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Abstract—The accidents happening to buildings and other 
human facilitation sectors due to poor water supply pipelining 
system is a random phenomenon, but an efficient estimation 
system can help to escape from such accidents. Such a system can 
be useful in assisting the caretakers to take the initiative 
measures to avoid the occurrence of the accidents or at least 
reduce the associated risk. In this paper, we target this issue by 
proposing a water supply pipelines risk estimation methodology 
using feed forward backpropagation neural network (FFBPNN). 
For validation and performance evaluation, real data of water 
supply pipelines collected in Seoul, Republic of South Korea from 
1987 to 2010 is used. A comprehensive analysis is performed in 
order to get reasonable results with both original and pre-
processed input data. Pre-processing consists of two steps: data 
normalization and statistical moments computation. Statistical 
moments are mean, variance, kurtosis and skewness. Significant 
improvement in prediction accuracy is observed with data pre-
processing in terms of selected performance metrics, such as 
mean absolute error (MAE), mean absolute percentage error 
(MAPE) and root mean squared error (RMSE). 

Keywords—Neural networks; normalization; risk index; mean 
square error; statistical moments 

I. INTRODUCTION 
Underground facilities are very important to be monitored, 

because these facilities are unforeseen hazards to buildings, 
bridges, railway lines, etc. In terms of reducing the hazards, 
underground water supply pipelines are one the most 
important facility which contributes many underground risks 
and difficulties. Water is the superlative part of life without 
which no one can survive in the world. Water facilities are 
fully dependent on pipe, without pipeline water supply is 
impossible. In order to provide and supply water to homes, 
buildings and commercial areas, a bundle of pipes is installed 
underground. In recent age, the cities become more and more 
congested and these water supply pipelines are danger 
warning to constructed buildings as well as more risks to be 
taken to supply water in these congested areas [1,2]. 

The affection of water supply pipelines is affected by 
different types of parameters such as leakage, age, depth and 

height, quality of the pipe, water temperature, soil electrical 
resistivity, soil temperature, soil moisture, etc. One of the 
most important features for estimation of water supply 
pipeline risk is aging. The fitness of pipelines may be 
degraded with the passage of time, and also depends on the 
quality of materials. The degradation of the water supply 
pipeline can affect and destruct the underground structure of 
the buildings; hence it is very important to fix and restore 
damaged water supply pipelines on time and reduce the 
chances of occurrence of accidents and risks [3]. In this paper, 
we examine the depth, leakage, length and age which are a 
very important factors in water supply pipeline failure or 
damage. 

Water supply pipeline leakage is a very remarkable factor 
that can cause for unexpected underground menaces such as 
urban sinkhole and abrupt road-side subsidence due to water 
pipes leaks. This water supply pipeline leakage slowly and 
steadily destructs the underground structure of congested 
buildings, sub-ways, bridges, railways, etc. and because of this 
alarming situation, underground water facilities permanently 
remain a major and serious threat. Failure and depth of water 
supply pipeline also ultimately damages the underground 
structural damage or failure eventually. When a water pipeline 
is spread closely to the surface then any human activity or 
moving of vehicles can damage the surface over the pipe and 
can even break the pipe when heavy load is exerted on the 
pipe, if a pipe under the ground is buried deeper, affection 
does not cause on the surface because of deepness. Suddenly 
rupture in the water supply pipeline can bring serious damage 
to the near advantage people. Comparably another parameter 
that is length, plays an essential role in the protection of the 
water supply pipeline and ultimately at underground risk [4]. 
To analyze water supply risks, researchers have proposed 
different new techniques. 

The objective of this paper is to compute the accurate 
estimated risk failure of water supply pipelines by using 
FFBPNN on data with statistical moments, original data and 
normalized data. We selected the FFBPNN for water supply 
pipeline risk estimation because it is the most important model 
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for estimation and prediction [5]. The data with statistical 
moments is also very important to increase the performance of 
ANN [5]. Normalization also increases the performance of an 
algorithm. In this study the pipeline failure risk is considered 
in term that how it impacts the underground structure. 

Rest of the paper is organized as: Section 2 presents 
related work, Section 3 proposed model for water supply 
pipelines, Section 4 explains the experimental results and 
discussion. The conclusion of the paper is given in Section 5. 

