
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Parallel QR Factorization using Givens Rotations in
MPI-CUDA for Multi-GPU

Miguel Tapia-Romero1, Amilcar Meneses-Viveros2
Departamento de Computación

Cinvestav-IPN
Mexico City, Mexico

Erika Hernández-Rubio3
Instituto Politécnico Nacional

SEPI-ESCOM
Mexico City, Mexico

Abstract—Modern supercomputers incorporate the use of
multi-core processors and graphics processing units. Applications
running on these computers take advantage of these technologies
with scalable programs that work with multicores and accelerator
such as graphics processing unit. QR factorization is essential for
several numerical tasks, such as linear equations solvers, compute
inverse matrix or compute a diagonal matrix, to name a few.
There are several factorization algorithm such as LU, Cholesky,
Givens and Householder, among others. The efficient parallel
implementation of each parallelization algorithm will depend on
the structure of the data and the type of parallel architecture
used. A common strategy in parallel programming is to break a
problem into subproblems to solve them in different processing
units. This is very useful when dealing with complex problems
or when the data is too large to work with the available memory.
However, it is not clear how data partitioning affects subtask
performance when mapping to processing units, specifically to
graphical processing units. This work explores the partitioning
of large symmetric matrix data for QR factorization using Givens
rotations and its parallel implementation using MPI and CUDA
is presented.

Keywords—Givens factorization; CUDA; heterogeneous pro-
gramming; scalable parallelism

I. INTRODUCTION

Every time it is more common to work with large amounts
of data. One of the most commonly used tasks in processing
these large volumes of data is QR factorization for square
matrices. QR factorization is used in processes such as solving
linear equations, inverting matrices, and in the process of
diagonalizing matrices, to name a few. There are various
methods for factoring such as LU, Cholesky, Householder,
or Givens. These numerical tasks are a tool of common use
in areas such as physics, chemistry and engineering. Also,
artificial intelligence papers using Givens rotations on large
volumes of data have been reported [1], [2], [3], [4].

Modern supercomputers incorporate the use of multi-core
processors and accelerators such as graphics processing units
(GPUs). Applications running on these computers take advan-
tage of these technologies with scalable programs that work
with multicores and GPUs. Although it has been reported
that applications with GPUs can speed up a lot, GPUs suffer
from the amount of memory they have available for data
management. There are already GPU cards with more than
12GB of memory, however many computers still have cards
with 6GB of memory or less, so the use of various GPUs
helps resolve this limitation. Modern applications running on

supercomputers must be able to take advantage of various
architectures that help speed up computing and must have the
ability to scale, that is, to work on different nodes.

Methodologies have been proposed to develop programs
for the new supercomputers [5], [6]. These methodologies
include phases such as partitioning, aggregation, and mapping
phases, among others. Partitioning refers to break a problem
into subproblems to solve them in different processing units.
This is very useful when dealing with complex problems
or when the data is too large to work with the available
memory. Aggregation refers to grouping subtasks, which is
useful when identifying processes that can work with shared
memory. The mapping phase refers to the association of tasks
with processing units.

These methodologies have assisted in the development of
scalable parallel programs and ensure the use of the various
types of processing units. However it is not clear how a
partitioning strategy can affect performance when tasks are
mapped to graphics processing units. This work explores the
partitioning of large symmetric matrix data for QR factor-
ization using Givens rotations and its parallel implementation
using MPI and CUDA is presented. A single GPU card version
is made for comparison and analysis purposes. Its means, the
program can use different GPU cards that are on the same node
or on different nodes of a computer cluster. For the purpose
of studying the different partitioning of the matrix, this work
focuses on large symmetric matrices. The results show that the
row or column partitioning of the matrix play an important role
in the performance of CUDA kernels, also the communication
between the main memory and the memory of the GPUs is
important. Also changes in nVidia GPU technologies can affect
the performance of the application.

