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Abstract—The improvement in mobile computing techniques 

has generated massive trajectory data, which represent the 

mobility of moving objects like vehicles, animals, and people. 

Mining trajectory data and especially outlier detection in 

trajectory data is an attractive and challenging topic that 

fascinated many researchers. In this paper, we propose a 

Clustering-Based Trajectory Outlier Detection algorithm (CB-

TOD). The proposed algorithm partitions a trajectory into line 

segments and decreases those line segments to a smaller set 

(Summary-trajectory SS(t)) without affecting the spatial 

properties of the original trajectory. After that the CB-TOD 

algorithm using a clustering method to detect the cluster with the 

smallest number of segments for a trajectory and a small number 

of neighbors to be sub-trajectory outliers for this trajectory. Also, 

our proposed algorithm can detect outlier trajectories in the 

dataset. The main advantage of CB-TOD algorithm is reducing 

the computational time for outlier detection especially for big 

trajectory data without affecting the efficiency of the outlier 

detection results. Experimental results demonstrate that CB-

TOD outperforms the state of art existing algorithms in 

identifying outlier sub-trajectories and also outlier trajectories in 

real trajectory dataset. 

Keywords—Data mining; outlier detection; trajectory data 

processing; clustering 

I. INTRODUCTION 

The various advances in GPS devices supported collecting 
an enormous number of moving objects data easily and 
rapidly. Therefore, mining of these trajectory data is 
insistently required to reveal and discover some unknown 
insights that could be employed to obtain intelligent 
transportation systems and facilitate smart cities' life. 
Generally, outlier detection in data mining relates to 
identifying an object that is incompatible with the other 
objects [1]. In mining of moving objects database, Trajectory 
Outlier Detection (TOD) is an important research topic. An 
outlier trajectory (anomalous) is a trajectory (or a segment of 
trajectory) that represent different characteristics than the 
majority trajectories in terms of similarity metrics [2-5]. 
Outlier segments in a trajectory are different segments from 
the other segments in the same trajectory as presented in [6], 
but the outlier trajectory is a trajectory having further few 
neighbors [4]. The identification of unusual trajectories has 
great importance in several applications. A popular application 
of detecting abnormal trajectories is the meteorological 
monitoring of typhoons. If we can identify unexpected 
variations in a typhoon path, like a variation in direction, we 
can announce an early warning for the reduction of casualties 
and property injuries as quickly as possible [7]. Also, 
identifying moving objects trends which may be events, 

represented by a group of animal moving objects in a specific 
time that does not conform to a familiar pattern, is essential 
for detecting animal abnormal habit and attracts the attention 
of biologists[6]. These applications are behind our motivation 
work presented in this paper. Outlier detection algorithms can 
be classified into four categories: distribution-based, distance-
based, density-based and clustering-based [8]. 

Notwithstanding the value of trajectory outlier detection, 
especially detection sub-trajectory outliers, few research 
articles discussed this problem. Lee et al. [6] proposed a 
partition-and-detect framework (TRAOD) for detecting 
outlying sub-trajectories. TRAOD consists of two phases: 
partitions trajectories into segments, and then detects the 
outliers. In the partition phase, TRAOD separates each 
trajectory into a set of line segments. In the detection phase, 
density and distance-based measures employed to identify 
outlying sub-trajectories. Further, Zhang et al. [4] proposed 
the iBAT algorithm utilizing the isolation mechanism to 
distinguish outlier trajectories. Also, iBAT utilized a few in 
number and different than the majority as usual features of 
abnormal trajectories. However, the outlier trajectories 
recognized using the iBAT algorithm, but sub-trajectories 
outliers ignored. 

Distinctive from static data, a trajectory may be long and 
has complicated characteristics. Hence, implementing the 
computations on the complete trajectory as a fundamental 
computational unit, it is presumably neglecting to detect local 
or global outlying partitions that may be essential for various 
applications. 

Example 1: Suppose having five trajectories TR1, TR2, 
TR3, TR4, and TR5 as shown in Fig. 1. We observe that the 
thick part in Tr3 is an outlying sub-trajectory as it is different 
from the remaining partitions in the trajectory. Contrarily, if we 
compare the whole trajectory with its neighbors we can neglect 
these partitions because the deviations are averaged over the 
whole trajectory; so, the overall behavior of the trajectory TR3 
appears to be similar to those of the neighboring trajectories. 

