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Abstract—High Performace Computing (HPC) architectures 

are expected to develop first ExaFlops computer. This Exascale 

processing framework will be proficient to register ExaFlops 

estimation every subsequent that is thousands-overlay increment 

in current Petascale framework. Current advancements are 

confronting a few difficulties to move toward such outrageous 

registering framework. It has been anticipated that billion-way of 

parallelism will be exploited to discover Exascale level secured 

system that provide massive performance under predefined 

limitations such as processing cores and power consumption. 

However, the key elements of the strategies are required to 

develop a secured ExaFlops level energy efficient system. This 

study proposes a non-blocking, overlapping and GPU 

computation based tri-hybird model (OpenMP, CUDA and MPI) 

model that provide a massive parallelism through different 

granularity levels. We implemented the three different message 

passing strategies including and performed the experiments on 

Aziz-Fujitsu PRIMERGY CX400 supercomputer. It was 

observed that a comprehensive experimental study has been 

conducted to validate the performance and energy efficiency of 

our model. Experimental investigation shows that the EPC could 

be considered as an initiative and leading model to achieve 

massive performance through efficient scheme for Exascale 
computing systems. 

Keywords—High Performance Computing HPC; MPI; 

OpenMP; CUDA; Supercomputing Systems 

I. INTRODUCTION 

Since last three decades, High performance computing 
(HPC), played a fundamental role in scientific endeavour 
where vendors emphasized to improve system performance by 
dramatic increasing through on-chip parallelism. According to 
Top-500 supercomputers list, an improvement of 10x in system 
performance is discovered after every 3.6 years [1]. A 
supercomputer in 2012, Titan Cray XK7 was capable to 
achieve 18 PFLOPs under the 8.3 MW power consumption [2]. 
Moving on the vision to enhance system performance to solve 
the complex problems, Tianhe-II the current supercomputer 
manufactured by NUDT is capable to deliver 55.2 PFLOPs 
with 17MW power consumption [3]. The demand of 
computation for solving complex problem envisioned to 
develop new supercomputer [4]. This extraordinary scale 
processing framework will be proficient to compute 1018 
FLOPS activities for each subsequent that is thousand-crease 
increment in current Petascale framework. As per expectations, 
Exascale figuring framework will be involved countless 

heterogeneous process hubs connected by complex systems 
[5]. The essential issue for HPC frameworks is that such 
Extreme (Exascale) processing framework doesn't exist yet, 
anyway everything toward Exascale is simply expectations and 
contemplations. To improve the system throughput, the trend 
has been changed from traditional way of doubling clock 
speeds by doubling number of cores, threads or other 
parallelizing mechanisms [4]. However, it is predicted that 
millions of cores of heterogeneous devices including CPUs and 
GPUs will be comprised by the Exascale computing system. 

A. Exascale Computing Limitations and Challenges 

As indicated by the innovation and programming 
approaches that are being utilized in existing Petascale 
registering framework, the power consumption is about 25 to 
60 MW by utilizing 30 M number of centres. The interest of 
intensity utilization for Exascale registering framework will be 
more than 130 Megawatts [6]. United State Department of 
Energy characterized some essential limitations such as Power 
Consumption roughly 20-30 MW, Development Cost (D.C) up 
to 200 M US dollars, Delivery Time (DT) till 2020, and Cores 
about 100 Million [7]. However, development of targeted 
Exascale Supercomputer under the delimitation of these 
constraints is the tremendous challenge for vendors and 
development communities. 

Leading to the massive powerful computing system, there 
are several challenges which are still the blockage for 
development toward emerging HPC systems. In [7], some 
primary Exascale computing challenges discussed are 
presented in Table I. For 21st century, these imperative 
difficulties are the basic way to create innovatory answers for 
Exascale figuring framework. Nonetheless, an emotional 
reformulation at both equipment and programming levels, 
programming models, vitality proficient strategies, 
investigating apparatuses and overhaul calculations are 
requested to accomplish the calculation in ExaFlops [8]. Since 
last few years the development process for Exascale computing 
system is being rapidly fast. Under these listed challenges, 
many new approaches have been proposed. 

