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Abstract—In this paper, we propose a new mapping technique 
from the OMG’s UML modeling language into the Web 
Ontology Language (OWL) to serve the Semantic Web. UML 
(Unified Modeling Language) is widely accepted and used as a 
standardized modeling language in Object-Oriented Analysis 
(OOA) and Design (OOD) approach by domain experts to model 
real-world objects in software development. On the other hand, 
the conceptualization, which is represented in OWL, is designed 
to process the content of information rather than just present the 
information. Therefore, the matter of migrating UML to OWL is 
becoming an energetic research domain. OWL (Web Ontology 
Language) is a Semantic Web language designed for defining 
ontologies on the Web. An ontology is a formal specification 
naming and definition of shared data. This technique describes 
how to map UML Models into OWL and allows us to keep 
semantic of UML sequence diagrams such as messages, the 
sequence of messages, guard invariant, etc. to make data of UML 
sequence diagrams machine-readable. 
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I. INTRODUCTION 
Nowadays we are observing a growing effort for 

supporting semantics of data that is stored on the web that 
makes the web more intelligent that procreate a promising 
technology is called “Semantic Web”. The Semantic Web is 
developed by W3C for providing the knowledge data 
interchange over the web that available standard formats, 
reachable, manageable, and understand which will be used by 
machines for overcoming the original web limitation of only 
interchanging data through documents [1]. The semantic web 
is also called “Web of data”. The web will be able to process 
and explicate information to be better to meet the human 
requirement and able to provide full and immediate answers 
for natural language queries. Ontology and also the various 
languages designed for sharing data: Extensible Markup 
Language (XML), Resource Description Framework (RDF) 
and Web Ontology Language (OWL) are the stilts of this 
technology [2]. 

The ontology lies at the core of semantic data integration. 
The ontology is the knowledge data domain that will be shared 
and explored. The Semantic Web does not break away from 
the web but rather an extension of the current one, where data 
is given distinct meaning, better-enabling computers and 
people to work in cooperation [3]. Therefore, the issue of 

converting UML to OWL is becoming an active research 
point. 

UML, the Unified Modeling Language, is the most utilized 
language to the requirements specification [4]. UML is a 
standardized modeling graphical language that includes an 
integrated set of diagrams. Every diagram depicts the 
modeling system in different portions, but together they can 
provide a full map of the modeling system. We focus on one 
diagram that is a UML sequence diagram. A UML sequence 
diagram is a type of interaction diagram where it illustrates 
how and in what order a set of objects works together. A 
sequence diagram is employed for dealing with the dynamic 
view of a system, whereas OWL is developed to form a 
semantic web to represent the explicit specification of a 
conceptualization, not just a document web. A picture is worth 
a thousand words, this idiom definitely fits describing UML. 
UML is a standard notation language that can be used for 
specifying, visualizing, constructing, and documenting the 
phases of software systems. 

Ontology means an ontology may be a characterization 
(like a suitable specification of a program) of concepts and 
relationships which is able to exist among them through a 
community. In other words – an ontology illustrates a part of 
the globe. 

This paper is organized as follows: Section 2 offers the 
background of our work. In Section 3 discusses our technique 
for mapping UML sequence diagrams into OWL 2 DL in 
detail. Section 4 presents an overview of our technique with a 
running case study. Section 5 concludes and points out the 
fields of future work. 

II. BACKGROUND 

A. Unified Modeling Language 
UML is a standardized blueprint representation to design 

and analyze a model of a system. These blueprints provide 
more than 10 diagrams in which every diagram supports an 
aspect to characterize every part of a system. 

UML is developed to make available communication 
among the software developers by specifying, visualizing, 
constructing, and documenting the aspects of software 
systems. UML includes things, relationships, and diagrams, as 
shown in Table I. One exceptional diagram is a sequence 
diagram which is categorized as a behavioral diagram. 
Behavior diagrams depict a dynamic aspect of the objects in a 
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system, a chain of changes to the system through time. A 
sequence diagram is one of the interaction diagrams that 
illustrate the interactions between object instances and the 
ordering of messages according to time. A sequence diagram 
illustrates the interactions among objects, and emphasizes a 
sequential order of messages. 

