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Abstract—Malware has become a significant problem for the 
security of computers in this scientific era. Nowadays, machine 
learning techniques are applied to find anomalous activities in 
computers especially in virtualization environments. Identifying 
anomalous activities in virtual machines with virtual memory 
introspector and analyzing data with machine learning 
techniques are need of current trend. In this paper, an anomaly 
detection method is implemented using Natural Language 
Processing (NLP) based on Bags of System Calls (BoSC) for 
learning the behavior of applications on Windows virtual 
machines running on Xen hypervisor. During this process, 
system call traces are extracted from normal applications (benign 
processes) and malware affected applications (malicious 
processes) with the help of virtual memory introspection. 
Preprocessing of extracted system call sequences is done to 
obtain valid system call sequences through filtering and ordering 
of redundant system calls. Further, analysis of behavior of 
system call sequences is carried out with NLP based anomaly 
detection techniques. During this process, Cosine Similarity 
Algorithm (Co-Sim) is applied to identify malicious processes 
running on a VM. Apart from this, Point Detection Algorithm is 
applied to precisely locate the point of compromise in the system 
call sequences. The results shown in this paper indicates that 
both of these algorithms detect anomalies in the running 
processes with 99% accuracy. 

Keywords—System call sequence; anomaly detection; natural 
language processing; memory forensics; cosine similarity 

I. INTRODUCTION 
Nowadays, virtualization is playing a vital role in 

distributed systems. It became popular due to its usage and 
applicability. The significant advantage of virtualization is to 
provide vast resource sharing, load balancing, and protecting 
system resources. With the development of virtualization 
technologies, hypervisor-based methods have evolved to scan 
virtual machines (VM) and identify the threats happening on it. 
In the current market, the latest malware is more sophisticated 
and robust so that no malware detection techniques are capable 
of detecting and protecting the virtual machine. Thus, many 
organizations are facing cyber threats to their data and 
resources. Hypervisor-based malware detection techniques 
overcome these problems in comparison to host-based malware 
detection techniques. Virtual Machine Introspection (VMI) is 
the most versatile malware detection technique to monitor and 

analyze cyber threats on virtual machines [1][2][3]. VMI is a 
technique to control the virtual machine run-time state at the 
hypervisor level, and it is used for forensic analysis of VM 
activities. 

In hypervisor-based environment, it is important to observe 
virtual machine activities through hypervisor to keep track of 
benign and malicious activities happening on it. Memory 
forensics is good technique to extract and analyze memory 
activities. In this paper, we built a memory forensics 
architecture which uses VMI. All memory data structures are 
extracted (including system call sequences) to monitor 
anomalous activity in VM. 

One of the techniques to identify the anomalous behavior 
of VM is to trace system call sequences of all running 
applications on VM. Hypervisor will extract system call 
sequences from memory of VM in runtime. Anomaly detection 
techniques are applied on collected data to find any anomalies 
in system call sequences by comparing benign and malicious 
data. This process will help in identifying the compromised 
VM on hypervisor. One of the efficient approaches for 
anomaly detection is Bag of System Calls (BoSC). Kang et al. 
in 2005 [4] introduces it as a frequency-based technique. 
According to this method, system call sequences Si are 
represented as a list {C1, C2, . . . , Cn}, where in n is the 
number of unique system calls, and Ci is count of system calls, 
present in the generated input sequence of system calls. 

In this paper, we study the richness of using BoSC 
technique to detect malicious behavior at the process level in a 
hypervisor based environment. Further, we also propose an 
algorithm that detects anomalies at a particular point of time 
using cosine angle similarity. The results shows that 
considering the sequence of system call occurrences is 
powerful for detecting real-time anomalies in running 
processes on Xen hypervisor. 