B. Software Technology Navigation 

In current study, our contribution is related to challenges 1, 
2, and 5 from Table I to improve the system performance 
through efficient and massive parallelism under minimum 
power consumption. From software perspectives, still it has not 
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been determined that at what level [9], the software framework 
is adoptable to achieve massive parallelism for Exascale 
computing systems. The recent energy efficient GPU 
technology introduced by NVIDIA outperforms the traditional 
processing on CPU cores [34, 35, 36]. Therefore, involving 
GPU accelerated computation in system, the hierarchy level of 
programming model navigation is shown in Fig. 1. 

According to this navigational model, the anticipation is 
going to be that Tri-level model outperforms much better than 
traditional single or dual models [10]. It provides massive 
parallelism where energy efficient accelerated devices 
(GPGPU) collaborate with other models that deal with fine-
grain and coarse-grain parallelism. 

The rest of paper is organized as follows. Section II related 
work describes the existing state-of-art-approaches at Single, 
Dual, and Tri levels. Further Section III depicts a 
comprehensive overview of proposed EPC model, its features 
and components. Section IV, presents the experimental 
platform and applications used to evaluate EPC model. Last 
Section V concludes and explains the results in term of 
summary. 

TABLE I. EXASCALE COMPUTING CHALLENGES 

Challenges  Description 

Power Consumption 

Management 

Power consumed by the system and its 

management  

Novel Architectures 
New non-conventional architectures to support 

Exascale frameworks  

Memory Technology 
Memory management and storing systems to 

support massive storage.  

Scalable System 

Software 

Scalable and resilience system are needed to 

support sudden power fluctuation 

Programming Systems 
Novel programming techniques to support parallel 

programming libraries and frameworks.  

Data Management 
Efficient data management approaches are 

demanded.  

Exascale Algorithms 
New algorithms should be proposed to manage 

massive parallelism and advance programming.  

Discovery and Design 

Algorithms 

Discovery should be facilitated by mathematical 

models.  

Resilience & 

Correctness 

Faults and verification challenges should be 

addressed.  

Scientific Productivity 
Scientific productivity is necessary to through 

novel software tools.  

Power Consumption 

Management 

Power consumed by the system and its 

management  

 

Fig. 1. Hierarchy Level of Programming Model Navigation. 

II. RELATED WORK 

Pushing toward HPC (High Performance Computing), 
equipment and programming rising advances have been 
examined toward Petascale registering framework in [11]. 
Prompting Petascale figuring framework, numerous equipment 
point of view methods where studied such as Conventional 
innovation, Preparing In-Memory structures (PIM), Digital 
superconductor advances, Computation Fluid Dynamics 
(CFD), Special-reason equipment, Web-based Petascale 
Computing, atomic nanotechnology and insightful planetary 
rocket and so on [12]. An information parallel programming 
language with respect to procedures for Petascale framework 
were proposed [13]. These models where capable to gain 
parallelism for both course grain and fine grain level using 
traditional homogenous system on multicore CPU devices [14]. 

In the end of recent decade, to bring scalability in system, 
technology trend was changed from traditional homogenous to 
heterogeneous cluster system where many-core devices were 
introduced such as General Purpose Graphics Processing Unit 
(GPGPU), Graphics Processing Unit (GPU) by NIVIDIA [15] 
and MIC (Many Integrated cores) by Intel [16]. These 
accelerated devices are based on Single Instruction Multiple 
Data (SIMD) from Flynn’s classification. Beyond these 
accelerated devices, many parallel programming models have 
been proposed such as CUDA, OpenACC, and OpenCL. It has 
been anticipated these parallel programming models could be 
promising to achieve massive parallelism required for future 
Exascale computing system [17]. In any case, to use such 
incredible gadgets and models, a key component of the 
methodology is the co-structure of uses, designs and 
programming conditions at both equipment and programming 
level. 