This paper is organized as follows. Section 2 present the
related work. Section 3 describe the Givens rotation proce-
dure. Section 4 presents the design of the CUDA parallel
program of QR factorization using Givens rotations for dense
matrices. Section 5 describes scalable parallel implementation
prioritizing row partitioning of matrices. Section 6 describe
the experiments that were performed. Section 7 discusses
the consequences of row and column partitioning on the
performance of tasks running on GPUs. Finally, Section 8
presents the conclusions of this work.

www.ijacsa.thesai.org 636 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

II. RELATED WORK

Traditionally the Intel MKL Math Library is used for
Givens factorization. This library is highly optimized for the
use of multicore processors [7][8][9][10]. Other mathemat-
ical libraries for lineal algebra have also been developed
of which use parallel implementations such as MAGMA,
PLASMA, ViennaCL, Armadillo and dmath, to name a
few [11][12][13][14][15]. This libraries are designed for mul-
ticore architectures and GPUs. In addition, this work has been
ported to Xeon Phi [16] and other library was optimized for
multicore [17].

Sameh, in 1978, present a parallel algorithm for solving a
system of linear equations using Givens rotations [18]. This
work considers a parallel computer with shared memory to
solve a dense tridiagonal linear system and it shows that the
complexity to solve the tridiagonal system is O(n) steps, com-
pared to O(n log n) steps reported from previous work through
Gaussian elimination [19]. Later, other authors complement
Sameh’s work to construct the QR factorization with Givens
rotations of a dense rectangular matrix [20] or to construct QR
factorization using Givens rotations [21].

There are other works where different factorization meth-
ods (LU, Cholesky or Householder) are parallelized for mul-
ticore architectures or GPUs [22], [23], [24], [25], [26][25],
[27], [28]. Some of these works are oriented to the study of
communications between processes, optimizing implementa-
tions for multi-core architectures, optimizing partitioning for
architectures with GPUs, among others. The parallelization
strategies vary even with the same factorization method. This
is because the strategies depend on the parallel architecture in
which the factorization is implemented.

III. GIVENS ROTATION

The main idea in Givens rotations is to rotate a vector to
annihilate, or zero, one of its elements. Therefore a rotation
matrix is used. Then if two row vectors, ut and vt ∈ Rm, are
rotated.(

c s
−s c

)(
µ1 · · · µn

v1 · · · vn

)
=

(
µ′
1 µ′

2 · · · µ′
n

0 v′2 · · · v′n

)
(1)

The values for v′i and µ′i are

µ′1 = (µ2
1 + v1)

1/2,
µ′i = cµi + svi, 2 ≤ i ≤ m,
v′i = −sµi + cvi,

(2)

and the values c and s of the matriz rotation are

c = µ1/µ
′
1,

s = v1/v
′
1.

(3)

As discussed in [18], a sequential program need n(n − 1)/2
rotations to get an upper triangular matrix from n× n square
matrix .

IV. ALGORITHM ADAPTATION FOR GPU

There are various strategies to harness the computing power
of GPUs. The main one is that the programs must be SPMD,
work with fine granularity, reduce data transfer between card
memory and main memory, and avoid synchronization between

threads, among others. In the CUDA programming environ-
ment, the CPU and its memory are called a host, and a GPU
card is called a device. The part of a program that runs on a
GPU is called the kernel. To run a kernel, the GPU memory
must have the input data and a memory space to store the
results. The part of a program that runs on a GPU is called the
kernel. To run a kernel, the GPU memory must have the input
data and a memory space to store the results. This implies
that information must be moved between the host and the
device. When designing a CUDA program, you must be careful
with memory management, otherwise you can generate a large
overhead.

Matrix factorization is an operation that consumes a lot
of memory and CPU time. Selecting a matrix factorization
method depends on the type of matrix and the architecture
where it will be implemented. In this work, the Givens
rotations are used for the QR factorization, since a method
that adapts to the shared memory architecture that the GPUs
use, and that can also avoid the synchronization of threads
with a good implementation.

As explained in [18], when applying Givens rotation to
a matrix A to annihilate the aij element, the rotation matrix
affects two rows of a matrix A, rows i − 1 and i. The result
of the rotation makes the jth element of row i zero. It is
possible to parallelize the computation of the columns of rows
i−1 and i, because they are computations that do not generate
dependencies between the computations of the columns. So
a CUDA thread can be assigned to the calculation of each
column.