B. Ontology Foundations 
An ontology is a specification of a conceptualization [3]. 

The term is borrowed from philosophy, where an ontology can 
be a methodical account of existence. The meaning depends 
on our understanding what "exists" is that which can be 
represented wherever the terms "specification" and 
"conceptualization" is a description (like a formal 
specification of a program) of concepts and describable 
relationships between them that can reflect in the 
representational vocabulary with which an abstraction of a 
program. Typically by using UML, we can represent the 
abstract of a program. For example, A UML object o is the 
object of class C is drawn by using UML, as given in Fig. 1. 

In ontologies, the concepts of the program are represented 
in a set of axioms that depict the specification of a 
conceptualization [4], and the relationship among concepts as 
properties. Therefore, the UML Class C is mapped to OWL 2 as 

Declaration ( Class( C) ) 

In the OWL the UML object o of class C is called an 
individual and is expressed as a class assertion: 

ClassAssertion( C o) 

TABLE I. UML THINGS, RELATIONSHIPS AND DIAGRAMS 

UML Category UML Elements UML Elements 

Things Structural Things 

Classes 
Interfaces 
Collaborations 
Use Cases 
Active Classes 
Components 
Nodes 

 Behavioral Things 
Interactions 
State 
Machines 

 Grouping Things Packages 
 Annotational Things Notes 

Relationships Structural Relationships 

Dependencies 
Aggregations 
Associations 
Generalizations 

 Behavioral Relationships 

Communicates 
Includes 
Extends 
Generalizes 

Diagrams Structural Diagrams 

Class Diagrams 
Component Diagrams 
Deployment Diagrams 
Use Case Diagrams 

 Behavioral Diagrams 

Sequence Diagrams 
Communication 
Diagrams 
Statechart Diagrams 
Activity Diagrams 

 
Fig. 1. A UML Object o of Class C. 

C. OWL and UML 
The Ontology Definition Metamodel (ODM) [5] is derived 

from Meta-Object Facility (MOF) [5,6] and based on the 
Object Management Group (OMG) [7] specifications that 
permit integrating ontology engineering into concepts of 
OMG modeling. The ODM follows an identical hierarchy just 
like the one mentioned in a four-layer OMG modeling 
hierarchy [8]. 

The ODM was primarily developed to support the 
ontology structure [5]. It contains classes, associations, and 
constraints. 

MOF defines an abstract framework and language for 
constructing, managing, and specifying technology-neutral 
metamodels. It is the foundation for defining any modeling 
language like UML. Consequently, The UML is also derived 
from the MOF and fundamental form of ODM. Therefore, 
UML notations are also used for ontology modeling [6, 
chapter 7]. 

The ODM provides metamodels for several knowledge 
representation languages such as OWL and RDF [8]. In our 
technique, ODM metamodel OWL is used to represent the 
MOF / UML based models. In our technique, we use a 
decidable fragment of OWL 2 DL. 

Whereas the ODM and UML are derived from MOF [5,6], 
therefore there exist common features, as well as there, are 
also different features. The common features are shown in 
Table II. The comparison between UML and ODM 
aforementioned is given in terms of UML and OWL 2 DL. 
Table III shows the features in UML which do not have 
equivalent OWL 2 elements. 

TABLE II. UML ELEMENTS THAT HAVE THE DL EQUIVALENT OWL 2 DL 
ELEMENTS 

UML Elements OWL Elements 
Class 
Instance 
Enumeration 
Multiplicity 
Datatype 

Class 
Individual 
Oneof 
Min/max/exact cardinality 
Datatype 

TABLE III. UML ELEMENTS THAT HAVE THE DL EQUIVALENT OWL 2 DL 
ELEMENTS 

UML Elements OWL Elements 

Ordering 
Messages 
Operations 
Guards 
Fragment 
Operands 

Not available 
Not available 
Not available 
Not available 
Not available 
Not available 
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D. Reasoners 
Reasoning is a critically important capability for the 

Semantic Web application development. A reasoner plays a 
vital role in developing that automatically infers logical 
consequences from a collection of logical facts or axioms such 
as Pellet, FaCT++, HerMiT, etc. 

Pellet [9] provides functionality to check consistency and 
infer subsumption of ontologies and Semantic Web Rule 
Language. Pellet is a complete and capable OWL-DL 
reasoner, which is written in Java and is open source. Based 
on these criteria, we have chosen Pellet [9] which satisfies our 
requirements to reasoner processes the ontology and generates 
a validation report. 

III. UML SEQUENCE DIAGRAMS INTO OWL 2 DL 
In order to create better OWL 2 ontologies from a UML 

sequence model, we explain in this section our understanding 
of UML sequence diagram concepts and show how to migrate 
these concepts into OWL 2. 