According to development to HPC Exascale computing 
system, China has a fast development towards HPC systems 
and consequently they introduced Tianhe II HPC system 
recently in 2014 [18]. Further they introduced the upgraded 
version named as Tianhe III [19]. Similarly, DEEP (Dynamical 
Exascale Entry Platform) by European Union in 2011 [20] 
started effort toward a new HPC Exascale computing system. 
SERT project funded by NAG took initiative to introduce first 
Exascale computing system in 2020 [21, 22]. In Japan, RIKEN 
[23] claimed to present first Exascale computing in start of 
2020. Further, Indian Government also started Exascale 
computing development since 2018 and claimed to introduce in 
2022 [24]. 

III. PRELIMINARIES 

MPI has many different schemes that can be used to 
program a cluster system. Traditionally, two prevalent methods 
MPI blocking (synchronous) and non-blocking (asynchronous) 
are being used to distribute data over a cluster system [25, 26, 
27]. In legacy systems, the whole processing was performed by 
CPU cores using MPI blocking method. Consequently, the 
processing over CPU cores was very costly with respect to 
energy consumption and processing efficiency. Therefore, new 
SIMD (single instruction multiple data) based energy efficient 
devices (GPUs, MIC) were introduced that contains thousands 
of cores on it. These cores compute data in parallel and 
consequently, reduce processing time and power consumption. 
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Due to parallel computation, data processing over GPU cores is 
very fast which required a rapid data input. In this way, MPI 
non-blocking is appropriate approach to fully utilize these 
powerful devices and achieve maximum performance. In 
current study, we discussed three fundamental MPI non-
blocking schemes as follows: 

A. (S1)- MPI Non-Blocking, no Overlapping Computation 

In first strategy 1 (S1) MPI non-blocking and no 
overlapping implemented scheme, computation does not 
overlap during data processing [28]. This scheme performs just 
like a blocking mechanism where all resources are reserved 
until the whole processing is completed. One disadvantage of 
this scheme is that many resources are reserved event though 
they finished their assigned tasks. Although MPI 
communication is capable to overlap with CUDA, but we 
avoided from overlapping in this implementation. During 
exchanging data from multiple arrays, MPI scatter and gather 
data for one edge while memory copying operation is 
proceeding for other components. 

B. (S2)- MPI Non-Blocking, Overlapping Computation 

The second implemented strategy for data distribution was 
(S2) MPI non-blocking but overlapping computation where 
CUDA copying operation was overlapped with MPI 
communication. In this strategy, CUDA kernel was 
decomposed into three potions where top and bottom edges 
were done from the middle. In such way, kernel was started 
with the edges which are going to be computed, rather than 
start exchanging on entire domain. Following non-blocking 
MPI mechanism, first portion started copying operation from 
device to host. Immediately after completing copy operation to 
host, middle portion of the domain started computation. 
Similarly, last part of exchanging operation started as soon 
middle potion complete its computation. This implementation 
strategy can be more significant by improving the overlapping 
computation of middle portion. 

C. (S3)-MPI Non-blocking,Overlapping & GPU Computation 

The final implementation was MPI (S3) non-blocking with 
highest amount of overlapping which is anticipated the best 
performing strategy for large scale cluster system [29]. Using 
asynchronous method, CUDA streams were enabled and 
started computation from middle portion that cause to for 
massive overlapping, MPI communication and memory 
operations. The important thing in this strategy is that, a very 
small level of changes is needed inside the CUDA kernels to 
perform the computations. In order to optimize the GPU 
threads, a flag along with grid size and number of blocks is 
broadcasted over the kernels to indicate a specific portion for 
computation. 

IV. EFFICIENT PARALLEL COMPUTING MODEL 

We presented the proposed EPC model implemented in 
C++. Based on the predicted Exascale computing system, EPC 
model was categorized into three different computing 
environments including cluster system, compute node, and 
GPU computing. Each environment contained a separate layer 
of parallelism as presented in Fig. 2. 

