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Abstract—With the explosive growth of the Internet and the 

desire to harness the value of the information it contains, the 

prediction of possible links (relationships) between key players in 

social networks based on graph-theory principles has garnered 

great attention in recent years. Consequently, many fields of 

scientific research have converged in the development of graph 

analysis techniques to examine the structure of social networks 

with a very large number of users. However, the relationship 

between persons within the social network may not be evident 

when the data-capture process is incomplete or a relationship 

may have not yet developed between participants who will 

establish some form of actual interaction in the future. As such, 

the link-prediction metrics for certain social networks such as 

criminal networks, which tend to have highly inaccurate data 

records, may need to incorporate additional circumstantial 

factors (metadata) to improve their predictive accuracy. One of 

the key difficulties in link-prediction methods is extracting the 

structural attributes necessary for the classification of links. In 

this research, we analysed a few key structural attributes of a 

network-oriented dataset based on proposed social network 

analysis (SNA) metrics for the development of link-prediction 

models. By combining structural features and metadata, the 

objective of this research was to develop a prediction model that 

leverages the deep reinforcement learning (DRL) classification 

technique to predict links/edges even on relatively small-scale 

datasets, which can constrain the ability to train supervised 

machine-learning models that have adequate predictive 
accuracy. 
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I. INTRODUCTION 

The rapid accessibility of the internet and social media 
platforms has resulted in the exponential growth of social 
networks. Thus, providing a medium for the gathering of 
internet users with common interests would increase the 
number of possible associations and facilitate the 
establishment of new communities. 

The discovery of new links is a valuable attribute of the 
friend recommender systems employed by social network 
platforms. A number of algorithms employed by IBM within 
its own internal social network were investigated by Chen et 
al. [1], who found them to facilitate the establishment of 
connections among its employees. The technique of predicting 

the presence of hidden/missing links or the formation of new 
structural connections is usually described as a link-prediction 
problem in social networks. 

In social network analysis (SNA), the problem of 
predicting links poses an ongoing challenge and represents a 
key research topic [2]. There are two main approaches for 
predicting links between nodes within a network. One 
approach is based on the features of the nodes and the other is 
based on the topological properties of the connected nodes 
within the network. In the context of social network platforms, 
users are represented as nodes or vertices and user-related 
information or profile attributes may not be easily accessible. 
The choice to use topological properties for link prediction is 
preferable as it is mainly based on models derived from graph-
theory analysis. Even though the topological properties of 
real-world social networks may not always be consistent, 
classical link prediction metrics based on topological 
properties, for example, common neighbours [3] and 
Adamic/Adar [4], seldom factor metadata as weights when 
formulating SNA metrics. 

The ability to predict links accurately has many valuable 
applications in a range of domains that can be modelled using 
a network-oriented structure. In the field of bio-informatics, 
link prediction is used to identify the structure of connecting 
proteins [5]. Link prediction is also applied in e-commerce to 
develop recommendation systems [6]. In the domain of 
criminal-network analysis (CNA), link prediction is critical for 
the swift identification of key terrorist or criminal groups [7]. 
As the problem of predicting links is pertinent to a wide range 
of domains, many algorithms have been explored in recent 
years to address this issue. Many of these algorithms have 
relied mainly on classical machine-learning techniques that 
require training on the relevant features of a large dataset to 
achieve adequate predictive accuracy. 

In SNA, the topological properties of network-oriented 
domains are considered along with environmental factors that 
can have an impact on changes in the links or relationships 
among users over time [8]. These environmental factors, 
commonly referred to as metadata, such as judicial 
convictions, arrest records and community crime rates in the 
context of criminal networks, furnish supporting information 
that may subsequently be used to shape the structural 
configurations of the networks [9]. 
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Deep reinforcement learning (DRL) is a machine-learning 
(ML) algorithm that utilises the reinforcement-learning (RL) 
model and incorporates a deep-learning (DL) algorithm to 
serve as a function approximator. In the latest developments, a 
DRL model has been successfully shown to be capable of self-
learning across multiple domains by assimilating layers of 
feature learning via self-simulation based only on the 
provision of basic rules applicable to a particular domain [10, 
11]. 