 

Fig. 1. Example of Sub-Trajectory Outlier. 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 11, No. 5, 2020 

134 | P a g e  

www.ijacsa.thesai.org 

Our proposed algorithm employs a partition-and-group 
framework for clustering trajectories [9] with some 
enhancements to reduce the computational cost. In our 
methodology, the coreset concept proposed in [10] used but 
without removing any partitions from trajectory. Basically, 
after partitioning the trajectories into a collection of line 
segments, these line segments decreased to a representative 
less set of lines without adjusting the length of the original 
trajectory (where the length of trajectory is the summation of 
the lengths of its line segments). After that, trajectories’ 
partitions clustered employing a density-based spatial 
clustering of applications with noise (DBSCAN) clustering 
algorithm [11]. Density-based clustering methods proper for 
clustering a set of line segments as it identifies clusters of any 
random shapes. Furthermore, it operates efficiently in a big 
trajectory dataset [11]. Subsequently, the cluster with the 
fewest number of line segments for each trajectory in the 
dataset detected. If this cluster contains line segments that 
have inadequate neighbors, then the line segments of a 
trajectory in this cluster recognized outlier line segments for 
this trajectory. Moreover, if a trajectory contains a 
considerable number of outlying partitions, then identified it 
as an outlier trajectory. 

In this paper, a Clustering-Based Trajectory Outlier 
Detection algorithm (CB-TOD) proposed. Our algorithm 
mainly consists of three phases: 

1) Partitioning and summarization phase: each trajectory 

partitioned into several partitions (i.e. line segments); after 

that these partitions are reduced to a smaller representative set 

without affecting the information contained in the initial 

trajectory. Eventually, we get a summarized set of all 

partitions for all the trajectories in the dataset. 

2) Clustering phase: similar line segments grouped to a 

cluster. Consequently, a cluster probably includes line 

segments from different trajectories. 

3) Outlier detection phase: after clustering, for each 

trajectory, we get the cluster which includes the smallest 

number of segments for that trajectory and a small number of 

neighbors, then mark this cluster as an outlier cluster for this 

trajectory and accordingly classify the line segments included 

in this detected cluster as outlier segments. Moreover, we 

define an outlier trajectory as the trajectory with a 

considerable number of outlying partitions. 

The main contributions in this paper are the following: 

 We employed a novel model that reduces the 
computational time by decreasing the size of the 
trajectories dataset and representing each trajectory 
with the Summary set of line segments that are 
adequate to define the trajectory behavior without 
missing the basic motion information. 

 A Clustering-Based Trajectory Outlier Detection 
algorithm (CB-TOD) proposed to detect outlier sub-
trajectories as well as whole outlier trajectories 
utilizing a clustering-based methodology. 

 Finally, experimental results are presented and 
demonstrate that CB-TOD outperforms existing 
algorithms in detecting both outlying sub-trajectories 
and outlier trajectories for real trajectory data. Also, the 
experiments confirm that CB-TOD reduces the 
computation time of outlier detection without affecting 
the accuracy of the outlier detection results. 

The rest of the paper is structured as follows. Section II 
presents an overview of related work. Section III describes the 
problem statement. Our proposed clustering-based trajectory 
outlier detection (CB-TOD) algorithm presented in 
Section IV. Section V presents our experimental results. 
Section VI concludes the work presented in the paper. Finally, 
in Section VII, we suggest directions for future work. 

II. RELATED WORK 

This section categorizes the previous research in trajectory 
outlier detection into two main directions: detecting sub-
trajectories outliers and detecting outlier trajectories. 

1) Sub-trajectories outlier detection: few research studies 

were conducted on the problem of detecting sub-trajectories 

outliers [6, 12-16]. TRAOD is the first approach for detecting 

outlying sub-trajectories[6]. TRAOD consists of two phases: 

firstly, partitions the trajectories and then detects the outliers. 