Programmer interacts with EPC model through the 
application written in C++. Before entering in parallelism zone, 
data is analyzed by the programmer himself statically to know 
that, which statement can be parallelized. Once data is 
analyzed and ready for parallel computation, it entered in 
parallel computing zones as described in following sections. 

A. Inter-Node Computation Layer 

The primary degree of parallelism of the model was 
accomplished between hub correspondences. In view of these 
parameters, developer break down and appropriate over 
associated framework hubs utilizing an institutionalized SIMD 
based Message Passing Interface (MPI) library [30]. MPI 
blocking (synchronous) and non-blocking (no concurrent) two 
pervasive components are being utilized to move and assemble 
information over the processors. Blocking systems is utilized 
when a solid synchronization is required because of reliance in 
information. For this situation, the assets are held utilizing 
some pre-characterized MPI holding up explanations until the 
handling is finished. In our parallel registering system, 
information is required just to convey over the processors that 
subsequently gives coarse-grain parallelism at this level, along 
these lines we chose "non-blocking, covering with GPU 
calculation" the third MPI non-blocking technique as talked 
about in past segment. In this procedure, when information is 
moved no concurrently over associated hubs, it entered in 
second degree of parallelism portrayed in following area. 

B. Intra-Node Computation Layer 

The proposed model provides the second level of 
parallelism at Intra-node computation. At this level, the 
distributed data through MPI processors is further 
communicated with CPU threads for parallel processing. At 
this stage, OpenMP pragmas are used that parallelize the 
blocks of code either fine grain or course grain computation. 
OpenMP threads use the system specified threads over CPU 
cores and complete the executions. According to new OpenMP 
version, we can use multiple OpenMP pragmas for multiple 
blocks within single block that is the reason to achieve fine 
grain parallelism in the code. 

C. GPU Computation Layer Acceleration 

The last level of parallelism in our proposed model is Intra-
node computation. In this layer of computation, the whole 
processing is performed on accelerated GPU devices. In this 
strategy, firstly the data is transferred form CPU cores to GPU 
that further distributed over GPU Warps. According to the 
structure of GPU each warp contains 32 number of cores where 
the number of warps can be different from GPU structure to 
structure. Once the data is transferred over GPU cores, GPU 
kernel divide the tasks into multiple GPU warps and perform 
all the operations in parallel. To perform the GPU computation, 
we can utilize the different accelerated devices such as 
NVIDIA GPU, AMD GPU etc. for current study, to maintain 
the maximum support for C++, we selected NVIDIA GPU and 
implemented accordingly. 

In the past, low overlapping between CPU and GPU caused 
the wastage of resources where GPU threads remain in idle 
state until the processing from other kernels is not 
accomplished. Usually, this inefficiency factor was found in 
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MPI non-blocking non-overlapping and non-blocking low-
overlapping strategies that consequently waste resources 
utilization and decrease system efficiency. 

Although MPI non-blocking was implemented in existing 
design as shown in Fig. 3(a) but waiting state for kernel and 
separate progress effected in decreasing efficiency. In each 
broadcasting, Isend() function/method has performed in three 
states including kernel initialization, kernel waiting and start 
sending data. During Isend() from these states, kernel stream 
was reserved. Once first kernel stream is complete, next one 

start processing. In such way, each stream waste resource 
utilization during waiting state. Conversely, in our proposed 
design, we organized these three states for every broadcasting 
Isend() in such way that kernels were overlapped and 
initialized immediately after one. Therefore, all kernel streams 
are now overlapping and can start processing as soon it 
receives data. A minor waiting state is ignorable because data 
sending process can be started as soon it complete its previous 
stage. Fig. 3(b) shows a clear benefit of proposed design that 
minimize delay in processing and increase efficiency through 
higher overlapping. 

 

Fig. 2. EPC: A Hybrid Parallel Computational Model. 

 

Fig. 3. Overlapping: Existing vs Proposed Design. 