The UML sequence diagrams capture the dynamic behavior 
of a system. The sequence diagram provides the behavioral 
interface of object instances and the sequence of messages that 
they send to each other over time by using the vertical axis of 
the diagram to show time what messages are sent and what. 

A. Classes and Objects 
A concept that grouped multiple objects that have the same 

features and share the same behaviors is commonly known as 
a class in UML. The concept of class in UML is equivalent to 
the concept of class in OWL 2 because both concepts are 
similar. A UML Class C is mapped to OWL 2 as: 

Declaration( Class( C)) 

An object is an instance (or element) of a class. In UML, 
objects have the behaviors of their class. Each object in a 
sequence diagram belongs to a specific class in a class 
diagram. A UML object o of class C is mapped into 
ClassAssertion axiom in OWL 2 called an individual: 

ClassAssertion(C o) 

Furthermore, By default in a UML sequence diagram, 
every object is different from another. However, OWL 2 
follows the open-world assumption, so we must mention that 
all individuals are different from each other. For example, 
objects o1, …, on in a sequence diagram, we use the 
DifferentIndividuals axiom in OWL 2: 

DifferentIndividuals(o1 … on) 

B. Sequence of Messages 
Messages that depict the call of operations belong to a 

specific class are shown horizontally in Fig. 2. They are sent 
from a source object that is defined as a caller and received by 
a target object is defined as a receiver in a sequence diagram. 
A vertical position indicates the sequence of the messages of 
the sequence diagram, wherever the first message is always 
shown at the top in the diagram. Next, subsequent messages 
are added to the sequence diagram little down from the earlier 
message. 

 
Fig. 2. A Simple UML Sequence Diagram. 

A Sequence of messages is a number of messages that 
come one after another in a particular order as shown in Fig. 2. 
OWL 2 contains no axioms specifically for defining sequence 
or ordering [10]. However, OWL 2 has axioms that can be 
used to model sequence. Our technique describes a design 
pattern for modeling a sequence of messages using OWL 2 
axioms, as summarized in the diagram in Fig. 3. 

Before starting the conversion, we create a class OWL 
called “Fragment” to represent the sequence of messages in 
the UML sequence diagram. The class “Fragment” represents 
the kind of fragment in the UML sequence diagram. The 
object property “hasOperand” connects operands to the class 
“Fragment” which contains the operands of it. The class 
“Operand” represents the sequence of elements in the UML 
sequence diagram that can have multiple elements that is 
executed by the class “Element” and the object property 
“hasMessage”/”hasFragment”. The class “Operand” specifies 
a particular size refers to the number of messages in the 
operand. As shown in Fig. 3, the object property “hasNext” 
connects an individual of the class “Element” to exactly 
another one. Consequently, the object property “hasNext” 
supports the sequence of elements. Furthermore, “hasNext” is 
accompanied by its related transitive properties and inverse. 
Two object properties are defined, “firstElement” and 
“lastElement”, to determine which are the first and the last 
elements in the class “Operand”, as sub-properties of 
“element”. The elements connected with these two properties 
cannot be respectively preceded or followed by another 
element. Moreover, the class “Element” represents the type of 
elements in the operand this is executed by the class 
“Message” and “Fragment” respectively with the object 
property “hasMessage” and “hasFragment”. The class 
“Message” specifies a particular type that refers to the type of 
a message in the UML sequence diagram. In order to identify 
which are the caller and the receiver objects of a message, two 
object properties are defined caller and receiver. The object 
property “next message” connects an individual of the class 
“Message” to exactly another one. Two objects, properties are 
defined, “firstMessage” and “lastMessage”, to determine 
which are the first and the last messages in an operand and a 
fragment, as sub-properties of “hasMessage”. Consequently, 
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the object property “nextOperand” supports the sequence of 
operands. Two object properties are defined, “firstOperand” 
and “lastOperand”, in order to determine which are the first 
and the last operand in the class “Fragment”. 

