If the value is found 
true, a skew factor is assigned with a timesheet which means 
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more space is needed for the incoming data flow of streams. Sf 
= { states*}=1 or 0.The initial values for Time Generation 
decide the Expire Time for the streams based on the retention 
policy of four (4) months in our experiments, which means 
4*30=120+2=(122) days. The data is deleted automatically 
once this value is found on matching. The whole process is 
repeated and cross-checked for any missing values until it 
checks the whole archive storage. 

The Algorithm working is explained through below-
mentioned phases: 

• Phase 1: The working of the algorithm is based on the 
concept of checking for the skew factor (+ve/1 or -
ve/0). 

• Phase 2: Assigning the Time Generation and Expire 
Time for the streams. When the expired data is found, 
based on the retention policy, the long-stayed data is 
deleted automatically. 

• Phase 3: The data is checked again for all streams if no 
match values of Expiration Time is found, the checking 
proceeds until it checks the whole archive storage. 

The logic for (Sf) phase1: Sf = {states*}, which includes 
the peak time of skews. Its value can be +ve or -ve based on 
the server and user load. When the skew factor (Sf) is +ve, 
which represents the peak time during the online transactions 
of the distributed environment, the initial values are generated 
and set as 1 for +ve value and vice versa for 0 for -ve value. 

The logic for (Tg and Et) phase2: The Tg* gets the Time 
Generation of the streams i.e. their initial time. Therfore based 
on it, Et* gets the Expire Time from the retention value (which 
is based on its policy). We are using Expire time (4 months in 
case of our experiments). Hence in our case it is calculated as 
4*30=120+2=122 days. When this value (122) is found, the 
data is deleted automatically and if not, the data is retained, and 
no action is taken. Therefore, data of more than 122 days is 
deleted automatically. 

The logic for (Lp) phase3: The data is checked again for all 
streams using a loop function, if no match values of Expiration 
Time is found, no action is taken, and the checking proceeds 
till it checks the whole archive storage is checked. 

VII. PERFORMANCE EVALUATION 
In this section, we provide an experimental evaluation of 

the stream archive storage techniques using our proposed 
algorithm. The main goals of our experimental study are as 
follows: 

• to show working of our Enhanced Time Expired 
Algorithm (ETEA) for stream archived storage in a 
distributed environment. The algorithm uses a skew 
factor based on hot spots and is compared against the 
state-of-the-art retention policy like conventional 
approaches First in First Out (FIFO), in terms of storage 
optimization (memory and cost efficient) for stream 
archive storage. 

• to evaluate how effectively we can manage the memory 
space during the skew time. 

We first investigate the impact of skews of incoming data 
rates. We found that there is a need for more archive storage 
for the stream data during peak time. Second, we consider the 
need for data deletion for skew. If more data will be deleted 
automatically, more space will be free for the future tuning 
purpose of historic data in archive stream storage. Thirdly, we 
detect the data automatically using our retention policy in the 
proposed algorithm. Fourthly, the expired data was deleted, 
and more space was available free. We can see from Fig. 1 and 
Fig. 2 that our algorithm had increased the effectiveness as 
well as memory optimization for stream archive storage. We 
observe all differences in performance (in terms of skew time 
and normal incoming data). Nevertheless, the conclusion is that 
we start with skew formulation, observe the impact of skews, 
provide the retention policy, detect the expired data to be 
deleted and lastly delete the expired data. Finally, we compare 
our proposed algorithm with one of the conventional 
approaches First in First Out (FIFO). 

In Table I, we can see Time results for data deletion, which 
keeps increasing with the passage of time and Table II 
represents the values for Space (memory) results for data 
deletion). 

Within a time of 3ms, the deletion was done with a value of 
1 tuple deleted with an efficiency of 30.3 percent. The 
efficiency keeps increasing and decreasing with the time slots 
until it verifies the whole deletes of memory chunk (memory 
block). 

In Table II, with the first deletion of 1 tuple, a space of 0.3 
bits was released i.e. space(memory). The value of efficiency 
goes on increasing depending upon the memory released. The 
rest values of the table represent the respective space released 
with the efficiency. 

In Fig. 1, we can see that in less time, the efficiency has 
increased, while as in Fig. 2, during the same time, more 
expired data is deleted, hence releasing the memory(space).In 
both cases (Fig. 1 and Fig. 2), which are related to efficiency 
improvement and memory improvement, the frequency is 
common. The Node values represent the nodes numbers, the 
time is represented in milliseconds (ms) and the deletion is 
measured in percentages in aggregate. 

TABLE I. BLOCK WISE TIME RESULTS FOR DATA DELETION 

 Time Deletion Efficiency 

N
od

e 
V

al
ue

 1.00 3ms 1.00 30.3 

2.00 6ms 2.00 60.3 

4.00 1ms 0.3 10.1 

6.00 9ms 3.00 98.0 

TABLE II. BLOCK WISE SPACE (MEMORY) RESULTS FOR DATA DELETION 

 Deletion Space (Memory) Efficiency 

N
od

e 
V

al
ue

 

1.00 1.00 0.3 30.3 

2.00 2.00 0.6 60.3 

4.00 0.3 0.1 10.1 

6.00 3.00 6.0 98.0 
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Fig. 1. Efficiency vs Time. 

