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Abstract—The paper considers a generalized approach to the 

time series multifractal analysis. The focus of research is on the 

correct estimation of multifractal characteristics from short time 

series. Based on numerical modeling and estimating, the main 

disadvantages and advantages of the sample fractal 

characteristics obtained by three methods: the multifractal 

fluctuation detrended analysis, wavelet transform modulus 

maxima and multifractal analysis using discrete wavelet 

transform are studied. The generalized Hurst exponent was 

chosen as the basic characteristic for comparing the accuracy of 

the methods. A test statistic for determining the monofractal 

properties of a time series using the multifractal fluctuation 

detrended analysis is proposed. A generalized approach to 

estimating the multifractal characteristics of short time series is 

developed and practical recommendations for its implementation 

are proposed. A significant part of the study is devoted to 

practical applications of fractal analysis. The proposed approach 

is illustrated by the examples of multifractal analysis of various 

real fractal time series. 
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I. INTRODUCTION 

In the last years, there has been a growing interest in 
complex systems that have a fractal structure: informational, 
biological, physical, technological, financial and other. The 
dynamics of such systems generate time series with fractal 
(self-similar) properties. Time series fractal analysis is used to 
simulate, analyze and control complex systems in various 
fields [1]-[5]. Processes with fractal properties can be divided 
into two groups: monofractal and multifractal. Monofractal 
processes are homogeneous in the sense of fractal properties 
and have single scaling exponent. Multifractal processes have 
heterogeneous scale properties and are characterized by a set 
of scaling exponents. 

There are a large number of methods for estimating the 
parameters of self-similar and multifractal processes from 
time series [6]-[11]. Methods based on wavelet transforms are 
of particular importance among the research methods of 
fractal nonstationary processes [2], [12], [13]. Currently, the 
two most popular tools of time series multifractal analysis are 

the method of multifractal detrended fluctuation analysis 
(MFDFA) and method of wavelet transform modulus maxima 
(WTMM). The MFDFA method is focused on time series with 
trend components and has been widely used due to [6], [14]. 
The WTMM method is based on continuous wavelet 
transform and was originally proposed in [15], [16]. Both 
methods are a powerful tool for the statistical processing of 
nonstationary processes. A significantly smaller number of 
studies are carried out using the method of multifractal 
analysis based on discrete wavelet transform [2], [17], [18]. 

In recent years, many studies were focused on the 
statistical properties of fractal characteristics estimates 
obtained by the above methods. However, most of the studies 
done have certain limitations. The main attention was paid to 
the statistics of estimates of self-similarity degree obtained by 
different methods [7], [8], [12], [18]. When studying the 
properties of multifractal characteristics, time series of great 
length were usually considered. So, for example, in [14], [19], 
when conducting a comparative analysis between MFDFA 
and WTMM, the length of the realizations was over 60 
thousand values. In this case, the sample fractal characteristics 
are quite close to the theoretical ones. At the same time, the 
time series obtained in practice have a much smaller range of 
values. In [9], [20], aimed at studying the accuracy of 
estimating short time series, the minimum series length was 
over 1000 values, which is also quite large. 

Many studies also compare the estimates of multifractal 
characteristics calculated using the same method [9], [14], 
[19]. The most common in practice is the MFDFA method. 
Quite a few researchers use several methods to evaluate the 
multifractal properties of time series. Despite numerous 
publications related to the practical application of fractal 
analysis, still, there is no universal approach to the estimation 
of fractal characteristics by time series. Besides, some 
practical questions of estimation from short non-stationary 
time series remain unsolved. 

This work aims to study the application of multifractal 
analysis methods to short time series and to propose a 
generalized approach to the analysis of the multifractal 
properties of time series. 
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II. SELF-SIMILARITY PROPERTY AND ITS ESTIMATION 

METHODS 

A. Definitions and Properties of Self-Similar Stochastic 

Processes 

A process ( )X t  is called self-similar if it is invariant in 

distribution when changing the time-scale: 

   Law ( ) Law ( )HX at a X t
 0, 0a t              

The parameter H  is called Hurst exponent. It is a measure 
of self-similarity and together with that a measure of long-
range dependence of process. In this case, the correlation 

function ( )K   of the process ( )X t  decreases hyperbolically: 

( ) ~K   , where 1 ( / 2), 0 1H      . 

( )

1

1
( ... ),m

t tm m tmX X X
m

     ,m t N            (2) 

A process with discrete time X  is called self-similar with 

the parameter H  if the expression is true. 

   1 ( )Law Law ,H mm X X              (3) 

that is, the process does not change the distribution laws 
after averaging over blocks of length m . 

The Hurst parameter H  is a measure of the long-term 
dependence duration. The case 0.5 1H   means that the 

process has persistent behavior or long memory. In other 
words, if positive (or negative) process increments have been 
observed for some time in the past, then with the probability 
close to the value H , this trend will continue. 

The case 0 0.5H   means an antipersistent process. 

Here, high process values follow low ones, and vice versa. In 
other words, the probability that the process will change its 
trend in the opposite direction is as great as the parameter H  
closer to 0. 

When 0.5H   the deviations of the process from the 

mean are indeed random and do not depend on the previous 
values, that corresponds to the case of the ordinary Brownian 
motion. 

The q-moments of the self-similar random process ( )X t  

can be expressed as: 

E ( )
q qHX t t  

 
              (1) 

In particular, for the value 2q  , we have a scaling 

relation for the variance. 

2Var[ ( )] HX t t               (2) 

Most methods for estimating the Hurst exponent are based 
on scaling change of some series characteristics close to 
variance. For example, in the method of R/S analysis change 

of the normalized range of the cumulative series ( ) HR

S
   is 

investigated, in the method of detrended fluctuation analysis 

the fluctuation function ( ) HF    is investigated, etc. 

The property of self-similarity corresponds to the linear 
dependence of the logarithm of the considered value, on the 

logarithm of the time log . For example, in cases of 

detrended fluctuation analysis, we have linear regression 

log ( ) log( )F H const    which is constructed by the least 

squares method. The self-similarity parameter H  can be 
estimated by the tangent of the line inclination angle. 

B. Methods for Estimating the Hurst Exponent 

To estimate the Hurst exponent of a time series, many 
methods have been proposed in [2], [6]-[8]. Consider the most 
popular. 

Rescaled range method. This method was proposed by H. 
Hurst and is currently the most well-known and popular 
method of fractal analysis [7], [8]. It is widely used in 
telecommunication technologies, in the study of the self-
similar properties of information traffic, the study of the 
dynamics of financial markets, the study of biomedical 
signals, etc. 