In the partition phase, TRAOD used the partition method used 

in TRACLUS algorithm[9]. Lee et al. [9] presented a 

TRACLUS algorithm that includes a partition-and-group 

framework for clustering trajectory data. TRACLUS consists 

of two steps: partitioning and grouping and used for clustering 

common sub-trajectories. In partitioning step, they applied the 

Minimum Description Length (MDL) principle[17] for 

partitioning a trajectory into a set of line segments. In the 

grouping step, they used a density-based clustering algorithm 

for grouping similar sub-trajectories. In the detection phase, 

TRAOD employed density and distance-based measures to 

detect outlying sub-trajectories. Despite the capability to 

detect outlying sub-trajectories and outlier trajectories, 

TRAOD suffered from computational time overhead as well 

as high complexity of O(n2). Later, Guan et al. [12] proposed 

R-Tree based Trajectory Outlier Detection (R-TRAOD) and 

used R-Tree to accelerate the process of outlier detection. Liu 

et al. [13] proposed a density-based trajectory outlier 

algorithm (DBTOD) and employed a density-based technique 

to detect outliers and solve the problems in TRAOD to detect 

outliers when a trajectory is local and dense. In[14] Daqing 

Zhang et al. proposed the iBOAT algorithm, which is an 

improvement on iBAT[4], to work in real-time data. Also, it 

determines which part(s) of a trajectory is an outlier. iBAT 

algorithm utilizes the isolation mechanism to identify the 

outlier trajectory. Despite, it can detect the outlier trajectories 

and neglect sub-trajectories outlier. In[15] Hao et al. proposed 

a probabilistic-model called DB-TOD, which models the 

drivers’ behaviors from a historical trajectory dataset and 

assist in detecting outlier trajectories. DB-TOD used an 

automatic feature correction mechanism for modeling driving 

behaviors efficiently. Also, it can identify both complete 
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outlier trajectories and partial ones. Recently, Yu et al.[16] 

proposed a TODCSS algorithm that depends upon the 

common slices sub-sequence for identifying trajectory outlier. 

Firstly, they compute a direction-code sequence of each 

segment in each trajectory. Secondly, they used the common 

slices sub-sequences as a distance measure between two 

trajectories. Finally, the slice outliers and trajectory outliers 

discovered based on the new computed distance. 

2) Trajectories outlier detection: many researchers 

studied mining in trajectories data to detect outlier trajectories 

[4, 18-20]. In [18] a framework called ROAM (Rule and 

Motif-based Anomaly Detection in Moving Objects) was 

presented. This framework introduces a motion-classifier for 

trajectory outlier detection. The motifs are a sequence of 

motion features with values related to time and location. The 

classifier distinguishes between an anomalous trajectory and a 

normal one. The main drawback on ROAM framework is that 

it requires labeled data for the classification process. Sabarish 

et al. [19] presented a trajectory Outlier Detection algorithm 

using Boundary (TODB). In TODB algorithm, they used the 

Convex hull algorithm to generate boundaries for trajectories. 

Furthermore, they exploit the ray casting algorithm as a 

classifier to judge a tested trajectory if its inside boundaries or 

not. The main drawbacks of TODB algorithm, because it used 

a classification method for categorizing trajectories, is that it 

required a labeled trajectories dataset that is rarely available. 

Also, it focuses on the whole trajectory and neglects the 

detection of sub-trajectories outliers. Moreover, Yong et al. 

[20] presented TOP-EYE algorithm that employed a decay 

function to identify the evolving trajectory in an advanced 

stage. TOP-EYE algorithm computes an outlying score for 

each trajectory in an accumulating method. 

CB-TOD differentiates itself from previous studies by 
using clustering methodology to detect outlier sub-trajectories 
and also outlier trajectories. Moreover, the proposed CB-TOD 
approach decreases the computational time of detecting 
outliers by reducing the line segments comprising a trajectory 
and considering only the most representative segments. 

III. PRELIMINARIES 

This section presents the preliminary concepts that will be 
used in the rest of the paper and formalizes the problem 
statement. 

A. Definitions 

Definition 1. A line segment motion angle θ is a 
representation of the segment's motion direction and it is 
measured as follows: 

θ = (      (
               

               
 )  (

   

 
)            (1) 

where the angle is defined by the two endpoints and the 
horizontal axis. 

Definition 2. A line segment Ꙇ is represented as (Pstart, Pend, 
θ) where Pstart is the start point of the segment, Pend is the end 

point of the segment, and θ is the motion angle of the segment 
and measured as in Equation 1. 