The outline of the paper is as follows: Section 2 describes 
state of the art related to proposed techniques. The subsequent 
section provides a system overview. Section 4 discusses the 
system call feature extraction and pre-processing. In the next 
section, we explain the proposed algorithm. Furthermore, we 
give an in-depth explanation of the environmental setup in 
section 6. The results of the proposed algorithms are presented 
in section 7. Finally, we conclude the paper in section 8. 
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II. RELATED WORK 
Classifying malware in any production system is of crucial 

importance for the security of its software components. Static 
analysis and dynamic analysis are two types of different 
malware analysis methods. Due to an increase in malware 
threats, there is a substantial increase in research work on 
malware detection. 

In the static analysis method, we directly analyze source 
files without executing them [5]. Masud et al. [6], extracted 4-
gram byte codes with five different static features of assembly 
instructions and combined them. For malware detection, they 
used two classification algorithms, namely decision tree 
algorithm and support vector machine. Ye et al. [7] used an 
association mining algorithm that generated association rules 
by developing an Intelligent Malicious code Detection System 
(IMDS) to obtain import function information. Finally, they 
used an association rule-based classification algorithm to detect 
malware. 

However, techniques such as encryption, packing of 
malware, and polymorphism affect static based anomaly 
detection methods. Analyzing the behavior of an application is 
known as dynamic analysis. Its basic idea is to analyze the 
execution of the application [8]. This approach solves many of 
the problems of static-based analysis. 

Many authors have used Hidden Markov Model (HMM) 
based classifier to detect anomalies in system calls 
[9][10][11][12][13][14]. However, each author uses a different 
set of techniques for improving the precision of anomaly 
detection. Alarifi and Wolthusen [15] took sequences from a 
virtual machine and then trained them using HMM. Their 
HMM-based method gave fewer detection rates since it 
required fewer training samples. The detection rate was 97% 
by using 780k system calls for training. Wang et al. [11] used 
the probability score and threshold value of the whole 
sequence. Cho et al. [13] used HMM by training regular user-
level privilege operations. Hoang et al. [14] introduced an 
anomaly detection technique for multi-layer by using the 
sliding window approach. Warrender et al. [9] provide a 
comparison of STIDE [16], RIPPER [17], and HMM-based 
methods. These methods had different performance 
characteristics, while HMM performed with good accuracy. 
However, HMM requires multiple passes through the training 
data, high computational power, and needs large storage, 
especially for significant sequence length. Time series based 
modeling has been performed in [18][19]. The Kernel State 
Modeling (KSM) technique uses sequences of system call 
sequences as an individual task of kernel modules [20]. This 
method calculates the probability of occurrences of the finite 
number of states in malicious traces of system calls and 
compares against the expectations of normal traces. The KSM 
results in higher detection rates in comparison to HMM-based 
methods for UNM dataset. For feature extraction, neural-net 
based embedding is used for single dimensions data 
[21][22][23][24]. Suresh et al. [25][26] introduce machine 
learning algorithms for feature extraction for multidimensional 
data. 

III. SYSTEM OVERVIEW 
The proposed framework and methodology is described in 

this section. This framework describes how system call 
sequences are extracted and analyzed by using a VMI based 
architecture and machine learning methods. This workflow 
collects system call traces of running processes and introspects 
the malicious behavior of processes on guest VM. The 
following subsections describe the architecture, methodology, 
and procedure to create custom malware. 

A. Architecture 
The architecture of the proposed memory forensic 

framework, as shown in Fig. 1, consists of four modules: the 
Virtualization module, the Advanced Cyber Analytics module, 
the Malware repository module, and the Test Control Center 
module. The proposed framework acquires smart memory 
introspection features, analyzes them with advanced cyber 
analytics algorithms along with a control center for managing 
the system for visualizing the results. 

The following sub-sections describe the functionality of 
individual modules and their components. 