In this method in the study of a time series ( )x t  of length 

 , the following relation is determined. 

 
2

1

( ) max( ( , )) min( ( , ))
/

( ) 1
( )

1

cum cum

t

R x t x t
R S

S
x t x




 






  





 1,t   

where ( )R   is a range of the cumulative series ( , )cumx t  ; 

( )S   is the standard deviation of the original series; 

1

1
( ) ( )

t

x x t


 





; 
1

( , ) ( ) ( )
t

cum

i

x t x i x


    

For a self-similar process, this ratio for large values   has 

the following scaling: 

E HR

S


 
 

 
              (3) 

The dependence of 
 

 

R

S




 on   in double logarithmic 

scale for a self-similar time series, have to be a straight line, 
approximated by the least squares method. The value Н  is 

calculated as the tangent of line angle dependencies 
 

 
log

R

S




 

on  log  , as it is shown in Fig. 1. 

The method of detrended fluctuation analysis (DFA). This 
method was originally proposed for the analysis of long-term 
correlations in the structure of the heart rhythm. Currently, it 
is one of the most widely used methods for studying various 
non-stationary time series [6], [14], [19]-[23]. 
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Fig. 1. The Dependence of log( / )R S  on log( ) , Obtained by Rescaled 

Range Method. 

In the DFA method, for the initial time series ( )x t , the 

cumulative series is constructed
1

( ) ( )
t

i

y t x i


 , which is divided 

into N  segments with a length  , and for each segment 

( )y t , the fluctuation function is calculated: 

2 2

1

1
( ) ( ( ) ( ))m

t

F y t Y t


 





            (4) 

where ( )mY t  is a local m -polynomial trend that limited by 

this segment. 

The function ( )F   averaged throughout the entire series 

( )y t  has a scaling dependence on the length of a series 

segment: 

( ) HF                 (5) 

The plot of dependence log ( )F   on log  in a certain 

range of values is straight line approximated by the least 
squares method. The value Н  is calculated as the tangent of 

straight line angle of dependence log ( )F   on log , as it is 

shown in Fig. 2. 

Discrete Wavelet Transform Method. The main 
development of the method was in the papers [2], [12]. 
Currently, it is used in the analysis of both stationary and non-
stationary time series in various fields of research. 

The method of wavelet estimation of self-similarity degree 
H  is based on the properties of the detail wavelet coefficients 
of time series decomposition by Discrete Wavelet Transform. 
The basis of this method is a statement that the wavelet energy 

value jE  at the wavelet decomposition level j  satisfies the 

scaling relation: 

(2 1)2 H j

jE               (6) 

The plot of dependence 2log ( )jE  on j  is a straight line 

approximated by the least squares method. The value of 
exponent H  can be found by evaluating tangent of straight 
line angle. The wavelet energy spectrum of a self-similar 

process and dependence 2log ( )jE  on j  are shown in Fig. 3. 

 

Fig. 2. Dependence log ( )F   on log( ) , Obtained by the DFA Method. 

 
(a) 

 
(b) 

Fig. 3. The (a) Wavelet Energy Spectrum of a Self-Similar Process; (b) 

Dependence 2log ( )jE . 

III. ESTIMATION METHODS OF MULTIFRACTAL 

CHARACTERISTICS 

A. Definitions and Properties of Multifractal Stochastic 

Processes 

Multifractal stochastic processes also are invariant in 
distribution, but in this case, the change of quantitative 
characteristics of the process depends on the magnitude of the 
stretching in time. 

 Law{ ( )} Law{ ( ) }X at a X t M  0, 0a t           (7) 

where ( )aM  is a random function which independent of 

 X t . In the case of a self-similar (monofractal) process

( ) Ha aM . 

For multifractal processes, the following relationship of q-
moments holds: 

( )E ( )
q q h qX t t  

 
           (8) 
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where ( )h q  is a function of generalized Hurst exponent. 

Value ( )h q  at 2q   is equal to the degree of self-similarity 

H . Generalized Hurst exponent of the monofractal process 

does not depend on the parameter q : ( )h q H . For the case

2q  , it again gets at the formula (5). 

Thus, before investigating the multifractal properties of the 
time series, it is necessary to determine the existence of self-
similar properties. A more detailed analysis of the self-
similarity of time series is presented in [21]. Consider some 
popular methods of time series estimation of multifractal 
properties. 

B. The Method of Multifractal Detrended Fluctuation 

Analysis 

When performing multifractal fluctuation detrended 
analysis (MFDFA), the dependence of the fluctuation function 

( )qF s  on the parameter q  is investigated: 

1

2 2

1

1
( ) [ ( )]

qN q

q

i

F s F s
N 

 
  
 
           (9) 

( )qF s  is obtained by raising the expression (7) to the 

power q  and then averaging over all segments. Since at 

0q   (12) contains uncertainty, the following expression is 

usually used instead: 

2

1

1
( ) Exp ln[ ( )]

N

q

i

F F
N 

 
  

 
  

Changing the length of the segment s  at a fixed q , we find 

the dependence ( )qF s . If the time series has multifractal 

properties, then the fluctuation function is represented by a 
power dependence: 

( )( ) h q

qF s s             (10) 

where ( )h q  is a function of generalized Hurst exponent. 

For the monofractal time series, the fluctuation function 

( )qF s  is the same for all segments and the generalized Hurst 

exponent does not depend on the parameter q : ( )h q H . For 

multifractal series, ( )h q  is a non-linear function: with positive

q , the main contribution to the function ( )qF s  is provided by 

segments that exhibit large deviations
2 ( )F s , while for 

negative q  the segments with small 
2 ( )F s  dominate. 

Fig. 4 shows the fluctuation functions ( )qF s  for the 

monofractal (a) and multifractal (b) processes of the parameter 

values { 5, 2,0,2,5}q    . 

 
(a)     (b) 

Fig. 4. Functions ( )qF s  for (a) the Monofractal and (b) Multifractal Time 

Realizations. 

We can offer the following step-by-step algorithm for the 
estimation of the multifractal characteristics of time series 

( ), 1,2,...,X t t n . 

1. For the calculation, it is necessary to convert the original 

series to cumulative 
1

( ) ( )
k

cum

t

X k X t


 , 1,2,...,k n . If 

the original time series is cumulative, this step is skipped. 

2. The range q  is specified, in which it is required to 

determine the generalized Hurst exponent ( )h q . 

The series ( )cumX t  is divided into N  non-overlapping 

segments of length   and fluctuation function is calculated 

for each segment where ( )Ym t  is a local m-polynomial 

trend within a given segment. 