This class and the properties are related to this class are 
defined as follows: 

Class: Fragment 
 SubClassOf: 

 kind exactly 1, 
  firstOperand exactly 1 Operand, 

 lastOperand exactly 1 Operand 
DisjointWith: Operand, Element, Message 

ObjectProperty: hasOperand 
 Domain: Fragment 
 Range: Operand 
 SubPropertyChain: hasOperand o nextOperand 
 InverseOf: operandOf 
ObjectProperty: followedBy  
 Characteristics: Irreflexive 
ObjectProperty: precedeBy 
 Characteristics: Irreflexive 
 InverseOf: followedBy 
ObjectProperty: firstOperand 
 Characteristics: Functional 
 SubPropertyOf: hasOperand 
 Domain: Fragment  
 Range: precedeOperand exactly 0 Operand 
ObjectProperty: lastOperand 
Characteristics: Functional 
 SubPropertyOf: hasOperand 
 Domain: Fragment 
 Range: nextOperand exactly 0 Operand 
Class: Operand  
 SubClassOf: 
  size exactly 1 xsd:nonNegativeInteger,  

 guard max 1 xsd:string,  
 firstElement max 1 Element, 

 lastElement max 1 Element 
 DisjointWith: Fragment, Element, Message 
DataProperty: guard 
 Domain: Operand 
 Range: xsd:string 
DataProperty: size 
 Characteristics: Functional 
 Domain: Operand 
 Range: xsd:nonNegatveInteger 
ObjectProperty: nextOperand 
 Characteristics: Functional 
 SubPropertyOf: followedBy 
 Domain: Operand 
 Range: Operand 
ObjectProperty: precedeOperand 
 Characteristics: Functional 
 SubPropertyOf: precedeBy 
 InverseOf: nextOperand 
ObjectProperty: hasElement 
 Domain: Operand 
 Range: Element 
 SubPropertyChain: hasElement o hasNext 
 InverseOf: elementOf 
ObjectProperty: firstElement 
 Characteristics: Functional 

 SubPropertyOf: hasElement 
 Domain: Operand  
 Range: hasPrecede exactly 0 Element 
 InverseOf: firstElementOf 
ObjectProperty: lastElement 
 Characteristics: Functional 
 SubPropertyOf: hasElement 
 Domain: Operand 
 Range: hasNext exactly 0 Element 
 InverseOf: lastElementOf 
Class: Element 
 SubClassOf: inverse hasElement some Operand 
 DisjointWith: Fragment, Operand, Message 
ObjectProperty: hasNext 
 Characteristics: Functional 
 SubPropertyOf: followedBy 
 Domain: Element 
 Range: Element 
ObjectProperty: hasPrecede 
 Characteristics: Functional 
 SubPropertyOf: precedeBy 
 InverseOf: hasNext 
 ObjectProperty: hasFragment  
 Domain: Element  
 Range: Fragment  
ObjectProperty: hasMessage  
 Domain: not Message 
 Range: Message 
 InverseOf: messageOf 
ObjectProperty: firstMessage 
 Characteristics: Functional  
 SubPropertyOf: hasMessage 
ObjectProperty: lastMessage  
 Characteristics: Functional  
 SubPropertyOf: hasMessage 
Class: Message  
 SubClassOf: 
  index exactly 1 xsd:positiveInteger, 
  type exactly 1, 
   caller max 1 not Message 
  receiver max 1 not Message 
 DisjointWith: Fragment, Operand, Element 
DataProperty: index 
 Characteristics: Functional 
 Domain: Message 
 Range: xsd:positiveInteger 
ObjectProperty: caller 
 Characteristics: Asymmetric 
 Domain: Message 
 Range: not Message 
ObjectProperty: receiver 
 Characteristics: Asymmetric 
 Domain: Message 
 Range: not Message 
 DisjointWith: caller  
ObjectProperty: nextMessage 
 Characteristics: Functional 
 SubPropertyOf: followedBy 
 Domain: Message 
 Range: Message 
ObjectProperty: precedeMessage 
 Characteristics: Functional 
 SubPropertyOf: precedeBy 
 InverseOf: nextMessage 
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Fig. 3. Diagram Summarizing the Class “Fragment” and Its Related Classes and Properties. 

The reflexive object properties “followedBy” and 
“precedeBy” (respectively super-“hasNext”, “nextMessage” 
and “nextOperand”, and “hasPrecede”, “precedeMessage” and 
“precedeOperand”) refers to all the elements that 
follow/precede a particular element. In OWL 2, no cycles are 
permitted. Acyclicity means that an element cannot follow or 
precede itself, i.e., an element e1 either follows or precedes 
e2, e2 follows or precedes e3 and e3 follows or precedes e1 is 
disallowed. A sufficient and necessary condition for acyclicity 
of followedBy/precedeBy is irreflexive closure of the property 
is transitive. We make followedBy/precedeBy irreflexive and 
transitive at the same time. However, to set those two 
properties as transitive is not possible [8] since the logic 
system would no longer be decidable, and we would keep the 
ontology in a DL framework. We map transitivity in Semantic 
Web Rule Language (SWRL). The transitivity of the 
properties” followedBy” and “precedeBy” is written in SWRL 
as 