A DL algorithm that formulates an ML model processes 
multiple layers of feature learning that are typically 
progressively extracted from a sufficiently large dataset to 
acquire a precise abstraction of the domain properties. DL, 
which is also referred to as a deep neural network (DNN), 
functions as an artificial neural network (ANN) by imitating 
the learning process of brain neurons [12-14]. DL automates 
representation learning by the abstraction of domain features 
via layers of an ANN from the input to the output layer. The 
use of DNN in the formulation of ML models therefore 
minimises its reliance on human input to programme feature 
abstraction rules for specific domains. 

RL is an ML framework that involves the development of 
programmes that function as agents that use trial and error to 
learn to navigate within an environment to achieve pre-defined 
goals [15]. These agents are guided towards achieving a goal 
by performing a series of tasks, which when completed are 
assessed as either a success or failure by a system of domain-
related rules. Successes are usually given positive marks as 
rewards and negative marks as punishments. 

Our research is expected to contribute to the development 
of a new set of enhanced indexed link-prediction metrics that 
can better predict missing links than classical link-prediction 
metrics. An evaluation experiment was performed on a time-
series criminal-network dataset. This model was developed by 
indexing SNA metrics with metadata to enhance the capability 
of law enforcement agencies to more accurately identify 
critical unknown relationships in criminal networks. The 
model proposed in this research may have some limitations in 
that it is constructed based on relatively small dataset which 
are characteristics of criminal or terrorist networks compared 
to social networks such as Facebook. The relatively small 
dataset may have an impact on the predictive performance of 
certain machine learning models being trained. 

In the rest of this paper, we our research work is presented 
as follows: In Section II, we review relevant research work 
involving ML models that incorporate weighted metrics. In 
Section III, we describe our development of the proposed and 
baseline models and the training methodology used. In 
Section IV, we describe the properties of the dataset and the 
experimental setup and discuss the experimental results. We 
present our research conclusions in Section V and in 
Section VI we consider the trajectory of subsequent research 
work. 

II. RELATED WORK 

Supervised ML algorithms are usually the preferred 
techniques for solving link-prediction problems. ML was first 
reported in 2003 by Liben-Nowell and Kleinberg [16] based 

on their research on the value of the structural attributes of 
graphs and their development of models trained on 
bibliographic datasets. In 2006, Hasan et al. conducted 
research [7] based on the technique developed by Liben-
Nowell and Kleinberg. Subsequently, many other researchers 
have developed models using the same technique. A majority 
of the models proposed by these researchers were trained and 
evaluated on co-authored or bibliographic datasets [16], [17], 
[18]. Song et al. developed link-prediction models trained on a 
feature matrix based on node similarity and proximity 
measures extracted from large-scale real-world datasets such 
as MySpace and Facebook for use in matrix factorisation [19]. 

In 2011, Zaki and Al Hasan conducted a survey and 
provided a review of other link-prediction approaches based 
on linear algebra, Bayesian probabilistic models and Bayesian 
networks [20]. 

Cukierski, et al. [21] constructed a model for predicting 
links based on the random-forest classification technique 
based on an extraction of 94 graph features. The results from 
their model trained on Flickr datasets were found to achieve a 
high level of predictive accuracy. 

In the development of a highly accurate link-prediction 
algorithm, it is critical to compute set feature metrics derived 
from the structural properties of graph datasets. As the 
accuracy of such models also depends on the use of large-
scale datasets, the generation of a feature matrix requires 
significant computer resources. Social networks such as 
Facebook, which had some 700 million users in 2011 and a 
monthly average incremental of 20 million, poses a 
considerable challenge in terms of computer resources [22]. 
Furthermore, the structural configurations of these networks 
also exhibit certain attributes, for example, a power-law 
degree distribution [23] and small-world properties [24]. 
These properties must be considered when local structural 
features are being computed as nodes, which requires huge 
computer resources. As such, a subgraph is used. 

Silver et al. made a major contribution to the advancement 
of DRL research with their development of AlphaGo, a 
programme that plays the ancient strategic board game Go. 
AlphaGo, which incorporates the Monte Carlo tree search 
(MCTS) technique, achieves accurate super-intuitive 
judgement by identifying the scope of analyses that have the 
highest likelihoods of success [25]. The game of Go, which is 
considered by artificial intelligence experts to be the holy grail 
in the field of computer science, has more possible variations 
in board positions than all the atoms in the universe that are 
visible to man. In 2017, AlphaGo demonstrated its extreme 
intelligence by beating the world’s best professional Go player 
by a clear margin. 