3. The function ( )F   is averaged over the whole series 

( )cumX t : 

2

1

1
( ) ( )

N

i

i

F F
N 

   

4. The fluctuation function is calculated for value q : 

2 2

1

1
( ) ( ( ) ( ))cum

m

t

F X t Y t


 



 

5. The value   increases and steps 3–5 are repeated. 

6. Linear regression log ( ) log( )qF k b    is constructed 

by the least squares method. The value k  is equal to the 

value of ( )h q  for a given value q . 

7. Performing steps 2-6 for all given values of the parameter

q , the function ( )h q  is obtained. 

C. Wavelet Transform Modulus Maxima Method 

The method of wavelet transform modulus maxima 
(WTMM) is based on the mathematical apparatus of wavelet 
analysis. The continuous wavelet transform of the function 

( )X t  is described by 
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1
( , ) ( ) ( )abW a b X t t dt

a





             (11) 

where ( , )W a b  is the wavelet spectrum, ( )ab t  is the 

wavelet function with scale a  and shift b . 

The WTMM algorithm involves the study of the behavior 

of a function ( )X t  in two stages. At the first stage, the 

wavelet transform (14) is performed. The result of the wavelet 

transform is the wavelet spectrum ( , )W a b . ( , )W a b  can be 

represented as the surface of the wavelet coefficients in three-
dimensional space. An example of multifractal time series is 
shown in Fig. 5(a). The surface of wavelet coefficients for this 
time series is shown in Fig. 5(b). The most important 
information is contained in local extremum lines of function 

( , )W a b  (it is shown in Fig. 5(c)), which are searched at every 

scale a . 

The choice of a suitable wavelet function is determined by 
several aspects. This function must have m  zero moments [2]. 

On the one hand, large m  allows ignoring large-scale 

polynomial trends and analyzing small-scale variations of the 

function ( )X t . On the other hand, an increase in the number 

of zero moments leads to an increase in the number of local 
extrema lines and the appearance of a large number of 
additional lines terminating on small scales [24]. Such lines 
are too short for estimating power dependences and become 
hindrances in the numerical analysis of singularities. 

Usually, wavelets of the Gauss family are used as wavelet 
functions [15], [19], [24]. If high order derivatives of the 
Gauss function are taken, then the number of additional short 
lines of local maxima increases, which is due to oscillating 
"tails" of wavelet functions. Therefore, when conducting a 
multifractal analysis, it is advisable to limit the value 2m  . 

The basic information about possible local features of 

( )X t  at a point 0t  lies in the asymptotic behavior of the 

coefficients 0( , )W a t  at small scales a . If the coefficients on a 

small scale diverge, ( )X t  has a feature in 0t . If the 

coefficients 0( , )W a t  are close to zero in a neighborhood 0t  on 

a small scale, then ( )X t  is regular at this point. The first stage 

of the WTMM algorithm is completed by construction of the 

"skeleton" of the coefficients ( , )W a b . 

The second stage of the WTMM algorithm is to calculate 
the partition function: 

( )

( , ) sup ( , ( ))
q

l
a al L a

Z q a W a x a


    
 

          (12) 

where ( )L a  is the set of all lines maxima l  of the wavelet 

coefficients modules of the scale a ; ( )lx a  is the location of 

the maximum at this scale. 

 
(a) 

 
(b) 

 (c) 

Fig. 5. (a) The Time Series, (b) The Surface of the Wavelet Coefficients, (c) 

The Lines of Local Maxima. 

To calculate ( , )Z q a  the maximum value of the wavelet 

coefficients modulus along each line on scales smaller than 
the specified scale a  is chosen. In this case, the following 

relation holds: 

( )( , ) qZ q a a 
            (13) 

where ( )q  is scaling exponent that is related to the 

generalized Hurst exponent ( )h q  by the ratio [14]: 

( ) ( ) 1q qh q              (17) 

The multifractal analysis based on the wavelet transform 
allows studying singularities with negative values of q  

[15,16]. Partial functions ( , )Z q a  at 0q   characterizing 

scaling features for weak singularities (small fluctuations), and 
at 0q   for strong singularities (large fluctuations). 
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The statistical sums ( , )Z q a  of a realization of the 

multifractal process for the values { 5, 2,0,2,5}q     are 

shown in Fig. 6(a). The scaling exponents ( )q  of 

multifractal and monofractal realizations are shown in 
Fig. 6(b). 

The next step-by-step algorithm can be offered to estimate 
the multifractal characteristics of time series 

( ), 1,2,...,X t t n  by WTMM. 

1. It is necessary to convert the original series to cumulative

1

( ) ( )
k

cum

t

X k X t


 , 1,2,...,k n  for the calculation. If the 

original time series is cumulative, this step is skipped. 

2. The wavelet transform by (14) is performed and the 

spectrum of wavelet coefficients ( , )W a b  is found for this 

series. 

3. A set of local maximum lines is determined for the surface

( , )W a b . 

4. The range q  is specified, where it is required to determine 

the scaling exponent ( )q  and generalized Hurst exponent

( )h q . 

5. The partial function ( , )Z q a  is calculated by (15) for given 

q  and a . 

6. The linear regression log ( , ) log( )Z q a k a b   is 

constructed by the least squares method. The value k  is 

equal the value of ( )q  for a given value q . 

7. By performing steps 5-6 for all given values of the 

parameter q , we obtain the function ( )q . 

8. The values of the generalized Hurst exponent ( )h q  are 

determined by (17). 

D. Multifractal Analysis based on Discrete Wavelet 

Transform 

In subsection 2.2, a method of determining the degree of 
self-similarity using DWT is considered. It is based on the 
properties of the detail coefficients obtained by the time series 
decomposition.  

 
(a)     (b) 

Fig. 6. (a) The Functions ( , )Z q a  of Multifractal Realization with different 

q ; (b) The Functions ( )q  of Multifractal and Monofractal Realizations. 

Similarly, in [17,18], a method of estimating multifractal 
characteristics based on DWT was proposed (MFDWT). 

If for a multifractal process ( )X t  there are q -th moments, 

then for the detail wavelet coefficients obtained by DWT, the 
following relation holds: 

( )
2E det( , ) E det(0, ) 2

q
j q

q q
j k k


 

  
           (14) 

where det( , )j k  is k -th detail wavelet coefficient of level 

j , ( )q  is a nonlinear function of a parameter q  associated 

with the generalized Hurst exponent ( )h q  considering (17) by 

the expression: 

( ) 1 1
( )

2

q
h q

q


 


           (15) 

Based on the expressions (18-19) and taking into account 
the properties of the detail wavelet coefficients, the following 
step-by-step algorithm can be offered to estimate the 

multifractal characteristics of time series ( ), 1,2,...,X t t n  

by MFDWT. 