1) Virtualization: In this module, smart memory 
introspection is performed on Virtual Machine (VM) using 
VMI API to introspect and perform memory forensics. This 
module consists of different sub-modules such as Introspector 
and Security Agent. 

a) Introspector: This module extracts low-level data 
from the memory of virtual machines running on a hypervisor, 
and transfers this data to agent listener(s) for anomalyanalysis. 
The Introspector interfaces with hypervisors to ensure that the 
state of the virtual machines (running, stopped, or shut-down) 
can be manipulated, and VMs can be added and deleted as 
needed. 

b) Security Agent: This sub-module initiates scans on 
VMs using the LibVMI library to perform introspection. Its 
primary mechanism is to extract data from a VM and send the 
data to the agent listener for further analysis. The Security 
Agent has various features that allow the agent to scan 
processes, invariant data structures, and to monitor files 
changes. 

 
Fig. 1. System Call Traces with Virtual Machine Introspection. 
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2) Advanced cyber analytics: This module comprises of 
different machine learning and deep learning algorithms to 
train the model and perform a test on that model for further 
prediction and analysis of data. The baseline data is 
considered as benign data, and the test vector injected data is 
known as malicious data. The data extracted by using the 
introspection module is stored on a database server and then 
analyzed using different cutting-edge machine learning 
techniques. 

3) Malware repository: This repository consists of a 
massive set of malware that compromises kernel-level data 
structures. This repository includes different malware for 
Windows and Linux. This malware repository also consists of 
custom malware sets to compromise the specific context of 
kernel data structures. 

4) Test control center: With the help of the Test Control 
Center module, the operator can control and manage the whole 
framework and its modules with a user interface. The operator 
can handle the VM operations, such as creation, deletion, stop, 
start, pause, and view. Also, the operator can control the VMs 
by installing or running malware and benign applications. The 
operator visualizes the processed results from the Advanced 
Cyber Analytics module for further analysis. 

B. Methodology 
In the current implementation of this framework, system 

call traces are collected from live VM using Virtual Memory 
Introspection method. An Introspector package developed on 
hypervisor which consists of two modules introspector and 
security agent. Among these modules, introspector module gets 
connected with the VM and initiates the security agent module 
to extract the system call traces from live memory of VM. 
Further, security agent sends extracted data to database with 
the help of other application called Agent Listener. This 
application intern stores information into database. Next step is 
to pre-process and analyze the collected system call traces 
using anomaly detection algorithms. In view of these, a custom 
application is designed to manage the VM, initiate the 
scanning, view results and many more. For further study, an 
operator can process these traces. 

C. Custom Malware 
A set of custom malware were created to compromise 

system call sequences by way of DLL injection. This injection 
hooks into the write function of processes and initiates 
additional system calls by creating a hidden file on disk. This 
set of custom malware is used in experiments to compromise 
system call sequences. 

IV. FEATURE EXTRACTION TECHNIQUE 
A process behavior is defined with an approach based on 

angle similarity. As part of this method, the occurrences of 
system calls generated by the process are considered, instead of 
the temporal ordering of system calls. This paper presents a 
technique called angle similarity which is similar to text 
classification for anomaly detection, where a sequence of 
system calls is considered as the document, and individual 
system calls are viewed as a word. The system-call sequence 

are extracted under normal operation are collected from the 
hypervisor. Fig. 2 shows the sample sequence of system calls. 

 
Fig. 2. Sample Sequence. 

According to this approach, each and every system call is 
mapped to a unique number from 0 to 450 to a given sequence 
of the system calls. The total unique system calls for Windows 
is 450. A sample mapping of system calls is shown. 

System 
Call 

Name 
NtQueryInformationProcess NtOpenKey NtQueryValueKey NtOpenKey NtQueryValueKey NtClose 

Mapping 
Number 25 18 23 18 23 15 

We create a Bag of System Calls of 450 dimensions where 
each cell value designates the frequency of the ith system call. 
The following Fig. 3 shows a sample Bag of System calls: 

 
Fig. 3. BoSC of 450 Dimensions. 

V. DETECTION ALGORITHM 
The proposed approach computes the cosine similarity 

between the features from normal processes and malicious 
processes. Cosine similarity is a similarity measure between 
two vectors that calculate the cosine angle between them. 