Silver et al. achieved another milestone in artificial general 
intelligence with the development of AlphaGo Zero. With 
only the basic rules of the games provided, AlphaGo Zero 
succeeded in mastering different two-player games with 
complete information such as Go, Shogi and Chess, using its 
self-learning algorithm to compete with different versions of 
itself [26]. 
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Using self-simulated dataset generated within three days 
for training purposes, AlphaGo Zero defeated AlphaGo with a 
score of 3–0. 

Unlike classical supervised ML techniques, such as the 
random forest, DRL has the capability of being trained on a 
self-generated dataset via self-play. As a result, the DRL 
technique is relevant to the modelling of network-oriented 
domains with datasets that are comparatively small, for 
example criminal syndicates, using a self-simulated dataset. 

The research journals we reviewed offer scant evidence of 
any examination of ML models for predicting links that 
integrate SNA metrics indexed with metadata measurements 
and the DRL technique with respect to dynamic criminal 
networks. In this research, we conducted experiments to fill 
this research gap in the construction of models trained on a 
time-series criminal-network dataset. 

III. MODELS AND METHODOLOGY 

In this research, we constructed two DRL models for link 
prediction: a baseline model for predicting links using just 
classical SNA metrics (BSNA-DRL) and another that uses 
classical SNA metrics indexed with metadata weights (ISNA-
DRL). 

A. Baseline Model SNA (BSNA-DRL) using Classical Link-

Prediction Metrics 

1) Common Neighbours (CN) 

|)( )(| yxCNxy               (1) 

The CN score of the node pair x and y, CNxy, denotes the 
number of directly connected nodes that are common to x and 

y. )(x and )(y denote the set of directly connected nodes 

of both x and y [27]. 

2) Jaccard Coefficient (JC) 
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The JC score of the node pair x and y, JCxy, denotes the 
number of neighbours common to x and y as a ratio of the 
total number of directly connected nodes of both x and y [27].  

3) Adamic/Adar measure (AA) 
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The AA score of the node pair x and y, AAxy, denotes the 
summation of the inverse value of the degree k of node z, 
which is the neighbour common to all directly connected 
nodes of both x and y [27],[28]. 

4) Preferential Attachment (PA) 

yxxyPA   x                 (4) 

The PA score of the node pair x and y, PAxy, indicates the 
probability that two nodes will be connected, which is 
proportional to the degree of the nodes [27]. 

B. Indexed Model SNA (ISNA-DRL) using Classical Link-

Prediction Metrics Factored with Metadata Weights 

In this research, classical link-prediction metrics were 
factored with two types of metadata to measure their impact 
on the precision of the link-prediction model compared with 
that of the baseline model. The metadata used included the 
number of criminal records and education level. Persons 
associated with criminals with lengthy criminal records are 
expected to form a relationship in the future, and those with a 
low education level who are associated with criminal networks 
are expected to have a higher likelihood of forming a 
relationship in the future. 

1) Indexed Common Neighbours (iCN) 
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The indexed CN score of the node pair x and y, iCNxy, 
denotes the common neighbour node z that is factored by the 
weighted average of the metadata, i.e., the md1 and md2 value 
attributes of node z. The iCNxy, value increases with the 
likelihood of a link forming between nodes x and y. 

2) Indexed Jaccard Coefficient (iJC) 
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The indexed JC score of the node pair x and y, iJCxy, 
denotes the iCNxy value as a ratio of the total number of 
directly connected nodes of both x and y. The iJCxy, value 
increases with the likelihood of a link forming between nodes 
x and y. 

3) Indexed Adamic/Adar measure (iAA) 
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The indexed AA score of the node pair x and y, iAAxy, 
denotes the summation of the weighted average of the 
metadata (md1, md2) value attributes of the common 
neighbour node z, factored with the inverse value of the 
degree k of node z.  