1. The original series has to be converted to cumulative series 

1

( ) ( )
k

cum

t

X k X t


 , 1,2,...,k n . If the original time series 

is cumulative, this step is skipped. 

2. The range q  is specified, in which it is required to 

determine the multifractal characteristics ( )q  and ( )h q . 

3. The range of decomposition levels of DWT is selected. The 

following value is calculated for each decomposition level 

j : 

( )

1

1
det( , )

jN
qq

j

kj

E j k
N 

  

4. Each value j  is assigned a logarithm of 
( )q

jE . The tangent 

of the inclination angle of the approximating straight line is 

equal to value ( )q . 

5. By performing steps 3-4 for all given values of the 

parameter q , the function ( )q is obtained. 

6. By (19) the corresponding values of the generalized Hurst 

exponent ( )h q  are calculated. 

The functions 
( )

2log q

jE  of the multifractal process 

realizations for the values { 5, 2,0,2,5}q     are presented in 

Fig. 7(a). The functions ( )q  of different multifractal 

realizations are shown in Fig. 7(b). 
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(a)     (b) 

Fig. 7. (a) The Functions 
( )

2log q

jE  of Multifractal Realizations for 

{ 5, 2,0,2,5}q    ; b) the Functions ( )q  of Multifractal Realizations. 

IV. ESTIMATION OF MULTIFRACTAL PROPERTIES OF TIME 

SERIES 

A. Experiment Description 

The section presents the results of a numerical experiment, 
during which the realizations of different fractal stochastic 
processes were modeled: fractal Brownian motion 
(monofractal process),  stable process (bi-fractal process) 

and binomial multiplicative stochastic cascade (multifractal 
process). The length of the realizations were chosen to be 250, 
500, 1000 and 2000 values. For each generated time series, 
using the methods of MFDFA, WTMM and MFDWT the 

functions of the generalized Hurst exponent ( )h q  were 

calculated. Then functions ( )h q  were averaged over a set of 

realizations. The parameter q  had values in the range

5 5q   . 

The following characteristic was chosen as a measure of 
proximity to theoretical values: 

1 ˆ( ) ( )T

qq

h h q h q
n

   ,           (16) 

where ( )Th q  is the theoretical function of the generalized 

Hurst exponent; ˆ( )h q  is sample function; qn  is the number of 

values q ; h  is the average deviation of the sample value 

from the theoretical. Since the methods can have different 
errors for positive and negative values of parameter values q , 

it makes sense instead of h  to consider separately 

( 0)h q   and ( 0)h q  . 

Model time series for estimation. 

Fractal Brownian motion. FBM is the most famous and 
simple model of the self-similar process [25]. On the one 
hand, the FBM is a self-similar process with the Hurst 
exponent H . On the other hand, FBM can be considered as a 
monofractal process, in which the generalized Hurst exponent 

is a constant: ( )h q H . 

Stable process with independent increments. A random 
process is a  stable process if its finite-dimensional 

distributions are stable random variables [26]. The parameter 

  is called the stability index and determines the heavy tails 

of the distribution. For a  stable process with independent 

increments, equality holds. 

 1/Law{ ( )} Law{ }X at a X t 
 0, 0a t   

It is shown that such processes are bi-fractal. The 
corresponding generalized Hurst exponent is described by: 

1
( )

1

q
h q

q q


 



 




Stochastic binomial cascade. The simplest model of a 
multifractal process is the deterministic binomial cascade [25]. 
When constructing it, the initial unit segment is divided into 

two equal intervals, weight coefficients 1p  and 2 11p p   are 

assigned to each of them. As a result, in the second step, there 

are four intervals with weights 2

1p , 1 2p p , 2 1p p  and 2

2p . With 

an increase in the number of iterations, we obtain an ordered 
set of weights, which has multifractal properties. When 
constructing stochastic cascades, the weight coefficients are 
values of some random variable [27]. If a random variable 

with a beta distribution ( , )Beta a b  is used as a random 

variable, then in the case of a b , the scaling exponent ( )q  

can analytically determine over the interval of values 1q   : 

2

Beta( +q, )
(q) = -log  -1

Beta( , )

 


 
          (17) 

The theoretical value of the function ( )h q  is determined in 

accordance with (17). 

B. The Results of the Generalized Hurst Estimation Exponent 

by Time Series 

Estimation of multifractal characteristics for monofractal 
realizations. 

A typical FBM realization with H=0.8 is shown in 
Fig. 8(a) and the corresponding realization of increments 
(fractal Gaussian noise) is shown in Fig. 8(b). The length of 
realizations is 1000 values. 

The sample values of the generalized Hurst exponent 
calculated by the methods MFDFA (a), WTMM (b) and 
MFDWT (c) are presented in Fig. 9. A straight line is the 

theoretical values ( )h q . It is shown that with an increase in the 

length of the realization, sample characteristics tend to 
theoretical values. However, at small lengths, the obtained 
estimates demonstrate false multifractal properties. Therefore, 
in the case of the realization of a small length, it is necessary 
to conduct additional studies to confirm the monofractal 
properties. 

Table I represents the values of the deviations h , 

calculated in accordance with (20). The estimates of the 
generalized Hurst exponent obtained by the MFDFA method 
are much closer to their theoretical values than the estimates 
calculated using wavelet transforms. Also, when using the 
WTMM method, determining the wavelet spectrum, local 
maxima lines and choosing the appropriate scale range is a 
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more complicated task than determining the polynomial 
degree and the segment lengths in MFDFA. The MFDWT 

method demonstrates incorrect estimation of ( )h q  with 

negative q , however, for positive q  the estimates by 

MFDWT method are close to the estimates by WTMM. 

Estimation of multifractal characteristics for bi-fractal 
realizations. 

 
(a) 

 
(b) 

Fig. 8. (a) FBM Realization, (b) Realization of Increments. 

 

Fig. 9. Sample ( )h q  of Monofractal Realization, Calculated by the Methods 

(a) MFDFA, (b) WTMM and (c) MFDWT. 