The cosine angle between two vectors is calculated using 
their Euclidean dot product. Equation 1 shows the Euclidean 
dot product. 

𝐴.𝐵 = ‖𝐴‖‖𝐵‖ 𝑐𝑜𝑠 𝜃              (1) 

Given two vectors of n dimensions, A and B, the cosine 
similarity value is calculated as the function of cos(θ) shown in 
Equation 2: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑐𝑜𝑠(𝜃) =  𝐴.𝐵
‖𝐴‖‖𝐵‖

=  ∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

�∑ 𝐴𝑖
2𝑛

𝑖=1 �∑ 𝐵𝑖
2𝑛

𝑖=1

           (2) 

Where Ai and Bi are the features of vectors A and B 
respectively in the equation. 

A. Anomaly Detection Algorithm 
The following algorithm detects anomalies in the running 

processes in Windows VM on Xen hypervisor. 

For a given set of processes in baseline and test data, use its 
system-call sequences and mapping table to map system-call 
name to number. An anomalous system call sequences can be 
detected by using Algorithm #1, which is shown. 

B. Point Detection Algorithm 
A Point detection algorithm detects a particular point in the 

process execution where the malicious attack has happened. 
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Sequence length is the number of the system calls taken 
into consideration. Sequence length of the system call is 
provided as input to the Point Detection Algorithm as given 
below in Algorithm #2, BoSC of an anomalous process from 
the above anomaly detection algorithm #1, and BoSC of a 
normal process. 

For point detection algorithm, we use a sliding window of 
varying lengths and calculate the cosine similarity for that 
particular window. If the cosine similarity is less than 0.99, 
then that process within that window is considered as 
anomalous. Fig. 4 depicts the point detection method. 

Algorithm 1: Anomaly detecting process for system call 
sequences. 

Algo #1 Anomaly Detection Algorithm 

Step 1: for each process B(P i  ) in Baseline { P1 , P2 P3, ….., Pn }do 
Map Si ->Snum using the System Call mapping table.  
 Where Si  is system call name and Snum is System call mapping 
number  
 Create bag-of-words for P i  by counting occurrences of each Si 

Step 2: for each process in T(P i  ) the TestData{ P1 , P2 P3, ….., Pn }do 
 Prepare combined list C(P i  ) from B(P i  )∩T(P i  ) 

Step 3: for each process C(P i  ) in combined list { P1 , P2 P3, ….., Pn }do 
 if C(P i  ) ≠ Mapping table M(t)then 
 P is Anomalous;  
 else  
 Map Sj ->Snum using the System Call mapping table. 

Create bag-of-words for P j  by counting occurrences 
of each Sj 

  Similarity = f (B(P i  ), B(P j  )) 
 if Similarity < 0.99 then 
  P is Anomalous; 
 else  
  P is Normal; 
 end do 
end do 

Algorithm 2: Point detection for system call sequences 

Algo #2 Point Detection Algorithm 

Step 1: for each Anomalous Process A(Pi) and Baseline process B(Pi )do 
 for each i in range [length(BoSC ofA(Pi)) – (sequence_length)] 
do 
 Seq(B(Pi)) = BoSC_of_B(Pi) [i:i+sequence_length] 
 Seq(A(Pi)) = BoSC_of_A(Pi) [i:i+sequence_length] 
 SimVal = Cosine_Similarity(Seq(B(Pi)), Seq(A(Pi))) 
 if SimiVal< 0.99 then 
 Return A(Pi), Seq(A(Pi)) 
 end do 
end do 

 
Fig. 4. Point Detection Method. 