4) Indexed Preferential Attachment (iPA) 
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The indexed PA score of the node pair x and y, iPAxy, 
indicates that the probability that two nodes will be connected 
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is proportional to the degree of nodes x and y after factoring 
the weighted average of the metadata (md1, md2) value 
attributes of the neighbouring nodes x’ and y’ of node x and y, 
respectively. 

C. Proposed ISNA-DRL Model 

The proposed metadata-indexed SNA link-prediction CNA 
model (ISNA-DRL) (Fig. 1), which represents an extension of 
the research on link prediction in the criminal network 
domain, applies the MCTS method in network searches [29-
31]. To assess the predictive precision of the ISNA-DRL 
model, we used the area under the curve (AUC) score [32]. 

The ISNA-DRL model leverages a value network 
(indexed-SNA-metrics neural net) (Fig. 1), which is a DNN 
trained with features extracted from indexed SNA metrics. 
During the training of the model, the indexed SNA feature 
matrix extracted from the number of criminal records and 
education levels were factored as a score for the indexed-
SNA-metrics neural net. The indexed-SNA-metrics neural net 
is a function approximator that generates output values used to 
rank each pair of nodes based on the likelihood of links 
forming or disappearing. The MCTS commences its tree 
search from the pair of nodes with the maximum combined 
indexed-SNA-metrics score estimated by the value network. 
The cumulative scores obtained by the RL agent from all the 
completed simulated network instances are then fed back to 
the neural net for re-calibrating the ISNA-DRL model’s 
hyper-parameters to improve its predictive accuracy in 
subsequent iterations (Fig. 1). 

Notes (Fig. 1): 

a) The topological features of the criminal-network 

dataset are used to compute the indexed SNA values. 

b) Features are extracted from the metadata for 

computation of the indexed SNA metrics. 

c) The indexed SNA metrics of the criminal-network 

dataset are used to formulate the features matrix. 

d) The indexed SNA feature matrix derived from the 

metadata features, e.g., the number of arrest records and the 

education levels, are processed by the indexed-SNA-metrics 

value network. 

e) The indexed-SNA-metrics value network 

approximates the node pairs that will most likely to form a link 

or have their link disappear. 

f) The MCTS commences to traverse the network by 

initiating a network-instance simulation by identifying 

links/edges, which are then ranked in accordance with their 

probability scores (P0, P1) as approximated by the indexed-

SNA-metrics value network. 

g) The simulation of the network states, S0 to SN, occurs 

by the roll-out of the link-prediction process by the MCTS 

policy network. These simulated network states are assessed 

regarding their prediction accuracy by comparing their results 

with the test datasets (T1 to T10). 

h) The predictive accuracy scores of the predicted 

instances of the network are processed by the RL agent and fed 

back to the indexed-SNA-metrics neural net to adjust the 
related hyper-parameters and improve the accuracy of 

subsequent simulations. 

 

Fig 1. Proposed ISNA-DRL Link-Prediction Model based on SNA and Metadata Metrics. 
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The SNA measurements selected for the formulation of the 
indexed SNA feature matrix included the CN, AA, JC and PA 
metrics [33]. The indexed SNA metrics derived (iCNxy, iJCxy, 
iAAxy, iPAxy) (5-8) from the structural properties of the 
network and metadata were extracted for representation 
learning by the value network to approximate the ranking 
score of the links. These scores were then processed by the 
MCTS function to generate the most probable network 
instances. The indexed SNA scores are formulated as feature 
vectors, which are stored as data records. This array of 
features is then used to train the indexed SNA value network 
to perform a binary classification of the links/edges predicted 
to have either positive or negative labels. The link/edge that is 
predicted to be most likely to form is given a positive label 
and that predicted to be most likely to disappear is given a 
negative label. 

The training of the ISNA-DRL model involves the 
representation learning of arrays of features, which comprise 
scores of indexed SNA metrics that denote the probability of 
the formation or disappearance of links/edges in the future. 
The cumulated value of the indexed SNA prediction metrics 
are calculated for every link in each feature array. The ISNA-
DRL model was evaluated using the test dataset to ascertain 
whether the trained model predicted network instances with 
the required accuracy (Fig. 1). 