Definition 3. A Trajectory τ is an ordered set of line 

segments, i.e. τ = {Ꙇ 1, Ꙇ 2, Ꙇ 3,…. Ꙇm}, where m is the number of 

line segments in a trajectory τ. 

Definition 4. Given a trajectory τi ϵ S, a Summary 

trajectory of τi is a summarization representation of line 

segments in τ i. Such that: 

 If | τi |= m, then | SS(τi) |= n, such that n ≤ m 

 It mainly divides into two steps: 

a) Merge step: 

 if (θ i−1 – θi) < Φ1(accepted deviation angle) 

then  

 merge (Ꙇi, , Ꙇi-1) into one-line segment Ꙇi'∈ SS(τi). 

Where Len (Ꙇi') =Len (Ꙇi) +Len(Ꙇi-1) 

b) Add without merge 

 if (θ i−1 – θi)>= Φ2(deviation angle) 

 Then Ꙇi ∈ SS(τi) 

Definition 5. Outlying line segments of a trajectory τi 

called out (τi) is defined as following: 

 Given a cluster C contains similar line segments 
depends on a distance measure. 

 If C contains the minimum number of common line 
segments of this trajectory τi compared to other clusters 
(as the trajectory line segments may be divided among 
different clusters depends on the distance measure), 
and 

 If C has a small number of similar neighbors' line 
segments from different trajectories in the dataset of 
trajectories S. In another words, if the number of 
participating trajectories in this cluster (we called it 
Density(C)) is less than a threshold P. 

Definition 6. A trajectory τi is called outlier trajectory and 
added to outliers set if it contains a considerable length of 
outlying line segments. Such that: 

 
                                 

                                 
 ≥F            (2) 

where F is a threshold and its value depend on the length 
of a trajectory. 

B. Problem Statement 

Given a set of trajectories S = {   ,     · ·    }, our goal is 
to detect the outlying line segments in each trajectory and also 
detect outliers' trajectories Out = {O1, O2 · · · ,Onum } in a given 
dataset S. Our objective is minimizing the computation time of 
detection outliers by reducing the number of line segments in 
each trajectory to a representative once without losing the 
basic motion information of a trajectory. 
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IV. CLUSTERING-BASED TRAJECTORY OUTLIER DETETCION 

(CB-TOD) 

In this section, a description of the proposed approach 
Clustering-Based Trajectory Outlier Detection (CB-TOD) is 
presented. In CB-TOD we utilize the partition-and-group 
framework INTRODUCED IN [9]. Our approach is mainly 
divided into the following phases: 

1) Trajectory partitioning and summarization phase 

2) Clustering phase, and 

3) Outlier detection phase 

We explain these phases in the rest of this section. An 
overview of the proposed approach that abstracts the main 
steps in our algorithm is shown in Fig. 2. Also, Table I 
summarizes the main notations used in this paper. 

A. Partitioning and Summarization Phase 

This phase is a preprocessing phase for clustering. The 
input to this phase is the trajectories dataset S, then each 
trajectory in S is partitioned into a set of line segments by 
using the minimum description length (MDL) principle as 
presented in [9]. After that, a summary-trajectory set is created 
which is a summarization of a trajectory line segments. The 
coreset method is used for building the summary-trajectory set 
[10] with some modifications. In [10] the authors added to the 
coreset a segment with a high impact on the overall trajectory 
motion pattern and the segments with little effect in trajectory 
motion pattern are ignored; so, the trajectory-coreset is a small 
representative subset of the trajectory (that highly 
approximates the trajectory). In contrast, in our proposed 
approach a summary-trajectory includes segments that 
affected the motion pattern of a trajectory to a summary-
trajectory set. Also, segments with a little effect on the 
trajectory motion pattern will be merged with the preceding 
segments to get a single segment with the total length of the 
merged segments and appended it to a summary-trajectory set. 