II. RELATED WORK 
Numerous algorithms have been developed based for 

water supply risk index assessment in literature. 

Hussam et al. in [6] suggested a hierarchical based fuzzy 
model for water supply pipeline hazard evaluation. 16 risk 
factors were considered in that system. They inferred that the 
age of the pipe extends a solid effect on failure. They further 
added that pipe segments length, diameter and material are 
also very important elements of water supply pipelines. Yan 
and Vairvamoorthy in [7] proposed a decision-making 
technique to assess pipeline conditions. The fuzzy numbers 
are the output of this model that reflects the state of each 
pipeline. Kleiner et al. recommended a technique for buried 
pipelines to model the decline process; the model is based on a 
fuzzy rule-based non-homogeneous Markova process [8]. 
They also proposed a fuzzy logic method for pipeline risk 
evaluation. They have three main chunks, namely failure 
possibility, failure consequences, and a mixture of both [9]. 

Kleta et al., [10] used to review the system of lining 
surface images by video recording in which cameras are 
moved for damage assessment and integrity observation. The 
recording and camera monitoring systems are only limited to 
the visible parts of the surface. Different tools are designed to 
inspect large diameters and water mains. The most accurate 
tool available to detect the pockets trapped gas, leak and 
structural faults complicated networks of huge diameter mater 
mains is the Sahara Pipeline Inspection System. Meng et al., 
[11] recommended a quantitative risk assessment (QRA) 
model which is a novel approach used for evaluation of non-
homogeneous road tunnels risks, because the QRA models are 
inappropriate to apply to assess risk in road tunnels. The 
tunnel segmentation principle is used in this model in which 
the dissimilar urban road tunnel is segmented into numerous 
similar segments. The separate risk for road tunnel segments 
along with the combined risk indication for the entire road 
tunnel is elucidated. Duzgun et al., [12] suggested the decision 
analysis method for evaluation and managing the risk of 
underground coal mines and falling of coal mine roof. 
Possible consequences and cost of consequences, the 
probability was used for the risk assessment. Ustinovichius et 
al., [13] discussed various risk assessment methods. 
Assessment of risk can help decision-makers for ranking 
existing risk to take proper reaction suitably. Fault trees, 
monto carlo simulation, failure mode and effective analysis, 
event trees, game theory, fuzzy set, grey systems and multi-
criteria verbal analysis are available numerous risk assessment 
methods. Multilayer perceptron (MLP) is an artificial neural 
network (ANN) with more than one hidden layer and a bias 
layer. For different types of modeling of ANN, different types 

of architectures have been used for many years in different 
research areas including mathematics, engineering, medicine, 
neurology, meteorology, economics, hydrology, psychology 
and different other areas [14-17]. The ANN has many variants 
like multilayer perceptron (MLP), self-organization map 
(SOM), support vector machine (SVM), recurrent neural 
network (RNN) and feed forwarded neural network (FFNN). 
In this work, feed forward back-propagation neural network 
(FFBPNN) is used which is a very famous ANN model for 
prediction and estimation [18]. 

Fayaz et al. [19] proposed a model called blended 
hierarchical fuzzy logic for water supply risk index 
assessment. The purposed of the proposed model was to 
reduce the number of rules in the developed model. Another 
model named as the cohesive hierarchical fuzzy inference 
system was developed in [20] to assess water supply risk 
index. The aim of this model was similar to the previous 
model and both models have the potential to decrease the 
number of rules as well as to improve accuracy. 

III. PROPOSED METHODOLOGY OF WATER SUPPLY 
PIPELINES RISK INDEX ESTIMATION 

Fig. 1 depicts the proposed method, comprised of four 
different kind of layers; data acquisition layer, pre-processing 
layer, estimation layer based on the neural network and 
performance evaluation layer. Each layer has its own 
functionality. Data layer contains the data related to water 
supply pipeline risks. In the pre-processing layer, statistical 
moments and normalization are used to pre-process the 
acquired data. In the estimation layer, FFBPNN is used for 
water supply pipeline risk index estimation. The performance 
of the FFBPNN is measured in the performance evaluation 
layer. The three-performance measurement used for 
evaluation of neural network such as mean absolute error 
(MAE), root means absolute error (RMSE) and mean absolute 
percentage error (MAPE), respectively. 