The MCTS network tree search process creates a network 
instance for each link that is predicted by the policy network 
to be most likely to change in the following iteration. Each 
iteration of the MCTS network traversal, which starts from the 
root node, creates an initial simulated instance, S0, from which 
the search process continues to the next node, navigating in 
accordance with the score of a positive or negative link most 
likely to form. 

The generation of a probable network instance, S2, as a 
result of a new link being predicted from the current state, S1, 
is the outcome of the navigation of the RL agent to S2 from S1, 
based on the rules of the default policy network. The 
prediction made regarding a new network instance based on 
the likely formation of a new link is determined by the values 
of the SNA prediction metrics used to rank the links. When a 
simulation has been completed, every simulated network state 
is assessed against the original network dataset to determine 
the accuracy of the prediction. Any variances found from this 
assessment are evaluated by a cost function to adjust the 
hyper-parameters of the indexed-SNA-metrics neural net and 
the MCTS function to achieve a better prediction. These 
hyper-parameters are then incorporated into the subsequent 
network-instance simulation in accordance with the link-
prediction rules (Fig. 1). 

The link prediction accuracies of the BSNA-DRL and 
ISNA-DRL models constructed on classical SNA metrics 
(CNxy, JCxy, AAxy, PAxy) (1-4) and indexed SNA metrics 
(iCNxy, iJCxy, iAAxy, iPAxy) (5-8), respectively, were evaluated 
based on their AUC indices. The AUC index of an ML model 
indicates the precision of the modelling process in identifying 
the underlying domain patterns, with the score ranging from 0 
to 1. The higher is the AUC index achieved by the model, the 
more accurate are its predictions likely to be. 

D. Metadata Indexing 

Metadata indexing refers to the process of factoring the 
measurements of various pieces information obtained from the 
environment into SNA measurements for link prediction, 
which can influence the precision of the links predicted by the 
models. With reference to the criminal-networks domain, 
metadata may include the number of criminal records, 
education level and age, which can shape the structural 
configurations of a dynamic network and affect the underlying 
metrics on which link predictions are based [34]. In the 
proposed ISNA-DRL model (Fig. 1), the number of criminal 
records and the education levels of the members of the 
criminal network were factored into the feature matrix 
formulated from the indexed SNA metrics (5-8), which were 
then used to train the indexed SNA value network. The output 
of the indexed SNA value network is an approximation of a 
set of ranked scores that identify the node pairs with the 
highest likelihood of changing over time. 

E. Time-Series Dataset 

The graph algorithm is used in modelling network-oriented 
domains that evolve over time, such as online social or 
criminal groups, whose topological configurations may vary 
with time [34]. Participants in a network, which are denoted as 
nodes, may enter or exit the group as time passes. The 
structural configurations of the network may also change, for 
example, when the strength of the relationships or links among 
the participants change over time. The dynamic nature of such 
real-world networks are reflected in a time-series dataset. 

IV. EXPERIMENTS AND RESULTS 

In this research we used a time-series dataset of the Caviar 
drug import syndicate [35]. This dataset contains a series of 
eleven time-series snapshots of arrest raids conducted to seize 
drugs from the criminal network over a 2-year period. We 
evaluated both the proposed ISNA-DRL and baseline BSNA-
DRL models based on their AUC indexes, as these values are 
not skewed by the presence of imbalanced classes and this 
method is typically employed to evaluate the accuracy of ML 
classifier models. 

A. Experiment Setup 

The BSNA-DRL and ISNA-DRL prediction models were 
trained using a multidimensional feature matrix which was 
computed based on classical SNA metrics (CNxy, JCxy, AAxy, 
PAxy) (1-4) and indexed SNA metrics (iCNxy, iJCxy, iAAxy, 
iPAxy) (5-8), respectively, by factoring the metadata features 
derived from the Caviar dataset. This computation combines 
classical SNA link-prediction metrics with metadata indices to 
derive values that represent the probability of the formation of 
positive or negative links at each of the time-series snapshots 
of the Caviar dataset (Fig. 1). 

We randomly divided the time-series dataset into training 
and test datasets with an 80:20 proportion, respectively. Of the 
eleven time-series snapshots of arrest raids, ten were used as 
the training set from which a random selection of positive 
edges was made. Then, a random selection of negative edges 
was made until the numbers of negative and positive edges 
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were equal. Each of the snapshots from the time-series test 
dataset was then processed by the model to predict the likely 
network topology from the test dataset. 