• followedBy(?e1, ?e2) ^ followedBy(?e2, ?e3)-> 
followedBy(?e1,?e3) 

• precedeBy(?e1, ?e2) ^ precedeBy(?e2, ?e3) -> 
precedeBy(?e1,?e3) 

The UML sequence diagram is mapped in a way that is 
possible to infer some implicit data. Leaving to a reasoner. For 
example, it is not necessary to specify all the operands of the 
fragment and all the elements of the operand. In fact, through 
the properties chain axiom defined in for the properties. 

• hasOperand : hasOperand o nextOperand 

• hasElement : hasElement o hasNext 

It can specify the first (properties firstOperand and 
firstElement) and the last (properties lastOperand and 
lastElement) elements. In this technique, the reasoner will be 
able to infer all the remaining hasOperand and hasElement. 

Moreover, the mixture of the above property chain can be 
very useful when combined with the subsequent SWRL rules: 

• firstMessage(?o, ?m1) ^ index(?m1, 1) ^ size(?o, ?v) ^ 
index(?m2,?v) -> lastMessage(?o, ?m2) 

• firstOperand(?f, ?o) ^ firstMessage(?o, ?m) -> 
firstMessage(?f,?m)  

• elementOf(?e, ?o) ^ firstElementOf(?e, ?o) ^ 
hasMessage(?e,?m) -> firstMessage(?o, ?m)  

• elementOf(?e, ?o) ^ firstElementOf(?e, ?o) ^ 
hasFragment(?e, ?f) ^ firstMessage(?f, ?m) -> 
firstMessage(?o, ?m)  

• lastOperand(?f, ?o) ^ lastMessage(?o, ?m) -> 
lastMessage(?f, ?m) 

• elementOf(?e, ?o) ^ lastElementOf(?e, ?o) ^ 
hasMessage(?e, ?m) -> lastMessage(?o, ?m)  

• elementOf(?e, ?o) ^ lastElementOf(?e, ?o) ^ 
hasFragment(?e, ?f) ^ lastMessage(?f, ?m) -> 
lastMessage(?o, ?m) 

• elementOf(?e, ?o) ^ hasMessage(?e, ?m) -> 
hasMessage(?o, ?m) 

• hasOperand(?f, ?o) ^ hasMessage(?o, ?m) -> 
hasMessage(?f, ?m)  

• elementOf(?e, ?o) ^ hasFragment(?e, ?f) ^ 
hasMessage(?f,?m) -> hasMessage(?o, ?m)  

• hasNext(?e1, ?e2) ^ hasMessage(?e1, ?m1) ^ 
hasMessage(?e2, ?m2) -> nextMessage(?m1, ?m2) 

• hasNext(?e1, ?e2) ^ hasMessage(?e1, ?m1) ^ 
hasFragment(?e2, ?f) ^ firstMessage(?f, ?m2) -> 
nextMessage(?m1, ?m2) 
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• nextOperand(?o1, ?o2) ^ lastMessage(?o1, ?m1) ^ 
firstMessage(?o2, ?m2) -> nextMessage(?m1, ?m2) 

• hasNext(?e1, ?e2) ^ hasFragment(?e1, ?f1) ^ 
lastMessage(?f1, ?m1) ^ hasFragment(?e2,?f2) ^ 
firstMessage(?f2, ?m2) -> nextMessage(?m1, ?m2) 

• hasNext(?e1,?e2) ^ hasFragment(?e1,?f) ^ 
lastMessage(?f,?m1) ^ hasMessage(?e2,?m2) -> 
nextMessage(?m1, ?m2) 

• messageOf(?m1,?o) ^ messageOf(?m2, ?o) ^ 
index(?m1, ?v1) ^ add(?v2, ?v1, 1) ^ index(?m2, ?v2) -
>nextMessage(?m1, ?m2)  

• nextMessage(?m1, ?m2) ^ index(?m1, ?v1) ^ add(?v2, 
?v1, 1) -> index(?m2, ?v2) 

• Operand(?o) ^ firstMessage(?o, ?m) ^ lastMessage(?o, 
?m) -> size(?o, 1) 