A. Data Layer 
The datasets used in this work are real datasets that have 

been acquired from Electronics and Telecommunications 
Research Institute (ETRI) working on the underground 
projects. This institute completed a lot of underground project 
globally. For our research, we collected water supply pipelines 
data from 1989-2010 at different places in Seoul, the Republic 
of South Korea. It is observed in the literature when some 
tweaks are added to the original data, the performance of 
machine learning algorithms improves, therefore in this study, 
we normalize the data and calculate statistical moments of the 
data to get better results. 

B. Pre-Processing Layer 
First, we take the dataset in pre-processing layer. The 

datasets comprise of the leakage, age, depth and height 
parameters of water supply pipelines. Using this data, first we 
calculate the statistical moments and then concatenate with the 
original data. The first four parameters, namely variance, 
mean, kurtosis and skewness [17] can be calculated using 
below Equations (1-4). 

µ = 1
n
∑ xin
i=1               (1) 
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σ = 1
n
∑ (xi − µ)2n
i=1              (2) 

S = 1
n
∑ �

(xj−µ)

σ
�
3

n
i=1              (3) 

 K = 1
n
∑ �

(xj−µ)

σ
�
4

n
i=1              (4) 

where 𝜎,µ, K, S represent variance, mean , kurtosis and 
skewness, respectively. 𝑥𝑥𝑖  denotes values of leak, depth, 
length and age of pipes values, i = 1,2,…. 4. 

For trial and test purposes, the normalized data can be 
computed by using Equation (5). 

 𝑥𝑥𝑛𝑒𝑤
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
              (5) 

Where the output normalized value is denoted by 𝑥𝑥𝑛𝑒𝑤 , the 
current value is indicated by 𝑥𝑥, the minimum value in the set 
is represented by 𝑥𝑥𝑚𝑖𝑛, and the maximum value is denoted by 
𝑥𝑥𝑚𝑎𝑥 [5]. 

C. Water Supply Risk Index Estimation Layer 
The ANN method is characterized as the regression 

method, which signifies the state of the art nonlinearity 
between the dependent and independent variables [5]. In the 
recent decade, researchers have deployed NNs for analyzing 
different kinds of estimation problems in a variety of 
situations. The model we used in the proposed work is the 
FFNN model with back-error propagation as depicted in Fig. 2 
and 3, respectively for original and normalized data, and for 
data with statistical moments. The ANN model, bind with the 
error propagation algorithm (FFBPNN) is a very popular ANN 
model for prediction and estimation [18]. ANN has normally 
three layers model such as input layer, hidden layer, and 
output layer as depicted in Fig. 2 and 4. Researcher always use 
more than one hidden layer, and a bias node can also be added 
to the hidden layer to reduce error in the model. 

If we compute the hidden layer, we can use the below 
Equation (6). 

𝑣𝑣𝑗 = �1 + exp (−1 × ∑ 𝑥𝑥𝑖1
𝑖=1 𝑤𝑖𝑗  )�−1           (6) 

Where j nodes in the hidden layer can be denoted by 𝑣𝑣𝑗𝑗, 
node i in the input layer is denoted by 𝑥𝑥𝑗𝑗, wij denotes the 
weight between the nodes, y represents the output layer node 
and can be computed by (7). 

𝑦 = �1 + exp (−1 × ∑ 𝑣𝑣𝑗
𝑗
𝑗=1 𝑤𝑖𝑗)�

−1
           (7) 

The output layer node is denoted by y, (we have only taken 
two output nodes in this research work, multiple numbers of 
output nodes can be taken according to the requirements). 
Error can be computed between computed data and observed 
data by using equation (8): 

 Error = 0.5(d − y)2             (8) 

The observed data propagation from the output layer is 
represented by d, and the hidden layer can be calculated by 
using equations 9 and 10, respectively. 

 𝛿𝑦 = (𝑑 − 𝑦)(1 − 𝑦)              (9) 

 𝛿𝑦 = 𝑣𝑣𝑗�𝑑 − 𝑣𝑣𝑗�(1 − 𝑦)𝛿𝑦𝑤𝑗1 , 𝑗𝑗 = 1, … … . , 𝐽        (10) 

The input and hidden layers and the adjustment of weight 
w between hidden layers and output layers can be computed 
by the following formulae (11, 12), respectively. 