The tenth and eleventh time-series snapshot of the Caviar 
dataset (Fig. 2 and 3) depict the actual evolution of the 
network during the interval. The eleventh time-series snapshot 
was used for testing to determine the precision of the BSNA-
DRL and ISNA-DRL models in making predictions. 

The experiment was conducted in two stages. In the first 
stage, we used the feature matrix computed for each classical 
SNA measurement to train both the models. The objective of 
this step was to determine the impact of factoring metadata on 
the prediction properties of each SNA measurement made 
independently from the others. Fig. 4 shows the predictive 
accuracies of the BSNA-DRL and ISNA-DRL models based 
on the use of individual SNA metrics. 

In the next stage of the experiment, we combined all four 
classical metrics to formulate a feature matrix, which was used 
to train both models. 

B. Results and Discussion 

The ISNA-DRL model was able to identify more 
links/edges (Fig. 6) than the BSNA-DRL model (Fig. 5), and 
these links/edges were expected to change in the eleventh 
time-series snapshot when compared with the actual time-
series snapshot at T11 (Fig. 2) and T10 (Fig. 3). 

 

Fig 2. Actual Criminal Network at Time-Stamp T11. 

 

Fig 3. Actual Criminal Network at Time-Stamp T10. 

 

Fig 4. AUC Scores of Models Built with Individual SNA Metrics. 

Although the predictions of the ISNA-DRL model for four 
links/edges were incorrect, i.e., node pairs (76,87), (1,81), 
(14,24), (12,14) (Fig. 6), the BSNA-DRL model incorrectly 
predicted five more links/edges, i.e., node pairs (41,93), 
(37,82), (41,87), (1,83) and (46,82) (Fig. 5). 

A comparison of the predicted structural configurations of 
the Caviar network at the eleventh time step, T11, with the 
experimental results indicates that the indexed SNA metrics 
(iCNxy, iJCxy, iAAxy, iPAxy) (5-8) of the ISNA-DRL model 
(Fig. 6) achieved better prediction accuracy than the BSNA-
DRL model (Fig. 5). 

The AUC scores of the ISNA-DRL model that uses 
individual classical SNA metrics such as CN, JC AA and PA 
(Fig. 4) to factor metadata scores are better by 0.06, 0.10, 0.07 
and 0.04, respectively, than the AUC scores obtained by the 
BSNA-DRL model (Fig. 4), which did not incorporate 
metadata indexing. This indicates that metadata indexing does 
not cause inconsistent results when all the indexed SNA 
metrics are combined. 

The better performance of the ISNA-DRL model than the 
BSNA-DRL model seemed to be related to the use of the SNA 
metrics indexed with metadata (iCNxy, iJCxy, iAAxy, iPAxy) (5-
8), which reflect the real-life characteristics of criminal 
activity. 

 

Fig 5. Network Predicted by BSNA-DRL Model. 
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Fig 6. Predicted Network by ISNA-DRL Model. 

To determine the overall prediction precisions of the 
models, we also conducted an experiment in which we 
combined all four classical SNA metrics to train both the 
proposed ISNA-DRL and BSNA-DRL models (Fig. 7 and 8). 

The results indicate that the use of metadata scores also 
improved the precision of the predictions made by the ISNA-
DRL trained with indexed SNA feature matrix. The overall 
improvement of the ISNA-DRL model using the combined 
indexed SNA metrics (iCNxy, iJCxy, iAAxy, iPAxy) (5-8) could 
be due to the fact that metadata scores provide further 
information related to the nodes, which influences the 
selection of node pairs towards those with a higher likelihood 
of forming positive or negative links in the future. 

 

Fig 7. AUC Metrics of Link-Prediction Models with Combined SNA 

Metrics. 

 

Fig 8. ROC Curve of Link-Prediction Model with Combined SNA Metrics. 

In general, the experiment conducted to evaluate the link-
prediction performance associated with metadata indexing 
indicated that the ISNA-DRL model, which factors metadata 
scores with SNA link-prediction metrics, performed better 
than the baseline BSNA-DRL model (Fig. 7 and 8), which was 
trained with a feature matrix formulated without metadata 
indexing and simulated self-generated datasets using the DRL 
technique. 