• Operand(?o) ^ firstMessage(?o, ?m1) ^ index(?m1,1) ^ 
lastMessage(?o, ?m2) ^ index(?m2, ?v) -> size(?o, ?v)  

• nextOperand(?o1,?o2) ^ lastMessage(?o1, ?m1) ^ 
index(?m1,?v1) ^ lastMessage(?o2, ?m2) ^ 
index(?m2,?v2) ^ subtract(?v3, ?v2, ?v1) -> size(?o2, 
?v3) 

• hasNext(?e1,?e2) ^ hasMessage(?e1, ?m1) ^ 
index(?m1,?v1) ^ hasFragment(?e2, ?f) ^ 
firstOperand(?f, ?o) ^ lastMessage(?o,?m2) ^ 
index(?m2,?v2) ^ subtract(?v3,?v2,?v1) -> size(?o, ?v3) 

• hasNext(?e1, ?e2) ^ hasFragment(?e1, ?f1) ^ 
lastOperand(?f1,?o1) ^ lastMessage(?o1,?m1) ^ 
index(?m1,?v1) ^ hasFragment(?e2, ?f2) ^ 
firstOperand(?f2,?o2) ^ lastMessage(?o2,?m2) ^ 
index(?m2,?v2) ^ subtract(?v3, ?v2, ?v1) -> 
size(?o2, ?v3) 

Let us introduce an example to show how to use our 
technique for describing a UML sequence diagram. Suppose 
one wants to describe the example, in Fig. 2. It is possible to 
model this scenario straightforwardly using our technique: 

:example a :Fragment 
 ; :kind “sd” 
 ; :firstOperand :op1 
 ; :lastOperand :op1 . 
:op1 a :Operand 
 ; :size “4”^^xsd:nonNegative 
 ; :firstElement :el1 
 ; :lastElement :el2 . 
:el1 a :Element 
 ; :hasMessage :first_message 
 ; :hasNext :el2 . 
:el2 a :Element 
 ; :hasMessage :second_message 
 ; :hasNext :el3 . 
:el3 a :Element 
 ; :hasMessage :third_message 
 ; :hasNext :el4 . 
:el4 a :Element 
 ; :hasMessage :fourth_message . 

:first_message a :Message 
 ; :index “1”^^xsd:positiveInteger 
 ; :type “synchronous” 
 ; :caller :x 
 ; :receiver :z . 
:second_message a :Message 
 ; :index “2”^^xsd:positiveInteger 
 ; :type “synchronous” 
 ; :caller :y 
 ; :receiver :z . 
:third_message a :Message 
 ; :index “3”^^xsd:positiveInteger 
 ; :type “asynchronous” 
 ; :caller :x 
 ; :receiver :z . 
:fourth_message a :Message 
 ; :index “4”^^xsd:positiveInteger 
 ; :type “return” 
 ; :caller :z 
 ; :receiver :x . 

C. Messages 
A UML sequence diagram shows interactions with which 

messages are exchanged among a set of objects participate. It 
concentrates to determine the behavioral view of a system. 
There are two dimensions in the UML sequence diagram, a 
vertical dimension, and a horizontal dimension respectively 
representing time and objects participating in the interaction. 
The horizontal dimension also captures the message which can 
be a signal or a class operation call between two vertical 
dashed lines which are called lifetimes. Each lifetime indicates 
an individual participant over a time in the interaction. 

A message is an abstract element that has a name. It 
specifies the kind of communication between two lifelines of 
an interaction. It does not specify only the sort of 
communication but also the caller and therefore the receiver. 
Caller and receiver are normally two occurrence specifications 
(points at the ends of messages). The message is shown from 
the caller message end to the receiver message end. 

The types of communication of the message as defined in 
the UML are listed below. 

• Synchronous Message: represents a class operation call. 
All other calls of the caller are blocked waiting for the 
receiver to have processed the message and returned. 

• Asynchronous Message: the caller of message does not 
need to wait for a replay to continue. Like synchronous 
messages. 

• Reply Message: it is also defined return message, used 
to refer to the receiver that has processed the message 
and returned a result to the message caller. 

• Self Message: when a caller and a receiver are the same 
it means a caller sent a message to itself. is represented 
as a U shaped arrow. 

• Create Message: the receiver of this message is created 
during the interaction by the message that is being sent. 
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• Delete Message: it destroys its receiver. Targets can be 
destroyed during the interaction by the message that is 
being sent. 

• Found Message: is a message from an unknown caller 
to a known receiver. 