TABLE I. DEVIATIONS OF SAMPLE ( )h q  FOR MONOFRACTAL 

REALIZATIONS 

Length Method   

250 

MFDFA 0.094 0.018 

WTMM 0.18 0.13 

MFDWT 0.54 0.15 

500 

MFDFA 0.06 0.015 

WTMM 0.3 0.06 

MFDWT 0.51 0.12 

1000 

MFDFA 0.035 0.013 

WTMM 0.27 0.023 

MFDWT 0.50 0.1 

2000 

MFDFA 0.025 0.014 

WTMM 0.15 0.018 

MFDWT 0.46 0.08 

Let us consider the estimation of ( )h q  for the realizations 

of a  stable process. A typical realization of a  stable 

process with 1.5  is shown in Fig. 10(a) and the 

corresponding realization of increments is shown in 
Fig. 10(b). The length of realizations is 1000 values. 

The sample functions of the generalized Hurst exponent 
obtained using the MPDFA, WTMM and MFDWT methods 
are shown in Fig. 11(a), (b) and (c), respectively. 

The obtained estimates of ( )h q  show false multifractal 

properties. The estimates obtained by the MFDFA method are 
closer to their theoretical values than the estimates calculated 
using wavelet transforms, as evidenced by Table II. The 
MFDWT method, as well as in the monofractal case, 
demonstrates incorrect estimation of multifractal properties. 

However, for positive q  the estimates of ( )h q  by the 

MFDWT method have the smallest difference with the 
theoretical values. 

Estimation of multifractal characteristics for realizations of 
a stochastic binomial cascade.  

Let consider the estimation of multifractal properties for 
realizations of stochastic multiplicative binomial cascades 
whose weights have a beta distribution. For comparison with 
analytical characteristics (21), calculations were performed in 
the range -1 5q  . 

The typical realization of a binomial stochastic cascade 
with a length of 1000 values is shown in Fig. 12(a). In this 

case the weights have a uniform distribution (i.e.  ). 

The corresponding sample values of the generalized Hurst 
exponents are shown in Fig. 12(b) by MFDFA, (c) WTMM 

and (d) MFDWT. The theoretical function ( )h q  is shown by 

the thin line. 

The numerical values of the deviations are given in 
Table III. The WTMM method shows the worst estimation of 
the stochastic multifractal cascades. The MFDWT method 
shows good results and it is not inferior to the MFDFA when 
evaluating multifractal realizations. 

Table IV shows the deviations values for the positive q  of 

all types of fractal time series. This is quite convenient and 
clear for a general results comparison. The estimation analysis 
showed that the estimates of the generalized Hurst exponent 
obtained from short time series have shifts that decrease with 
the increasing length of the time series. The method MFDFA 
has significant advantages in accuracy when estimating from 
short realizations, especially in the case of monofractal ones. 

 
 a) b) 

Fig. 10. (a) Realization of a  Stable Process, (b) Realization of 

Increments. 
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(a) 

 
(b) 

 
(c) 

Fig. 11. Sample ( )h q  of bi-fractal Realizations, Calculated by the Methods 

(a) MFDFA, (b) WTMM, (c) MFDWT. 

TABLE II. DEVIATIONS OF SAMPLE ( )h q  FOR BI-FRACTAL 

REALIZATIONS 

Length Method   

200 

MFDFA 0.096 0.056 

WTMM 0.076 0.12 

MFDWT 0.47 0.047 

500 

MFDFA 0.064 0.053 

WTMM 0.13 0.086 

MFDWT 0. 45 0.042 

1000 

MFDFA 0.057 0.05 

WTMM 0.08 0.075 

MFDWT 0.52 0.038 

2000 

MFDFA 0.054 0.041 

WTMM 0.08 0.07 

MFDWT 0.54 0.034 

TABLE III. DEVIATIONS OF SAMPLE ( )h q  FOR REALIZATIONS OF 

STOCHASTIC MULTIFRACTAL CASCADE 

Length Method ( 0)h q   ( 0)h q   

250 

MFDFA 0.18 0.023 

WTMM 0.8 0.11 

MFDWT 0.17 0.016 

500 

MFDFA 0.14 0.016 

WTMM 0.5 0.09 

MFDWT 0.17 0.016 

1000 

MFDFA 0.16 0.012 

WTMM 0.56 0.077 

MFDWT 0.18 0.011 

2000 

MFDFA 0.18 0.010 

WTMM 0.4 0.061 

MFDWT 0.15 0.01 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12. (a) The Stochastic Cascade Realization; ( )h q Obtained by (b) 

MFDFA, (c) WTMM, (d) MFDWT. 
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TABLE IV. DEVIATIONS ( 0)h q   FOR MONOFRACTAL, BI-FRACTAL, 

AND MULTIFRACTAL REALIZATIONS 

Length Method Monofractal Bifractal Multifractal 

200 

MFDFA 0.018 0.056 0.023 

WTMM 0.13 0.12 0.11 

MFDWT 0.15 0.047 0.024 

500 

MFDFA 0.015 0.053 0.016 

WTMM 0.06 0.086 0.09 

MFDWT 0.12 0.042 0.016 

1000 

MFDFA 0.013 0.05 0.012 

WTMM 0.023 0.075 0.077 

MFDWT 0.10 0.038 0.011 

2000 

MFDFA 0.010 0.041 0.010 

WTMM 0.018 0.07 0.061 

MFDWT 0.08 0.034 0.01 

C. Testing the Hypothesis about Monofractality of Time 

Series 

The results of the multifractal analysis of model time series 
demonstrate the need to develop a tool to distinguish between 
mono- and multifractal time series. Since the MFDFA method 
showed the best results in evaluating monofractal realizations, 
a method based on estimates obtained by MFDFA is proposed. 
It allows to accept or reject the hypothesis of the presence of 
time series monofractal properties. 

For self-similar processes, the question of the estimates 
Hurst exponent Н distribution was considered in several 
publications [2], [8], [19], where it was shown, that estimates 
are normal random variables. The analysis of the sample 

distribution of the generalized Hurst exponent ( )h q  showed 

that the estimates at 0q   have a normal distribution, the 

parameters of which depend on the value q . For 0q   the 

sample values ( )h q  in the general case are not normal random 

variables. 

The multifractal time series have a much greater difference 

in values ( 1) ( 2)h h q h q    than monofractal ones. A 

random variable h  has a normal distribution ( , )h hN m s , the 

parameters of which depend on the length of the time series 
and the values q . The criterion of the monofractal degree was 

proposed to be considered the value (0.1) (5)h h h   . By 

numerical simulation of monofractal processes with varying 

degrees of self-similarity, the sample values hm  and hs  were 

obtained. Table V presented these values for the series of 
different lengths N . 

The same characteristics calculated from cascade 
processes with different degrees of heterogeneity, given by the 
beta distribution parameter a , are also presented in Table V. 