∆w𝑖𝑗 =  𝛼δ𝑦𝑣𝑣𝑗,𝑖 = 1, … . . , 𝐼;  j = 1, … . , 𝐽         (11) 

 ∆w𝑖𝑗
𝑛 =  𝛼δ𝑦𝑣𝑣𝑗,𝑗𝑗 = 1, … . . , J          (12) 

The learning rate is represented by, and also momentum 
can be computed as (13-14); 

 ∆wij
n =  αδyvj, + β ∆wj1

n−1, j = 1, … , JR         (13) 

∆wij
n =  αδyvj + β ∆wj1

n−1, i = 1, … , I;  j = 1, … . . , J       (14) 

The iteration of error backpropagation is indicated by n, 
and momentum constant is represented by β. This momentum 
method accelerates the weights to avoid any fluctuations in the 
training process of error surface in the flat region. 

For the validation of each of the models developed for a 
different number of inputs and hidden neurons, the percentage 
split method is applied in which the total data are separated, 
and experimentation is done by 70/30 random training-test 
splits, 70% for training the data and 30% for testing to validate 
the samples. This ratio is the standard ratio for splitting 
training and testing data [15]. 

D. Performance Evaluation Layer 
Different parameters are available to calculate the 

performance of the model. Below three performance 
measurement equations have been used to measure the 
performance that is mean absolute error (MAE), root mean 
square error (RMSE) and the mean absolute percentage error 
(MAPE) [15]. For the assessment of regression accuracy, 
these performance measurement matrices are normally used in 
the literature. Numerical equations of MAE, RMSE, and 
MAPE are calculated by using below Equations (15, 16, 17), 
alternatively. 

RMSE = �𝟏
𝑵
� (𝑨 − 𝑬)𝟐𝒏

𝒌=𝟎            (15) 

MAE = 𝟏
𝑵
∑ |𝑨𝒊 − 𝑬𝒊|𝒏
𝒊=𝟏            (16) 

MAPE =  𝟏
𝑵
∑ |𝑨𝒊−𝑬𝒊|

𝑨𝒊
𝒏
𝒊=𝟏  ₓ 100          (17) 

Where the total number of observations is represented by 
N, actual values are denoted by A, and estimated values is 
represented by P. As illustrated in Table I, we assessed the 
performance of the FFBPNN by using MAE, RMSE, and 
MAPE on different types of data, the values get from MAE, 
RMSE and MAPE show that the FFBPNN outperforms on 
data with statistical moments and normalized data. 
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Fig. 1. Proposed Water Supply Pipeline Risk Index Estimation Methodology. 
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Fig. 2. Structure of Model M1 for Four Inputs. 
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Fig. 3. Structure of Model M2 for Eight Inputs. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 
The proposed scheme experimentation is performed using 

windows 10 operating system with an Intel Core i5 processor 
using MATLAB R2019b version 9.7.0.1216025. In this study 
different types of experiments have been performed on the 
data in order to calculate the best estimated risk index for 
water supply pipelines. Typically input parameters play the 
most important role in the performance of any kind of 
machine learning algorithm technique. Therefore, in this 
research, first the leakage, depth, length and age values of 
water supply pipelines with the error correction neural 
network have been given as inputs to the feed forward 
backpropagation. The model we have tried in this research 
composed of input layer with different combination of neurons 
in the hidden layer and output layer. The number of neurons 
which is best suited to the proposed method is the combination 
of ten (10) neurons in hidden layer with four (4) neurons in 
input layer, and single neuron in output layer have been 
selected as shown in Fig. 4. 

Secondly, Different sets of experiments are accomplished 
with normalized data. Four neurons in the input layer, sixteen 
(16) neurons in the hidden layer and single neuron in the 
output layer have been applied as shown in Fig. 5. In the same 
case, we also tried different combinations of maximum and 
minimum number of neurons in the hidden layer. We found 
that this combination (10 neurons in hidden layer) is best fit in 
combination with four inputs and one output layer. 