• Lost Message: is a message from a known caller to an 
unknown receiver. 

In OWL 2 DataOneOf axiom is suitable for defining a type 
of the message. “DataOneOf” defines a datatype with a set 
predefined value space. 

DatatypeDefinition( type DataOneOf( "synchronous" 
"asynchronous"…) ) 

The message is a signal or a class operation. In a UML 
class diagram an operation op in class C can be one of the 
following: 

op = { SimpleOp, ParOp } 

• SimpleOp (simple operation): is an operation without 
parameters. 

• ParOp (parameter operation): is an operation with 
parameters. 

For each SimpleOp, we create a data property by 
respectively its domain and range associating with the class 
corresponding to the operation and the XSD type 
corresponding to the type of the operation in the UML class 
diagram. 

Simple operations have a multiplicity restriction to max 
one value. The simple operations of a UML class in a class 
diagram are mapped in OWL 2 as a “DataProperty”. The 
range of the data property is datatype. The datatype can be 
xsd:string, xsd:int and other datatypes [11]. 

Simple operations that use basic types are mapped by 
declaring a data property with the operation's name. An 
operation is a required component of its class. Consequently, 
the data properties describing operations have a max 
cardinality of one. The Simple operation SimpleOp of the 
UML class C having any of the above-mentioned DataType is 
translated in OWL 2 as 

Declaration(Class(C ) ) 

Declaration(DataProperty(SimpleOp ) ) 

SubClassOf(C DataMaxCardinality(1 SimpleOp ) ) 

DataPropertyDomain(SimpleOp C ) 

DataPropertyRange(SimpleOp DataType ) 

An operation with parameters is mapped to: 

• an OWL class (named className) with data property 
for every additional parameter and one of its datatype, 
the data properties have an exact cardinality of one. 

• and object property between the new class and the class 
contains this operation, the object property has an exact 
cardinality of one. 

 
Fig. 4. A UML Operation op with Parameter par of Class C. 

Fig. 4 shows an example of an operation op with 
parameters of class C is drawn by using UML. 

The example of an operation op with parameters of class C 
is mapped into OWL 2 as 

Declaration(Class(C ) ) 

Declaration(Class(Op ) ) 

Declaration(DataProperty(par ) ) 

SubClassOf(Op DataExactCardinality(1 par ) ) 

DataPropertyDomain(par Op ) 

DataPropertyRange(par String ) 

Declaration(DataProperty(datatype ) ) 

SubClassOf(Op DataExactCardinality(1 datatype )) 

DataPropertyDomain(datatype Op ) 

DataPropertyRange(datatype String ) 

Declaration (ObjectProperty(Op_C ) ) 

SubClassOf(Op ObjectExactCardinality(1 Op_C ) ) 

ObjectPropertyDomain(Op_C Op ) 

ObjectPropertyRange(Op_C C ) 

DisjointClasses(Op C ) 

D. Combined Fragment 
A Combined fragment is an interaction fragment using an 

interaction operator to define the semantics of the combined 
fragment, such as alternative, option, and loop. Each 
combined fragment contains at least one interaction operand 
that is like a UML sequence diagram that can contain 
interaction fragments and messages together to model 
conditional behavior in a UML sequence diagram. An 
interaction operand illustrates the interactions between classes 
or object instances and the ordering of messages according to 
time. An interaction operand may have interaction constraints 
also called guards, which is a boolean conditional expression. 
A guard is a semantic condition that specifies the condition 
under which the interaction fragments and messages will be 
performed inside the interaction operand. 

Interaction Operators as defined in the UML sequence 
diagram [12] are listed below. 

• sd: abbreviation for sequence diagram, has one operand 
used for framing an entire sequence diagram. 

• alt: abbreviation for alternatives, means that the 
combined fragment represents alternative or choice 
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paths of execution. Only the one whose guard is true 
will be chosen to execute. 

• opt: abbreviation for option, equivalent to an alt only 
with one path with a guard, and the option operand is 
executed if the guard is true. 

• loop: has one operand with a guard, means that the 
combined fragment represents a loop. The operand will 
be repeated at least the minimum count and no more 
than the maximum count as long as the guard is true. 

• break: has one operand with or without a guard that is 
performed instead of the remainder of the enclosing 
interaction fragment. 

• par: abbreviation for alternatives, means that the 
combined fragment represents more than one operands 
which can be executed parallel. Operands can be freely 
interleaved. In any order, but must be according to the 
ordering imposed by each operand separately. 