The table shows that even with very weak multifractal 
properties of the process, mono- and multifractal time series 
can be distinguished. Thus, the value of a random variable h  

can be used as test statistics for acceptance of the monofractal 
properties hypothesis. In this case, the null hypothesis is the 
assumption that the series is monofractal. Having obtained the 

estimate ˆ( )h q  using the MFDFA method, the observable 

value ˆ ˆ ˆ(0.1) (5)h h h    is calculated. The hypothesis is 

accepted with a significance level   if the observable value is 

within the range of acceptable values: 

ˆ ( ) ( )h hh m N t s N   

where N  is the length of time series; hm  and hs  are 

values calculated for the monofractal process; t  is the 

corresponding quantile of standard normal distribution. 

TABLE V. PARAMETERS OF THE RANDOM VARIABLE h  

 N=250 N=500 N=1000 N=2000 

 hm  hs  hm  hs  hm  hs  hm  hs  

Monofracta

l 

0.07

5 

0.05

2 

0.0

5 

0.03

8 

0.03

5 

0.02

6 

0.0

3 

0.02

2 

Multifracta  

а=1 0.87 0.23 
0.8

6 
0.18 0.85 0.16 

0.8

2 
0.12 

а=5 0.32 0.13 
0.2

9 

0.09

5 
0.28 0.08 

0.2

7 
0.07 

а=10 0.23 0.1 0.2 0.07 0.18 0.06 
0.1

7 
0.05 

D. A Generalized Approach to Estimating the Multifractal 

Properties of Small Length Time Series 

Summing up the research results, the following scheme for 
multifractal analysis of some random process represented by a 

time series ( )X t  of length N  can be proposed. It should be 

noted that before proceeding to fractal analysis, it is necessary 
to find out from a priori known information whether the series 
is cumulative (for example, the exchange rate) or increments 
(for example, information traffic). 

The main stages of fractal analysis can involve various 
methods of estimation. Since the application of the wavelet 
transform apparatus requires appropriate software and 
experience, the description of the scheme is structured in such 
way that the use of wavelet estimation methods is a desirable 
but not necessary element. However, the application of the 
MFDFA method is necessary for two reasons: this method has 
sufficient accuracy and is designed for non-stationary time 
series. Consider the step by step implementation of the 
generalized approach to the estimation of the multifractal 
properties of self-similar time series. 

1) A preliminary study of the time series structure is a 

necessary stage of multifractal analysis, its full description is 

given in [21] This stage includes determining intervals of 

various scaling, detecting and removing short-term 

autoregressive dependence, estimation of the Hurst exponent 

Н . 

2) All three considered methods MFDFA, WTMM, and 

MFDWT are intended for analysis non-stationary series. But 

before proceeding to an estimation of multifractal properties, 

it is necessary to investigate time series structure by 

correlation function, Fourier spectrum or spectrum of wavelet 

energy, which allow identifying the trend and cyclical 
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components of the series. The results of the preliminary study 

allow selecting the input parameters correctly for the 

multifractal analysis method. 

3) When estimating the generalized Hurst exponent using 

the MFDFA method, it is necessary to first carry out a rough 

estimation of the Hurst exponent Н = (2)h  using local 

polynomials of increasing degree and determine the degree to 

estimation. After that, evaluate the function ( )h q , removing 

the local polynomial trend of this degree. 

4) When evaluating the scaling exponent ( )q  by the 

WTMM method, it needs to select the appropriate scale range 

1 2a a a   on which the local extremums of the function 

( , )W a b  are determined. The right choice of the scale range 

allows ignoring the influence of the trend components of the 

time series. Then it is necessary to carry out a rough 

estimation of the partial function ( , )Z q a  to make sure that 

there are intervals of linear dependence log ( , )Z q a  on log a . 

5) When estimating the scaling exponent ( )q  using the 

MFDWT method, it needs to first select the appropriate range 

of values of levels 1 2j j j   at which there is a linear 

dependence 2log jE  on the level number j . 

6) With weakly expressed multifractal properties, it is 

necessary to test the hypothesis of the monofractal properties 

of time series. 

7) If estimates of multifractal characteristics were 

obtained by different methods, then to increase accuracy, it is 

desirable to conduct comparative analysis taking into account 

a priori information and the results of numerical studies. 

V. FRACTAL ANALYSIS OF REAL TIME SERIES 

A. Fractal Analysis of Temperature Series 

Well-known time series with the property of self-similarity 
are temperature series. The specialized site [28] presents daily 
temperature series (maximum, minimum and average values) 
for different cities over 50 years from 1942 to 1992. Fig. 13 
shows a fragment of the temperature series for 1952-1956 (a) 
and the corresponding series of daily increments (b). 

 

Fig. 13. A Series of Daily Temperatures (a) and a Series of Daily Increments 

(b). 

Before the multifractal analysis, the fluctuation function 

( )F   was investigated. The presence of a section with a linear 

dependence of ( )F   corresponds to the self-similar behavior 

of the time series. If the function ( )F   has several linear 

sections, this implies the several time scaling for different time 

intervals. Fig. 14(a) shows a graph ( )F   plotted over a time 

interval from 
52  (month) to 

9.52  (two years) days. 

It is obvious that the graph has two sections close to linear 
with different tilt angles. It is worth noting the high expulsion 
in the second section when the value of the argument is equal 

to 
8.52  which is almost equal to one year and corresponds to 

the annual seasonal component of the time series. Multifractal 
analysis by the MFDFA method was carried out separately for 
each section. For the first section, the Hurst exponent 

0.21H  , for the second 0.92H  . Fig. 14(b) shows the 

multifractal spectrum functions for both sections. 

Thus, it can be concluded that at intervals from two 
months to six months (Section 1), the series of temperature 
dependence is antipersistent, and at time values from six 
months to one and a half years (Section 2), the series has a 
strong long-term dependence. 

The research of the monofractal property, carried out by 
the method presented in subsection 4.3, has shown that in both 
cases the series has almost monofractal properties. Table VI 
shows the results of hypothesis testing for the generalized 

Hurst exponent sample values ˆ( )h q  of average daily 

temperatures series. Critical values h  were obtained based 

on calculated data for the significance level 0.05   and the 

corresponding series length. 

 
(a)     (b) 

Fig. 14. The Fluctuation Function ( )F   for the Temperature Series and the 

Functions ( )f   for the Sections of Antipersistent and Persistent 

Dependence. 