(2) 
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V. EXPERIMENTAL SETUP 

A. Platform 

To perform the experiments, we have used the Aziz 
supercomputer the 360th positioned in 2015 top 
supercomputers placed in High Performance Computing 
Centre (HPCC), King Abdulaziz University. The Aziz 
supercomputer contains Xeon CPU processors along with GPU 
devices [31]. Aziz comprises of complete 11904 number of 
cores on it including both CPU and GPU cores. Regarding the 
Aziz memory, 96GB hubs and 256 GB individually configured 
in it where each hub consists of individual processor -2.4 GHz 
and 12 Cores- controlled CentOS 6.4 working framework. All 
the nodes are connected with infini-band medium to make the 
communication more efficient. With respect to overall 
efficiency, Aziz supercomputer is very powerful that is able to 
accomplish about 211 TFlops/s Linpack execution and about 
228 TFlops/s overall [32]. 

B. Performance Measurment 

The primary factor in High performance computing 
systems is Performance [33]. Conventionally, the performance 
of a computer system is calculated in number of Flops by 
attaining the peak performance and the number of flops against 
the targeted application execution as described in equation 1. If 
we consider that Fp are the flops at peak floating point and Fm 
are the number of flops against targeted application, therefore 
Fc can be determined as: 

𝐹𝑐 =  
𝐹𝑝

𝐹𝑚
               (1) 

Using the Aziz peak performance Aziz, we have quantified 
the performance by executing targeted HPC applications at 
different datasets described in following sections. 

C. Power Measurment 

The second most important metric is the power 
consumption which is the primary challenge for current and 
emerging HPC systems. In current we have discussed the 
power consumption different perspectives. Conventionally the 
power consumption can be categorized in two ways including 
the power consumed at system level without running specific 
application and secondly the power consumption with some 
specific application computation [30]. Both categories have 
been specified the given equations 2,3 as follows. 

Psystem(w) = ∑ 𝑃𝐺𝑃𝑈
𝑖 (𝑤𝑖) 

N

i=1
+ 𝑃𝐶𝑃𝑈(∑ (𝑤𝑖𝑀

𝑗 )) + 𝑃𝑚𝑏(𝑤)     (2) 

In above equation, the power consumed by system is the 
sum of power consumed by number of configured GPUs, 
CPUs and mainboard. 

Papp = ∑ 𝑃𝐺𝑃𝑈
𝑖 (𝑤𝑎𝑝𝑝

𝑖 ) 
𝑁𝑎𝑝𝑝

i=1
+ 𝑃𝐶𝑃𝑈(∑ 𝑤𝑖𝑀

𝑗 ) + 𝑃𝑚𝑏(𝑤𝑎𝑝𝑝) (3) 

Similarly, the equation 3 describe the power consumed by 
system while running a specific application which is the sum of 
power consumed by number of configured GPUs, CPUs and 
mainboard. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section we have presented all the determined results 
from the experiments where we implemented various 
numerical algorithms and discussed experimental results in this 
section. In first implementation, we run DMM application with 
multiple datasets through EPC model. A fundamental matrix 
multiplication method used in our implementation has been 
presented in below equation (6). 

 

Sum of the given matrix can be defined as: 

Cij = ∑  (Aik Bkj)
m

k=1
             (4) 

Further to investigate the efficiency factor, we performed 
DMM implementation in suggested tri-level hybrid model with 
all MPI strategies (S1, S2 and S3) discussed in section (3). 

By increasing matrix multiplication datasets, ‘S3’ increased 
the efficiency gradually and depicted the best performance 
compared to ‘S1’ and ‘S2’, and achieved 68% of peak 
performance in Tflops. Unlikely, ‘S1’ and ‘S2’ could attain the 
efficiency within range of 700-800 Gflops which was the initial 
throughput in ‘S3’ implementation. With large dataset 
computation, we observed that ‘S1’ declined the system 
efficiency which was eventually cause of over waiting during 
data distribution as shown in Fig. 4. 