• critical: abbreviation for critical region, is a region 
cannot be interleaved by other occurrence 
specifications. 

• ref: abbreviation for critical reference, refers to an 
interaction defined on another diagram. 

There are other interaction operators, such as Strict 
Sequencing, Weak Sequencing, Negative, Ignore, Consider, 
and Assertion which are also defined in [12, 13]. 

In OWL 2 DataOneOf axiom is suitable for defining a type 
of a combined fragment. “DataOneOf” defines a datatype with 
a fixed predefined value space. 

DatatypeDefinition( kind DataOneOf( "alt" "opt"…) ) 

We can use a number of value restriction infix operators 
with the guard constraint of the class “Operand”, such as =, 
>=, <=, > and <. The guard constraint is mapped in OWL 2 as 
a DataProperty. The value constraint of the guard is written in 
the UML sequence diagram as [Guard Op Value], where OP is 
the infix operator and Value represents the guard value. The 
map of the value constraint in OWL 2 is based on the infix 
operator used with the guard operator, such as “>=” is mapped 
using the OWL 2 axiom DatatypeRestriction and 
xsd:minInclusive, “>” is mapped using the OWL 2 axiom 
DatatypeRestriction and xsd:minExclusive,“<=” is mapped 
using the OWL 2 axiom DatatypeRestriction and 
xsd:maxInclusive, “<” is mapped using the OWL 2 axiom 
DatatypeRestriction and xsd:maxExclusive, “!=” is mapped 
using the OWL 2 axiom complementOf and the axiom 
DataHasValue, and “=” mapped using the OWL 2 axiom 
DataHasValue. For example, [Guard = Value] is a guard 
constraint, is mapped to OWL 2 as: 

DataHasValue( Guard }Value}^^ datatype) 

In this translation, Guard is the name of the guard, Value is 
the value of the guard, and datatype is the datatype of the 
guard Value. 

IV. CASE STUDY 
There has been substantially related work on mapping 

UML diagrams into Ontology has been discussed by several 
authors in the past. For instance, B. Bouchra. Author in [2] 
discusses the conversion method by building an e-learning 
ontology from its UML class diagram. In their approach. They 
have recourse to the Collection Ontology to map the 
composition relationship and the Value Partitions Design 
Pattern to map the inheritance. Moreover, the approach 
presented in [4] discusses the migrating UML class diagrams 
to Ontology. In their approach, the model information is 
stored in the XMI document by using a Power Designer tool 
then creating an ontology by passing this XMI document as 
the input of their mapping algorithms. The approach presented 
in [8] describes conversion rules from UML diagrams to 
Ontology containing multiple class, object and statechart 
diagrams. However, the goal of his work is analyzing the 
consistency and satisfiability of models. Moreover, they do 
not discuss the mapping UML sequence diagrams into 
Ontology. 

We present a summary of our technique that we expound 
with a running example. Fig. 5 shows a UML sequence 
diagram that describes the withdrawal cash scenario of an 
ATM system, where Messages are numbered top-down. It 
exposes the object of each class and messages that can be 
invoked on them. It consists of four classes, namely, “User”, 
“ATM”, “Bank” and “Account”. To evaluate our technique we 
need to first map this diagram into OWL 2 by following the 
mapping discussed in the previous sections, after mapping the 
diagram we pass the OWL 2 ontology to the OWL 2 reasoner. 
Fig. 6 and 7 illustrate the diagram after is mapped. 

 
Fig. 5. Withdrawal Cash Scenario of an ATM System. 
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Fig. 6. The Withdrawal ATM Diagram after is Mapped. 

 
Fig. 7. The First Message insertCard after is Mapped. 

V. CONCLUSION 
UML sequence diagrams are used to describe the behavior 

of systems. In this paper, we have demonstrated a technique 
for mapping behavioral knowledge expressed in the UML 
sequence diagrams as an OWL ontology. The OWL DL and 
SWRL rules are used to formalize the semantics of the 
sequence diagrams model. We have analyzed similarities and 
differences among UML and OWL elements in-depth. With 
this knowledge, we have developed rules for addressing the 
issue of defining sequence in OWL. Furthermore, we 
formalized a suitable way to handle the fragment operator 
with an arbitrary number of operands, which is crucial when 
specifying transformations of sequence diagrams. 

As our future work, we will continue to study additional 
cases in order to complete the set of rules. We plan to provide 
the support of other interaction constraints. 
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