VI. ENVIRONMENT SETUP 
The proposed framework is developed on Xen 4.12 

hypervisor and managed virtual machines (VM) with Libvirt 
5.4.0 library. For getting memory addresses of running 
processes virtual machine introspector method are being 
imposed with latest version of DRAKVUF library. The current 
implementation of this framework consists of two modules 
namely Introspector and Security Agent. These modules 
extract system call traces by inspecting the VM called System 
Under Test (SUT) using the LibVMI library on top of 
DRAKVUF in combination with a rekall profile of Google. 
This rekall profile is files in JSON that ccomprises of memory 
mappings and offsets of windows data structures. The above 
two specified modules, are written in Go Language to process 
the request and extract the system call traces from VM with 
LibVMI functions. LibVMI library services and the Libvirt 
library are usedto create, start, or stop virtual machines of 
windows. An applicationis designed for operator to extract the 
system call traces. This Application is written in Microsoft 
Visual Studio .NET framework and comprises of user-defined 
API calls for introspector communication and other related 
function calls. An agent transmits eextracted data to the 
database server. Finally, the stored data is analyzed using 
different machine learning algorithms. The whole experimental 
setup is shown in Fig. 5. 

 
Fig. 5. Experimental Framework for Extracting System Call Traces. 
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VII. RESULTS 
In this section, we present the results of the proposed 

algorithms. 

A. Anomaly Detection Algorithm 
We evaluated this algorithm with system-call traces of 

1,000,000 system calls with multiple experiments. The total 
number of unique system calls in Windows operating system is 
450. Fig. 6 and 7, display the top 5 system call with their 
frequencies of a normal SUT application and a malicious SUT 
application, respectively. 

The result shown in Fig. 6 and 7 clearly differentiates 
between malicious SUT application system call frequencies in 
comparison with benign SUT application. The following 
Table \I shows the similarity score between malicious and 
normal SUT application. 

From Table I, we can say that the cosine similarity of a 
normal SUT Applications is higher whereas malicious SUT 
application is lower in compared with normal SUT application. 

Furthermore, the cosine similarity value is independent of 
the number of records. Fig. 8 demonstrates this characteristic. 
We observe the same cosine similarity behavior even with the 
varying number of records. 

B. Point Detection Algorithm 
For the point detection algorithm, we tested with a 

sequence length of 3, 5, 10, and 15. From Fig. 9, we observe 
that sequence length of 5 gives an ideal cosine similarity value 
for a single scan. 

 
Fig. 6. Top 5 System Calls based on their Frequency of a Normal SUT 

Application. 

 
Fig. 7. Top 5 System Calls based on their Frequency of a Malicious SUT 

Application. 

TABLE I.  COSINE SIMILARITY BETWEEN NORMAL SUT AND MALICIOUS 
SUT APPLICATIONS 

Applications Normal SUT Application Malicious SUT Application 

Similarity Score 0.99 0.20 

 
Fig. 8. Cosine Similarity Value for Normal SUT and Malicious SUT w.r.t # 

Records in Ten Thousand. 

 
Fig. 9. Cosine Similarity Value w.r.t Sequence Length for a Single Scan. 

Furthermore, we evaluated the algorithm with varying scan 
times. From Fig. 10, we found that with a sequence length of 5, 
the cosine similarity value is consistently higher in comparison 
with all other sequence lengths with varying scan times. 

 
Fig. 10. Cosine Similarity Value w.r.t Sequence Length and Varying Scan 

Times. 
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VIII. CONCLUSIONS 
All intrusion-based detection algorithms work on the 

hypothesis that regular activities differ from irregular events 
(intrusions). Anomaly detection algorithms learn a program’s 
behavior. The behavior is in the form of the frequency of 
system calls raised by the processes under evaluation. We 
presented two anomaly detection algorithms. Both algorithms 
calculate the cosine similarity between the processes under 
examination based on the frequency of system calls. Anomaly 
Detection Algorithm detects anomaly between benign and 
malicious system call sequences whereas point detection 
algorithm detects the timeframe of the malicious attack in the 
anomalous process. With the help of both of these algorithms 
we can able to detect malicious behavior of system call 
sequences with 99% accuracy rate. 