Along with performance, we quantified energy efficiency 
which is considered the primary metric for current and 
emerging HPC technologies. Likewise, the consequences in 
performance efficiency, ‘S3’ throughout increased energy 
efficiency at all datasets computation and accomplished 8.2 
Gflops/w as shown in Fig. 5. 

Further, we implemented 2-D Laplace application utilizing 
Jacobian iterative strategy where we run all models. By and 
large, the fractional differential conditions are ordered in a way 
like conic but here we have discussed only elliptic equation as 

Uxx  (x, y) + Uyy (x, y)  [22]. Be that as it may, the specific 

elliptic condition called "2-D Laplace condition" [23] utilized 
in current investigations is presented as follows in equation 7: 

∂2U 

∂x2  (x, y) +  
∂2U 

∂y2  (x, y) =  0             (5) 

We implemented 2-D Laplace Jacobian iterative method in 
EPC proposed model using all strategies. The mesh size was 
increased dramatically in the range of 1000-8000. Fig. 6 and 7 
demonstrate the consequences of 2-D Laplace method against 
both metrics (performance and energy efficiency). The similar 
efficiency ratio of ‘S1’ in matrix multiplication was found in 2-
D Laplace solver method in range of 390-700 Gflops/sec. 
Although, efficiency increased gradually in ‘S1’ but we can 
rely on it due to poor throughput. 

We also evaluated energy efficiency in 2D Laplace 
equation method (see Fig. 6). ‘S3’ provided the best energy 

𝑐11𝑐12 ….𝑐1𝑝        𝑎11𝑎12 ….𝑎1𝑚    𝑏11𝑏12 ….𝑏1𝑝 

𝑐21𝑐22 ….𝑐2𝑝        𝑎21𝑎22 ….𝑎2𝑚    𝑏21𝑏22 ….𝑏2𝑝 

               
𝑐𝑛1𝑐𝑛2 ….𝑐𝑛𝑝        𝑎𝑛1𝑎𝑛2 ….𝑎𝑛𝑚   𝑏𝑚1𝑏,2 ….𝑏𝑚𝑝 
 

= 
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efficiency as compared to other strategies. We noticed that ‘S2’ 
was also prominent and achieved energy efficiency up to 8.3 
Gflops/w but ‘S1’ wasted a lot of energy throughout the 
computation and achieved 7.4 Gflops/w at maximum mesh size. 

 

Fig. 4. Performance efficiency in all Strategies during MM Computation. 

 

Fig. 5. Performance Efficiency in All Strategies during 2-D Laplace Solver. 

 

Fig. 6. Energy Efficiency 2-D Laplace. 

 

Fig. 7. Energy Efficiency in MM. 

VII. CONCLUSION 

The emerging HPC models are relied upon to grow first 
Exaflops PC to contain a huge number of heterogeneous 
process hubs connected by complex systems till next half 
decade. This Exascale processing framework will be skilled to 
figure one Exaflops estimation for each subsequent which is 
thousands-crease increment in current Petascale framework. In 
current study, we have discussed the extensive constraints for 
Exascale systems and perspective challenges for current 
technologies. In this research, the proposed model is a novel 
secure and efficient parallel programming approach which is 
tri-level hybrid of MPI, OpenMP and CUDA. In MPI, we 
implemented different strategies (S1, S2 and S3) under non-
blocking mechanism. Further to evaluate the efficiency factors, 
the proposed model was implemented with all these strategies 
in two benchmarking HPC applications including DMM and 
two dimensional Laplace equation. Consequently, in both 
applications, we found that ‘S3’ strategy (non-blocking, 
overlapping and GPU computation) performed the best in 
providing performance efficiency and energy efficiency 
comparatively to (S1and S2). Therefore, hybrid of proposed 
model with ‘S3’ MPI strategy can be consider as promising 
model to achieve required performance and energy efficiency 
for Exascale systems. By future perspectives, this model is 
required to be executed a large cluster system that can meet the 
minimum requirement for Exascale system configurations. 
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