The experimental results for the proposed DRL link-
prediction model, which was trained on a time-series criminal-
network dataset, are consistent with those obtained by Lim, 
Marcus et al. [30], [31]. 

In both [30] and [31] (Table II), the experiments were also 
conducted with link prediction models constructed using 
relatively small time-series dataset and leveraging on DRL.  

In [30], the link prediction model, TDRL-CNA, only use 
features formulated from classical SNA metrics to train the 
model. However, in the TDRL-CNA model, additional SNA 
features metrics, i.e. Hub Index and Preferential Attachment 
index were formulated as weights in the hidden layers of the 
SNA metrics neural network. This model which uses breath  
first search (BFS) ranking algorithm, performed with 
approximately with the same level of predictive accuracy 
(AUC score of 0.78) compared to our ISNA-DRL model 
(AUC score of 0.74) (Table II). This result seem to indicate 
that the ISNA-DRL model despite being a more simplified 
model compared to the TDRL-CNA model, was able to 
achieve a comparable level of performance by using SNA 
metrics which were indexed by metadata. 

TABLE I. AUC SCORES OF BSNA-DRL LINK-PREDICTION MODEL AND 

ISNA-DRL MODELS 

Model AUC Time-score(Hr) Iterations 

BSNA-DRL 0.69 1.12 1500 

ISNA-DRL 0.74 1.85 1500 

TABLE II. COMPARISON OF DRL LINK PREDICTION MODELS FROM 

RELATED RESEARCH WORKS 

Model ISNA-DRL TDRL-CNA MDRL-CNA 

ML 

technique 
DRL DRL 

DRL with 

metadata fusion 

Tree search 

ranking 

algorithm 

MCTS BFS MCTS 

SNA metrics 
metadata 

indexed 
classical classical 

Dataset 11 time-periods 11 time-periods 20 time-periods 

Maximum 

nodes 
42 27 55 

Training time-

score (hour) 
1.85 Not available 4.3 

Training 

iterations 
1500 1500 2500 

AUC Score 0.74 0.78 0.79 

Authors Current work [30] [31] 
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In [31], the link prediction model, MDRL-CNA, 
incorporated meta data features in the formulation of the 
feature matrix used to train the neural networks of the model 
instead of factoring into the SNA metrics computation. This 
model was able to achieve a performance which is better than 
the ISNA-DRL model with an AUC score of 0.79. However, 
due to additional complexity of fusing metadata in the weight 
formulation by leveraging on DL, additional computing 
resources of 4.3 hours were used to train the MDRL-CNA 
model compared to the 1.85 hours required to train the ISNA-
DRL model. Therefore, considering the resources required to 
train the models, the factoring of meta data into the 
formulation of SNA metrics may prove a viable option in 
constructing a link prediction model where time is a 
constraint. 

V. CONCLUSION 

In the experiments conducted in this study, the link-
prediction model constructed from combined indexed SNA 
metrics that factored metadata scores (ISNA-DRL model) 
performed consistently better than the BSNA-DRL model that 
did not factor metadata scores. This result is supported by the 
respective AUC scores of 0.74 and 0.69 achieved by the 
ISNA-DRL and BSNA-DRL models (Table I). The 
experimental results also indicate that models constructed by 
leveraging the DRL technique can be successfully trained on 
smaller and self-generated datasets. 

The incorporation of metadata, i.e., criminal records and 
education level, with classical SNA metrics enhanced the 
predictive precision of the ISNA-DRL algorithm, which is 
likely due to the incorporation into the model of real-life 
factors that may shape criminal-network behaviour. The 
improved predictive accuracy of the proposed model can 
contribute significantly to disrupting the activities of criminal 
syndicates. 

VI. FUTURE WORK 

Future research should focus on the investigation of the 
results obtained when more than two metadata scores are 
factored with SNA metrics in the construction of a link-
prediction algorithm, which is expected to increase the 
precision of the ISNA-DRL model. However, the factoring of 
SNA metrics with an increased number of metadata scores 
must be explored regarding its ability to either further improve 
the accuracy of the ISNA-DRL model or diminish its 
predictive performance due to over-fitting. 
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