ACKNOWLEDGMENT 
This work was funded by TRMC of DoD. We are very 

much thankful for providing facilities and infrastructure to do 
our experiments. We thank all who directly and indirectly 
helped us in doing this experiments and results. 

REFERENCES 
[1] M H Ligh, A Case, J Levy, A Walters. “The Art of Memory Forensics,” 

2014. 
[2] Xen Project available at https://www.xenproject.org/, 2013. 
[3] Hizver, Jennia, and Tzi-ckerChiueh. "Real-time deep virtual machine 

introspection and its applications." ACM SIGPLAN Notices. Vol. 49. 
No. 7. ACM, 2014. 

[4] D. Fuller and V. Honavar, “Learning classifiers for misuse and anomaly 
detection using a bag of system calls representation,” in Proceedings of 
the Sixth Annual IEEE Systems, Man and Cybernetics (SMC) 
Information Assurance Workshop. IEEE, 2005, pp. 118–125. 

[5] Payet E, Spoto F. Static analysis of Android programs [J]. Information 
and Software Technology,2012,54(11): 1192-1201. 

[6] Masud M. M., Khan L, Thuraisingham B. A scalable multi-level feature 
extraction technique to detect malicious executables[J]. Information 
Systems Frontiers, 2008, 10(1):33-45. 

[7] Ye Y, Wang D, Li T, et al. IMDS: Intelligent malware detection 
system[C]//Proceedings of the 13th ACM SIGKDD international 
conference on Knowledge discovery and data mining. ACM, 2007: 
1043-1047. 

[8] Egele M, Scholte T, Kirda E, et al. A survey on automated dynamic 
malware-analysis techniques and tools[J]. ACM computing surveys 
(CSUR), 2012, 44(2): 6. 

[9] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions 
using system calls: alternative data models,” in Security and Privacy, 
1999. Proceedings of the 1999 IEEE Symposium on, 1999, pp. 133–145. 

[10] Soni, J., Prabakar, N., and Upadhyay, H. (2019) “Deep Learning 
approach to detect malicious attacks at the system level: poster,” 
Proceedings of the 12th Conference on Security and Privacy in Wireless 
and Mobile Networks. ACM, pp. 314-315. 

[11] W. Wang, X.-H. Guan and X.-L. Zhang, “Modeling program behaviors 
by hidden Markov models for intrusion detection,” in Machine Learning 
and Cybernetics, 2004. Proceedings of 2004 International Conference 
on, vol. 5. IEEE, 2004, pp. 2830–2835. 

[12] D.-Y. Yeung, and Y. Ding, “Host-based intrusion detection using 
dynamic and static behavioral models,” Pattern Recognition, vol. 36, no. 
1, pp. 229–243, 2003. 

[13] S.-B. Cho and H.-J. Park, “Efficient anomaly detection by modeling 
privilege flows using a hidden Markov model,” Computers and Security, 
vol. 22, no. 1, pp. 45 – 55, 2003. 

[14] X. D. Hoang, J. Hu, and P. Bertok, “A multi-layer model for anomaly 
intrusion detection using program sequences of system calls,” in Proc. 
11th IEEE Intl Conf. Networks, 2003, pp. 531–536. 

[15] Alarifi and Wolthusen “Anomaly detection for ephemeral cloud IaaS 
virtual machines,” in Network and system security. Springer, 2013, pp. 
321–335.  

[16] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self 
for Unix processes,” in Proceedings of the 1996 IEEE Symposium on 
Security and Privacy, May 1996, pp. 120–128. 

[17] W. Lee and S. J. Stolfo, “Data mining approach for intrusion detection,” 
in Usenix Security, 1998. 

[18] Soni, J., Prabakar, N. and Kim, J-H. (2017) “Prediction of Component 
Failures of Telepresence Robot with Temporal Data.” 30th Florida 
Conference on Recent Advances in Robotics 

[19] G. S. Thejas, J. Soni, K. Chandna, S. S. Iyengar, N. R. Sunitha, and N. 
Prabakar. 2019. Learning-Based Model to Fight against Fake Like 
Clicks on Instagram Posts. In SoutheastCon 2019. Huntsville, Alabama, 
USA. In press. 