Third, the experiment is performed by combining original 
data with statistical moments as shown in Fig. 6. Eight (8) 

neurons in the input layer and Twenty (20) neurons are 
configured in the hidden layer with one neuron in the output 
layer. Age, depth, height, leakage, variance, mean, kurtosis 
and skewness are inputs to the neural networks. In order to 
find the better combination of the number of neurons in the 
hidden layer with the input and output layer, we tested 
different number of neurons in the hidden layer and we 
concluded that this combination is more accurate combination 
as shown in Fig. 6, thus selected. 

B. Results and Discussion 
The graphical representations of the estimated results are 

presented in the following section. The actual risk, estimated 
risk and the errors observed in estimation for water supply 
pipelines using originally collected data are shown in Fig. 7 
and 8. The estimated risk, actual risk and the errors observed 
in estimated risk and actual risk using FFBPNN on normalized 
data are shown in Fig. 9 and 10. The actual risk, estimated risk 
and the errors observed in estimation using FFBPNN for 
collecting water supply pipeline data with statistical moments 
are shown in Fig. 11 and 12. 

Performance using three measurement; mean absolute 
percentage error (MAPE), mean absolute error (MAE) and 
root mean square error (RMSE) is calculated for FFBPNN on 
the normalized data (ND), original data (SD) and data with 
statistical moments (SMD) is shown in Table I and Fig. 13. 
The outcomes show that FFBPNN outperforms on both 
normalized data (ND) and data with statistical moments 
(SMD) as compared to original data that is provided to 
FFBPNN. 
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Fig. 4. Deployment of ANN Configuration on Original Data. 

 
Fig. 5. Deployed ANN Configuration on Normalized Data. 

 
Fig. 6. ANN Configuration Applied on Data with Statistical Moments. 

 
Fig. 7. Actual Risk and Estimated Risk Values of Water Supply Pipelines using FFBPNN on Original Data. 
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Fig. 8. Actual and Estimated Risk Values of Water Supply Pipelines using FFBPNN on Original Data with Errors Observed. 

 
Fig. 9. Actual Risk and Estimated Water Supply Pipelines Risk Values using Neural Network (NN) on Normalized Data. 

 
Fig. 10. Estimated Water Supply Pipeline Risk using Neural Network (NN) on Normalized Data with Errors Observed. 
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Fig. 11. Actual and Estimated Risk Values of Water Supply Pipeline using Neural Network (NN) on Data with Statistical Moments. 

 
Fig. 12. Actual, Estimated Risk Values of Water Supply Pipelines using Neural Network (NN) on Data with Statistical Moments with Errors Observed. 

TABLE I. PERFORMANCE OF FFBPNN ON ORIGINAL AND PREPROCESSED DATA 

 Original Data (SD)  Data with Statistical Moments (SMD) Normalized Data (ND) 

 MAPE  2.763 2.3965  2.4948 

 MAE  1.846 1.4619  1.5219 

 RMSE  1.3907 1.2106  1.3016 

 
Fig. 13. Graphical Comparison of Estimation Performance of FFBPNN on different Types of Data. 
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V. CONCLUSION 
In this paper, a multi-layer perceptron is applied to predict 

water supply pipeline risk. The multi-layer perceptron was 
randomly trained tested using historical data. The collected 
data are from 1989-2010 about water supply pipelines fitted in 
Seoul, Republic of Korea. Experimentation is done by 70/30 
random training-test splits, where 70% for training and 30% 
for testing to validate the samples. For the performance and 
accuracy evaluation of the models, the root means square error 
(RMSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE) were used. The FFBPNN was 
applied to original collected data and we noticed that the 
outcomes attained for the original data were not prominent. 
Then we added a tweak by calculating the statistical moments 
of the original data and merged with the original data. After 
this process, we applied FFBPNN on this new data. The 
performance measure matrices indicate that the results 
provided by FFBPNN using the new data with statistical 
moments are comparatively better. Further, we normalized the 
original data and applied FFBPNN using this normalized data 
with statistical moments where noticeable outperformance is 
achieved. Overall the performance of FFBPNN on statistical 
moment data is slightly prominent as compared to normalized 
data and far better than original data. In future, we may apply 
some more tweaks on the data and may test more machine 
learning algorithms. 
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