TABLE VI. НYPOTHESIS TESTING ABOUT THE MONOFRACTAL PROPERTY 

OF TEMPERATURE SERIES 

Series Length 

Critical 

value 

h  

Observed 

value ĥ  

Fractal 

properties 

Temperature 

series (section 1) 
2000 0.0731 

0.0264 mono 

Temperature 

series (section 2) 
0.0213 mono 
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B. Fractal Analysis of Atmospheric Layer Return Echo 

One of the methods for studying processes occurring in the 
atmospheric boundary layer is acoustic sounding and 
subsequent analysis of both echo signals and ensembles of 
sequentially obtained echo signal profiles – echograms. Let's 
conduct a fractal analysis of some of the experimental data 
obtained at the existing acoustic sounding station of the 
Kharkiv National University of Radio Electronics. 

In this case, the maximum depth of the sounding 
atmospheric layer 372Z m ; the value of the resolution in 

depth 5Z m  ; the carrier frequency of the sounding pulse 

1800f Hz , sounding pulse repetition period 2 secT  . 

Fig. 15 shows graphs of signal values ( )X t  reflected at 

different depth of the sounding layer – 50 m and 200 m. 

Signals multifractal analysis was carried out by the method 
of the discrete wavelet transform (MFDWT). Fig. 16 shows 

the dependence 2log ( )jE  on the decomposition level j . 

Estimates of the Hurst exponent obtained for signals at various 
depths are respectively equal to 

50 0.73H   and 
200 0.55H  . 

Fig. 17 shows the values of the Hurst exponent H  as a 
function of the reflective layer depth Z , calculated for the 
numerical data of one of the echograms. 

As seen from the figure, at low depth, where the proximity 
of buildings, structures, tall trees and other objects of the 
metropolis are affecting, the values of the Hurst exponent do 
not exceed 0.6. Then, due to the influx of heat in the lower 
layers of the atmosphere, the values of the Hurst exponent 
increase to 0.75, which indicates the presence of long-term 
dependence in atmospheric processes at low depth. As the 
depth and distance from the megapolis increase, the value of 
Hurst exponent decreases and tends to 0.5, which corresponds 
to weakly correlated random processes. 

A multifractal analysis carried out by MFDWT confirms 
that with increasing depth of the reflecting atmosphere layer, 
the correlation structure of the processes changes, which is 
reflected in a decrease in the values of the generalized Hurst 

exponent ( )h q . Fig. 18 shows the values of the generalized 

Hurst exponent for signals reflected at 50, 150, and 200 m 
depth. In this case, the values of the parameter q  changed in 

the range 1 10q  . 

 

Fig. 15. Reflected Signals at 50 m (Top) and 200 m (Bottom) Depth of the 

Sounding Layer. 

 

Fig. 16. Dependence 
2log ( )jE  on the Level j  for Signal Reflected at 

Depth 50 m. 

 

Fig. 17. Hurst Exponent H  as a Function of the Reflective Layer Depth. 

 

Fig. 18. Generalized Hurst Exponent for Signals Reflected at Depth 50 m 

(Line 1), 150 m (Line 2) and 200 m (Line 3). 

Monofractal property testing presented in Subsection 4.3 
has shown that signals reflected at different depth have weak 
multifractal properties. Table VII has the results of the sample 
generalized Hurst exponent analysis for signals of various 
depths. The critical value h  was obtained using calculated 

data for significance level 0.05   and corresponding series 

length. 

C. Electroencephalogram Signals Research 

Fractal geometry has been used in biology for over a 
quarter of a century. The use of fractal methods opens up new 
opportunities in studying the functional organization of living 
systems. Numerous experimental and clinical data lead to the 
conclusion that research on the fractal properties of different 
biological systems will lay the foundation for fractal 
diagnostics [29], [30]. 

Multifractal characteristics of electroencephalogram 
records of different activity. 

In [31], the study of how the multifractal characteristics of 
the electroencephalogram records (EEG) change when a 
person performs a physical action, and when he imagines that 
he is doing it, was carried out. Experimental data were taken 
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from the [32], where are the EEG of persons, who, with one 
signal clasped their hand into a fist, and with another signal, 
they only imagined that they were doing it. Fig. 19 shows 
typical EEG realizations in cases where the respondent 
squeezed his fist (left) and when the respondent imagines it 
(right). 

Multifractal characteristics of EEG records for the above-
mentioned cases were studied using the method of wavelet 
transform modulus maxima (WTMM). Fig. 20 shows the 

multifractal spectrum functions ( )f  corresponding to 

considered EEG records. Spectrum ( )f  for real fist squeezed 

states are represented by line 1, and line 2 corresponds to an 
imaginary squeezed case. 

Therefore, the functions of the multifractal spectrum 
obtained from the EEG realization make it possible to 
differentiate the real and imaginary actions of the respondent. 

Multifractal characteristics of EEG for different phases of 
wakefulness and sleep. 

The EEG realizations of laboratory animals, in different 
phases of wakefulness and sleep, have been researched. 
Fig. 21 shows typical EEG for various phases: wakefulness 
(awake), slow-wave sleep (sws) and rapid eye movement 
sleep (rem). 

TABLE VII. НYPOTHESIS TESTING ABOUT THE MONOFRACTAL PROPERTY 

OF REFLECTED SIGNALS 

Series Length 
Critical 

value h  

Observed 

value ĥ  

Fractal 

properties 

Depth 50 m 

1300 0.075 

0.105 multi 

Depth 150 m 0.079 multi 

Depth 200 m 0.092 multi 

 
(a)     (b) 

Fig. 19. EEG Records: Respondent Clenches Fist (a) and Respondent 

Imagines it (b). 

 

Fig. 20. Functions of ( )f for Really Squeezed Fist (Line 1) and Imaginary 

Squeezed Fist (Line 2). 

Before the multifractal analysis, the research of the self-
similar properties of the EEG realization was carried out, 
which identified the long-term dependence for the awake, ant 
persistence for the slow sleep phase and weak autocorrelation 
dependence for the fast sleep phase. Fig. 22 shows a 

fluctuation function ( )F   typical for the EEG realizations in 

the wakefulness. 

Multifractal analysis conducted by the MFDFA method 
detected significant differences in fractal properties of EEG 
for wakefulness and sleep. Fig. 23 shows the functions of the 

generalized Hurst exponent ( )h q  for the EEG realizations 

presented above. 

 

 

 

Fig. 21. EEG Realizations: awake (Top), rem (Middle) and sws (Bottom). 

 

Fig. 22. Fluctuation Function ( )F   Typical for Wakefulness. 
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Fig. 23. Generalized Hurst Exponent for AWAKE (Squares), SWS (Circles) 

and REM (Triangles). 