 
Fig. 2.  Efficiency vs Memory (Data Deleted). 

Next, we will first describe our experimental setup, then we 
will present our results. 

A. Experimental Setup 
We implemented our ETEA algorithm as part of the H-

store [47], mostly used for the OLTP workload. We monitor 
the flow of skews using its storage manager component and the 
memory usage was taken into consideration. We configured the 
monitoring component of H-store processing system to check 
the skew mode (hot tuple) and monitor the flow of incoming 
data into the archive storage. 

In all our experiments, we have used a double-node set up 
for running on a window on an Intel Quad-Core Intel Xeon 
3360 2.8GHz processor and 8GB of memory. To understand 
the impact of skew on an OLTP DBMS, we conducted a basic 
benchmark using the YCSB workload [48] on four (4) node H-
Store clusters. 

For this setup, we used a database with 2 million tuples 
(Each 1KB in size (∼2GB in total) that are deployed on two (2) 
partitions. 

1) Workload: In all experiments, we have used 
synthetically generated tuples (Streams). The input rates were 
set according to the desired level of threshold to be exerted on 
the system. The input is ordered by a time-based factor that 
decides the initial time of the streams and accordingly using 
the initial time. The expired time is calculated based on the 
retention value. The number of values can be altered and can 

range from 122 to any value depending on the experiment. 
The actual initial value of the streams does not have any 
significance, it is only what we measure in the experiments. 
To be able to control the processing cost of this query, we use 
the retention value to free the space which directly affects the 
cost of maintaining the more space unnecessarily for the 
expired data. 

2) Performance Metrics: We have primarily used two 
performance metrics in our experiments: 

• Effectiveness during Skews: Average effectiveness is 
computed on streams based on the no of tuples deleted 
and then, an overall average is computed across all the 
skews, which is measured in seconds. 

• Storage (Memory optimization): Maximum memory 
deleted for the stream archive is recorded between 
output deliveries. Then we compute a maximum overall 
memory calculation based on deletion across a given 
run. Memory deleted is measured in the number of 
deleted tuples. 

B. Results 
In Fig. 1 and in Fig. 2 we can see that the effectiveness, as 

well as the memory optimization for the stream archive storage 
during the skew time. The effectiveness is increased due to a 
continuous deletion of the expired data. The situation looks 
improved for all possible scenarios. As expected, during the 
skew time, the more expired data is removed, the more archive 
storage memory is released. The reason for this is the response 
to streams (keep it or delete it) method of our proposed 
algorithm, which avoids the need for redundancy in rechecking 
the memory chunk again. This result clearly shows that 
deleting expired data increase the archive storage for the new 
incoming streams. Our approach is 98% efficient and fast than 
other conventional techniques like First in First Out FIFO 
(which cannot be used for skew workloads). We have 
benchmarked our algorithm against FIFO in a skew 
environment. We had concluded with the results which prove 
our proposed algorithm is well suited for the skews with 98% 
efficiency and memory optimization. The details of the 
benchmark are mentioned. 

Table III represents the detailed information about the 
ETEA. We observe the efficiency of ETEA (which works 
under the skews). We found that in less time, more expired 
data is deleted, and 98% efficiency is achieved which was not a 
case with the FIFO showing in Table IV. Fig. 3 and Fig. 4 
presents the graphical representation of the efficiencies 
between the two algorithms. 

TABLE III. EFFICIENCY UNDER SKEWS 

Enhanced Time Expired Algorithm (ETEA) 

 Time Deletion Space 
(Memory) Efficiency 

N
od

e 
V

al
ue

 3.00 2 28.6 28.6 98.0 

5.00 6 71.4 71.4 96.0 

6.00 9 100.0 100.0 98.0 
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TABLE IV. EFFICIENCY WITHOUT SKEWS 

First in First out (FIFO) 

 Time Deletion Space 
(Memory) Efficiency 

N
od

e 
V

al
ue

 3.00 2 18.0 28.6 43.6 

5.00 6 71.4 71.4 54.0 

6.00 9 100.0 100.0 54.0 

 
Fig. 3. Efficiency of ETEA. 

 
Fig. 4. Efficiency of FIFO. 

VIII. CONCLUSION AND FUTURE WORK 
In this paper, we presented an algorithm, Enhanced Time 

Expired Algorithm (ETEA) for the distributed stream 
databases, which will help to optimize the stream archive 
storage and will detect and delete the expired data. Hence it 
provides the free space for new incoming streams for the 
purpose of historical data analysis during the skew time (hot 
tuples) in a distributed platform. Extensive evaluation on four 
(4) node cluster demonstrates the superiority of the approach 
compared to normal prior efforts which doesn’t include the 
skew time (conventional retention techniques like First in First 
Out (FIFO). Hence, our solution is fully optimized based on 
effectiveness of memory and cost efficient factors of storage. 

In the future, we will try to apply the other retention 
policies by using a machine learning algorithm (time series) to 
enhance the effectiveness and the performance of the stream 
archive storage. In our next series of optimizing the stream 
archive storage, we plan to design an architecture that will 
integrate the live data with historic data. Furthermore, we can 
also try the Pinwheel scheduling algorithm and Reduce-Max 
algorithm for the best results in our future experiments. 
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