A thresholds Φ1 used for the allowance deviation angle 
and Φ2 controls the deviation angle used in a summary-
trajectory set. Thus, given two consecutive segments Ꙇ1, Ꙇ2 with 
a motion directions θ1, θ2 respectively as computed by 
Equation 1. If (θ2 − θ1) ≥ Φ2 (deviation angle), then, Ꙇ2 is added 
to the summarized set, otherwise, if (θ2 − θ1) < Φ1 (accepted 
deviation angle), then we merge the two line segments (Ꙇ1, Ꙇ2) 

to get one-line segment (Ꙇ1´). Thus, we can consider the 
summary set as a representable set of the original trajectory 
whose total length is the same as the original trajectory length. 

Example 2: A trajectory τ consists of the following line 
segments (Ꙇ1, Ꙇ2, Ꙇ3, Ꙇ4, Ꙇ5, Ꙇ6) as shown in Fig. 3, A segments Ꙇ1, 

Ꙇ2, and Ꙇ3have the same motion direction and slope; so, we 
merge these segments into one-line segment and express it as 
Ꙇ1´ and add it to the summary set of this trajectory. So, a 

summary-trajectory set will now consist of (Ꙇ1´, Ꙇ4, Ꙇ5, Ꙇ6) line 
segments. The new set of line segments contains fewer 
segments which results in decreasing the comparison time for 
computing the distance between line segments. Furthermore, it 
does not affect the length of the resulting trajectory as shown 
in Fig. 4. 

TABLE I. LIST OF NOTATIONS USED IN THIS PAPER 

Symbol Definition 

S Trajectory dataset 

SS(τi) Summary set of line segments for a trajectory τi 

Len (Ꙇi) Length of line segment Ꙇi 

Φ1 accepted deviation angle 

Φ2 Deviation angle 

D A set of line segments of all trajectories in trajectories dataset S 

Density(C) Number of participating trajectories in a cluster C 

P 
Threshold of acceptable number of participating trajectories in 

this cluster 

F Threshold for acceptable outlying partition in a trajectory 

 

Fig. 2. Overview of CB-TOD. 

 

Fig. 3. Initial Trajectory Representation. 

 

Fig. 4. Trajectory-Summary Example. 

Algorithm 1 shows how to create the summary-trajectory 
set from the original trajectory. The input to the algorithm is 
the trajectory τ, the accepted deviation angle between 
segments Φ1 and the deviation angle between segments Φ2. 
The algorithm adds segments to the summary-trajectory ss(τ) 
if the absolute difference between its angular value and the 
preceding segment’s angular value is greater than or equal to 
the deviation angle. Also, if the difference between the 
angular value of the current line segment and the angular 
value of the preceding line segment is less than Φ1; then we 
extend the preceding line segment to be the result of merging 
the two segments (replace the end-point of preceding line 

Ꙇ1 

Ꙇ2 
Ꙇ3 

Ꙇ4 
Ꙇ5 

Ꙇ1´ Ꙇ5 Ꙇ4 
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segment with the end-point of the current line segment) and 
then we add this line segment to the summary-trajectory ss(τ). 

A summary-trajectory algorithm is used for optimization 
and speed-up the computations of the distance between line 
segments. 

Algorithm 1: Summary-trajectory (τ, Φ1, Φ2) 

Input: List of segments in the given trajectory τ, Φ1: the 

accepted deviation angle between segments’ angular values, 

Φ2 the deviation angle between segments 

Output: SS(τ): List of summary segments in τ 

1: SegPrevious= P [0]; 

2: SegCurrent= P [1]; 

3: SS(τ). Add (SegPrevious) 

4. SS(τ). Add (SegCurrent) 

5: foreach (Seg ∈ P(τ)) do 

6: SegCurrent= Seg; 

7: if (|(SegCurrent.angle − SegPrevious.angle)|< Φ1) then 

8: SS(τ). remove (SS(τ)size-1) 

9: SS(τ). add (SegCurrent)  

10: else  

11: if (|SegCurrent.angle − SegPrevious.angle)≥Φ2) then 

12: SS(τ). Add (SegCurrent); 

13: SegPrevious=SegCurrent; 

14: end 

15: output SS(τ); 
 