The analysis also showed that there is an undoubted long-
term dependence for the EEG realizations in the awake phase: 
in this case, Hurst exponent H is significantly exceeded 0.5. 
The slow sleep phase is characterized by ant persistence, Hurst 
exponent takes values in the range of less than 0.5. For REM 
sleep, the Hurst exponent H is close to 0.5, it takes values 
greater or less than 0.5. In this case, the EEG realizations are 
characterized by very weak autocorrelation dependence. 

Table VIII presents the testing results of the sample 

generalized Hurst exponent ˆ( )h q  for the studied realizations 

of EEG. The critical values h  are based on the calculated 

data for significance level 0.5   and corresponding series 

length. 

D. Multifractal Analysis of Seismic Wave 

One of the known examples of time series with clearly 
expressed fractal properties is seismic waves. Nowadays real-
time seismic monitoring is not only important but also is the 
most complicated task of seismological practice. There are 
various seismic signal detection methods based on amplitude 
ratio analysis, spectral characteristics, wavelet analysis, etc. 
Some methods based on the estimation of fractal 
characteristics of the seismic process such as Hurst exponent 
and fractal dimension [33], [34]. 

Numerical studies show that seismic waves have 
multifractal properties and different stages of their 
development have different functions of generalized Hurst 

exponent ( )h q . Fig. 24 (top) shows a seismic time series 

where two windows are highlighted: before the activity burst 
and after. Obviously, in these windows, the function of the 

generalized Hurst exponent ( )h q , shown in Fig. 24 (bottom) 

has significant differences. 

Table IX contains the results of the analysis of generalized 

Hurst exponent ˆ( )h q  for studied seismic wave realizations in 

various stages of development. Critical values h  are given 

based on calculated data for the significance level 0.05   

and corresponding series length. 

The results of the analysis allow asserting that seismic 
wave realizations have strong multifractal properties that 
allow to distinguish them from white noise which is 
monofractal. These properties can be used when detecting 
seismic signals. 

E. Analysis Fractal Properties of Community Activities Time 

Series in Social Networks 

In recent years, there have been studies of community 
dynamics in social groups, which show that the corresponding 
time series have self-similarity properties [35], [36]. The 
comparative fractal analysis for two groups on the social 
network Facebook found on keywords related to cyber threats 
was carried out. Two groups ThreatPost and ThreatSignal 
were selected to research each with 14000 and 84000 users 
respectively. For each of these social groups, data on the 
number of likes, comments, and involvement levels over the 
past five years has been collected. 

Table X presents the results of the sample generalized 

Hurst exponent ˆ( )h q  for the studied series. The critical values 

h  are given based on calculated data for the significance 

level 0.05   and the corresponding series length. 

TABLE VIII. НYPOTHESIS TESTING ABOUT MONOFRACTAL PROPERTY OF 

EEG 

Series Length 
Critical 

value h  

Observed 

value ĥ  

Fractal 

properties 

EEG (really 

squeezed fist)  

2000 0.0721 

0.15 multi 

EEG (imaginary 

really squeezed 

fist) 

0.12 multi 

awake EEG 

2500 0.0603 

0.081 multi 

rem EEG 0.072 multi 

sws EEG  0.058 mono 

 

h

q

1

2

 

Fig. 24. Seismic Series and ( )h q  before Burst (Line 1) and after (Line 2). 
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TABLE IX. НYPOTHESIS TESTING ABOUT THE MONOFRACTAL PROPERTY 

OF SEISMIC WAVES 

Series Length 
Critical 

value h  

Observed 

value ĥ  

Fractal 

properties 

Seismic 

wave in the 

initial stage 
1000 0.0861 

0.1344 multi 

Seismic 

wave in the 

final stage 

0.3212 multi 

TABLE X. НYPOTHESIS TESTING ABOUT MONOFRACTAL PROPERTY OF 

COMMUNITY ACTIVITIES SERIES 

Series Length 
Critical 

value h  

Observed 

value ĥ  

Fractal 

properties 

ThreatPost 
1000 0.0861 

0.9522 multi 

ThreatSignal 0.3518 multi 

Fig. 25 (top) shows a time series of a daily number of likes 
for both groups. The fractal analysis showed that these time 
series have strong multifractal properties. Fig. 25 (bottom) 
shows the values of the generalized Hurst exponent for these 

series. Both series have persistence ( 1 2, 0.5H Н  ), but the 

series of likes for the group ThreatSignal has much greater 
fractal heterogeneity, which is expressed in a much greater 

range of values ( )h q . 

Research has shown that a series of likes are quite strongly 
correlated with the series of involvement levels, so their 
multifractal characteristics are very close. The series of 
comments have a rather close to each other multifractal 
structure. 

 

 

Fig. 25. Time Series of Likes for Groups and Corresponding Values ( )h q  

(+ - Group ThreatPost, o - ThreatSignal). 

Thus, the research confirmed that many of the time series 
of social network activity indicators have fractal properties 
and the application of fractal analysis allows to detect 
differences and to reveal characteristic features of different 
social groups’ dynamics. 

VI. CONCLUSION 

The work has considered the features of the numerical 
implementation of multifractal analysis methods: multifractal 
detrended fluctuation analysis, wavelet transform modulus 
maxima, multifractal analysis using discrete wavelet 
transform. The properties of generalized Hurst exponent 
estimates obtained by these methods from short time series 
have been investigated. For this testing, each method on 
realizations of fractal processes of different types has been 
carried out. The advantages and disadvantages of each method 
were considered. 

It is shown that the estimates of the generalized Hurst 
exponent, obtained from short time series, have a bias that 
decreases with increasing series length. It is shown that the 
method of multifractal detrended fluctuation analysis has 
significant advantages in accuracy when evaluating the 
characteristics of monofractal processes. A method has been 
developed that allows to accept or reject the hypothesis of the 
presence of monofractal properties in a time series. It is based 
on the study of sample values of the generalized Hurst 
exponent, obtained by the method of multifractal detrended 
fluctuation analysis. 

Summing up the results of research, a generalized 
approach to the estimation of multifractal properties of time 
series and practical recommendations for the implementation 
of this approach are proposed. Examples of the practical use 
of the considered approach and methods for multifractal 
analysis of biomedical signals, natural phenomena and social 
networks are presented. 

It should be noted certain limitations of the proposed 
approach. Non-stationary time series are considered in the 
work, but multifractal properties are assumed to be practically 
constant during the time realization. This requirement is 
consistent with the short length of the studied time series. In 
multifractal analysis of sufficiently long time series, it makes 
sense to conduct additional studies of fractal characteristics 
using the sliding window method. 
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