[20] S. S. Murtaza, W. Khreich, A. Hamou-Lhadj, and M. Couture, “A host-
based anomaly detection approach by representing system calls as states 
of kernel modules,” in Software Reliability Engineering (ISSRE), 2013 
IEEE 24th International Symposium on. IEEE, 2013, pp. 431–440. 

[21] Soni, J., Prabakar, N., and Upadhyay, H. (2019) “Feature Extraction 
through Deepwalk on Weighted Graph,”Proceedings of the 15th 
International Conference on Data Science (ICDATA’19), Las Vegas, 
NV, 2019. 

[22] Soni, J., Prabakar, N. (2018) “Effective Machine Learning Approach to 
Detect Groups of Fake Reviewers,” Proceedings of the 14th 
International Conference on Data Science (ICDATA’18), Las Vegas, 
NV, 2018. 

[23] P. Suresh Kumar and S. Ramachandram, "Fuzzy based Integration of 
Security and Trust in Distributed Computing," Proc of Springer 7th 
International Conference Soft Computing for Problem Solving 
(SocProS'2017), Indian Institute of Technology, Bhubaneswar, 
December 2017. 

[24] P. Suresh Kumar, HimanshuUpadhyay and ShekarBansali, “Health 
Monitoring with Low Power IoT Devices using Anomaly Detection 
Algorithm,” IEEE conference SLICE-2019, Rome, Italy, June 2019. 

[25] P. Suresh Kumar and Pranavi S, "Performance Analysis of Machine 
Learning Algorithms on Diabetes Dataset using Big Data Analytics," 
Proc of IEEE 2017 International Conference on Infocom Technologies 
and Unmanned Systems (ICTUS'2017), Dubai, United Arab 
Emirates(UAE), December 2017. pp 580- 585. 

[26] A. Rishika Reddy and P. Suresh Kumar, "Predictive Big Data Analytics 
in Healthcare," Proc of IEEE 2016 Second International Conference on 
Computational Intelligence & Communication Technology (CICT), 
Ghaziabad, 2016, pp. 623-62. 

 

460 | P a g e  
www.ijacsa.thesai.org 


	I. Introduction
	II. Related Work
	III. System Overview
	A. Architecture
	1) Virtualization: In this module, smart memory introspection is performed on Virtual Machine (VM) using VMI API to introspect and perform memory forensics. This module consists of different sub-modules such as Introspector and Security Agent.
	a) Introspector: This module extracts low-level data from the memory of virtual machines running on a hypervisor, and transfers this data to agent listener(s) for anomalyanalysis. The Introspector interfaces with hypervisors to ensure that the state of the�
	b) Security Agent: This sub-module initiates scans on VMs using the LibVMI library to perform introspection. Its primary mechanism is to extract data from a VM and send the data to the agent listener for further analysis. The Security Agent has various fea�

	2) Advanced cyber analytics: This module comprises of different machine learning and deep learning algorithms to train the model and perform a test on that model for further prediction and analysis of data. The baseline data is considered as benign data, a�
	3) Malware repository: This repository consists of a massive set of malware that compromises kernel-level data structures. This repository includes different malware for Windows and Linux. This malware repository also consists of custom malware sets to com�
	4) Test control center: With the help of the Test Control Center module, the operator can control and manage the whole framework and its modules with a user interface. The operator can handle the VM operations, such as creation, deletion, stop, start, paus�

	B. Methodology
	C. Custom Malware

	IV. Feature Extraction Technique
	V. Detection Algorithm
	A. Anomaly Detection Algorithm
	B. Point Detection Algorithm

	VI. Environment Setup
	VII.  Results
	A. Anomaly Detection Algorithm
	B. Point Detection Algorithm

	VIII. Conclusions