B. Clustering Phase 

In our proposed approach a Density-Based clustering 
algorithm (DBSCAN) is applied to the summary-trajectory 
line segments set resulted from the previous phase. DBSCAN 
is a good choice for clustering large spatial databases [11] as it 
can discover any cluster with arbitrary shape. Moreover, using 
DBSCAN in clustering does not require knowing the number 
of clusters in advance. DBSCAN algorithm uses two 
parameters Ɛ and MinPts (where Ɛ is a parameter specifying 
the radius of a neighborhood concerning some point and 
MinPts is the minimum number of points required to form a 
dense region) [11]. In clustering, we used the same distance 
function as in [9]. Given a set D of line segments of all 
trajectories in the trajectory's dataset S. DBSCAN algorithm is 
then applied on D for grouping close line segments according 
to the distance. Notice that a cluster contains line segments 
from multiple trajectories to prevent constructing clusters with 
line segments from only one trajectory [9]. Algorithm 2 
illustrates the pseudo code for S-Clustering (Summary-
Clustering) algorithm and is used for clustering all line 
segments D in our trajectory's dataset S. 

C. Outlier Detection Phase 

In this phase, we get the set of clusters from the previous 
phase. Each cluster contains line segments that are close to 
each other. A cluster that includes the smallest number of 
segments for a trajectory and also has an insufficient number 
of neighbors is considered as an outlier cluster of this 
trajectory. Consequently, the line segments introduced in this 
detected cluster are classified as outlier segments. Moreover, 
the outlier trajectory is a trajectory that holds an observable 
length of outlying segments. Algorithm 3 describes a 

Clustering-Based Trajectory Outlier Detection Algorithm 
(CB-TOD). As demonstrated in algorithm 3, CB-TOD 
algorithm divides into two steps; firstly, we get outliers 
segments in each trajectory using clustering. Secondly, getting 
the outliers trajectories in the dataset by using outliers' 
segments. We sum the lengths of outlier segments of this 
trajectory and compared them to the total length of the 
trajectory as described in definition 6. 

Algorithm 2: S-Clustering (summary clustering algorithm) 

Input: A set of trajectories S = {   ,     · ·   } 

Output: A set of clusters contains partitions segments for 

trajectory dataset 

 C = {C1, C2,………….,Cm} 

1: for each (  ∈ S) do  

2: /* Partitioning Phase*/ 

3: Summary-trajectory ( , Φ1, Φ2) 

 /* Fig. 5 */ 

4: Get a set SS(τ) of line segments using the result; 

5: Accumulate SS(τ) into a set D; 

 /* Grouping Phase */ 

6: Execute Line Segment Clustering on line segments in D; 

7: Output a set C of clusters as the result; 
 

Algorithm 3: Clustering-Based Trajectory Outlier Detection 

(CB-TOD) 

Input: A set of trajectories S = {   ,          ·,  },  

 a set of clusters C = {C1, C2,………….,Cm},  

 P acceptable number of participating trajectories in a cluster, 

 F threshold for acceptable outlying segments length of a 

trajectory. 

Output: A set of outliers' trajectories Out = {O1, O2 · · · ,Onum 

} with its outlying segments 

1: for each (  ∈ S) do 

2: for each (Ci ∈ C) do 

3: /* Definition 5 */ 

4: min= C1 

5: If (min≥Count (Ꙇ ( ), C) && Density(C) ≥ P) then  

6: min = Count (Ꙇ ( ), C) 

7: Insert line segments on this cluster to        

8: for each   ∈ S do 

9: /* Definition 6 */ 

10: if (Len (Out_seg ( )) ≥ F) then 

11: insert   into Out 

12: Output Out trajectories with its outlying segment; 

V. EXPERIMENTAL EVALUATION 

In this section, the performance of CB-TOD algorithm is 
evaluated experimentally. 

A. Experimental Setting 

CB-TOD algorithm is tested using the same animal 
movement data set as in [6,9,13] which represents Elk and 
Deer data. Elk data has 33 trajectories and 15,422 points; Deer 
data has 32 trajectories and 20,065 points. Our experiments 
are conducted on Intel core i7 2.7 GHz notebook with 8 GB of 
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main memory, running on the Windows 10 operating system. 
We implemented the algorithm using JAVA inside eclipse 
PHOTON IDE. 

B. Accuracy Evaluation 

In this section, we evaluate the accuracy of our proposed 
algorithm CB-TOD. The accuracy measured by both the 
number of sub-trajectories outliers and trajectory outliers. In 
this experiment, we measure the number of anomalous 
trajectories and sub-trajectories for Elk data and Deer data as 
shown in Fig. 5 (a and b), respectively. We compare our 
obtained results with the results in [13], as we used the same 
datasets with the same parameter values. We observed that the 
CB-TOD algorithm detects fewer sub-trajectories outliers for 
both Elk and Deer data respectively, compared to TRAOD [6] 
and DBTOD [13] algorithms, as shown in Fig. 5(b). That is 
because we minimize the number of line segments in each 
trajectory by employing the summary-trajectory technique. 
Moreover, the CB-TOD algorithm discovers the same number 
of trajectory outliers compared to the TRAOD algorithm, as 
displayed in Fig. 5(a) for Elk data. Furthermore, in Fig. 5(a), 
we observe that our algorithm detects more numbers of 
trajectory outliers compared to TRAOD and DBTOD 
algorithms for Deer Data; that is because our algorithm 
decreases the representative trajectory line set without 
changing the information contained in the initial trajectory and 
that accomplished to us the accuracy goal. 

Impact of deviation angle (Φ2). In this experiment, 
Fig. 6(a, b) displays the effects of varying the deviation angle 
(Φ2) on both the number of sub-trajectories outliers and the 
number of trajectories outliers. We evaluated the changes in 
the deviation angle (Φ2) and its effects on the number of 
outlier segments and the number of outliers trajectories in the 
dataset. Generally, when we increased the deviation angle 
(Φ2), the number of sub-trajectories reduced as it joined more 
numbers of segments that have the same motion. We observed 
that the best value for the deviation angle is between 60 and 
120 degrees. A constant value for the accepted deviation angle 
Φ1 is used (Φ1≤30 degrees). 

C. Performance Evaluation 

In this part of the experiments, we evaluate the run-time of 
the proposed algorithm (CB-TOD). 

Computational time. Generally, the processing time of our 
proposed algorithm CB-TOD is less compared with the 
competitive outlier detection methods because of summarizing 
trajectory segments to a smaller set of segments without 
affecting the length of the original trajectory. We compared 
the processing time of our algorithm (CB-TOD) with both 
TRAOD [6] and DBTOD [13] algorithms, as we used the 
same datasets as in [13]. As shown in Fig. 7, the processing 
time of CB-TOD algorithm shows the best performance 
compared to both TRAOD and DBTOD algorithms for the 
two datasets (Elk and Deer), respectively. This is because 
using a summary-trajectories technique to reduce the 
computational time of the outlier algorithm leads to a 
reduction in dataset size (as it generates a fewer number of 
segments). 

 
(a) Trajectories Outliers (b) Sub-trajectories Outliers 

Fig. 5. Comparing between CB-TOD,TRAOD and DBTOD (Accuracy) 

 
(a)Sub-trajectories Outliers (b) Trajectories Outliers 

Fig. 6. Effects of Varying the Deviation Angle(Φ2) 

 

Fig. 7. Comparing between CB-TOD, TRAOD and DBTOD (Performance). 

Impact of deviation angle (Φ2). In this experiment, the 
effect of varying the deviation angle (Φ2) on the processing 
time of CB-TOD algorithm is measured. As shown in Fig. 8, 
the processing time of CB-TOD decreased by increasing the 
value of the deviation angle (Φ2). The intuition behind this 
observation is that when we increase the deviation angle (Φ2); 
we get a smaller number of line segments and consequently 
the computation time decreases. 

 

Fig. 8. Effects of Varying the Deviation Angle (Φ2) on CB-TOD Running 
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VI. CONCLUSION 

In this paper, we proposed a clustering-based trajectory 
outlier detection (CB-TOD). Our algorithm summarizes the 
partitions of a trajectory to the smallest set of partitions 
without affecting the length of the original trajectory. CB-
TOD can efficiently detect outlying sub-trajectory and also 
outlier trajectory from the trajectory dataset. The main 
advantage of CB-TOD algorithm is reducing the 
computational time of outlier detection especially for big 
trajectory data without affecting the efficiency of the outlier 
detection results. 

VII. FUTURE WORK 

For future work, we aimed to extend our work to maintain 
bigger datasets. Also, we will use machine learning techniques 
to predict possible outliers in a big trajectory dataset. 
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