The implementation that was carried out involves com-
munication between MPI processes and the synchronization
of work between the CPU and the GPU, so the implementa-
tion is heterogeneous. MPI allows to distribute data between
processes and control synchronization with GPUs; and with
CUDA computations are performed on the GPU.

Algorithm 1 presents the QR factorization algorithm using
Givens rotations in GPU card. Lines 5 and 6 of Algorithm 1
are executed in GPU. The rest of algorithm run in a CPU.

Algorithm 1 QR factorization with Givens rotation

Require: A ∈ Rn×n, a symmetric square matrix; I ∈ Rn×n,
an identity matrix.

Ensure: R ∈ Rn×n, an upper triangular matrix; Q ∈ Rn×n,
an orthogonal Matrix.

1: R← A.
2: Q← I .
3: Copy R and Q to GPU memory.
4: for i = 0, 1, . . . , n− 1. do
5: To get i column i from R.
6: To apply Givens rotations to i column to R and Q.
7: end for

1) To get i column from R: As mentioned, applying a
Given rotation affects two lines. Therefore, when the Givens
rotation is applied to the i row, you must wait for the i − 1
row to change all its values in order to apply the rotations to
this row. This must be done with a synchronization between
the threads involved in the rotation.

www.ijacsa.thesai.org 637 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

In order to avoid synchronization, each thread compute
the values c and s, according to equation 3, to carry out the
rotations in the corresponding column. Therefore, a copy of
the column to which the rotations are applied is stored, this
copy is stored in read-only memory for all threads, so each
thread can obtain the values of this column and then use them
to calculate the c and s.

In order to get and store the i column from R matrix,
line 5 in the Algorithm 1, each thread in the kernel gets a
value from the i column of R matrix and stores it into array
in global memory of the GPU card, this is achieved with the
help of thread identifier. So in a single call to this kernel all
the values of the required column are stored.

2) To apply Givens rotations to i column to R and Q:
Algorithm 2 shows how to apply Givens rotations. From
equation 2, it is possible notice that Givens rotation affects
2 rows. This algorithm is implemented in a CUDA kernel.
Each thread executes the same process, the only thing that
changes is that each thread works on a different column, so at
the end of calling the algorithm once 2 we will modify to 0′s
the values of a column under the diagonal main and after to
call n−1 times the algorithm we will have the upper triangular
matrix R and QT .

From

A = QR ⇒ QTA = R ⇒ QT = Gn . . . G1I,

results in QT matrix by applying the Givens rotations to the
identity matrix. Because Q is orthogonal, QT = Q−1.

Algorithm 2 To Compute Givens Rotations Per Column

Require: R ∈ Rn×n, symmetric square matrix; Q ∈ Rn×n,
identity matrix; L ∈ Rn, column from R; col, column
identifier.

Ensure: R and Q matrices with Givens rotations applied to
column col.

1: i = thread identifier.
2: j = n.
3: µ′i =

√
lj−1

2 + lj
2.

4: c =
lj−1

µ′i
y s = lj

µ′i
.

5: while j > col do
6: µi = ri,j−1 y νi = ri,j .
7: αi = qi,j−1 y βi = qi,j .
8: ri,j−1 = cµi + sνi y ri,j = −sµi + cνi.
9: qi,j−1 = cαi + sβi y qi,j = −sαi + cβi.

10: j = j − 1.
11: a = µ′i.

12: µ′i =
√
lj−1

2 + a2.

13: c =
lj−1

µ′i
y s = a

µ′i
.

14: end while

Fig. 1 shows how algorithm 2 affects a matrix. So, this
algorithm needs to be applied to the first n− 1 columns of a
matrix to get the matrices R and QT , Fig. 2.

From Fig. 1 and 2, it can be seen that, as the process
progresses, there are some threads that are left unworked, and
this happens for the last steps. But when the number of threads
is less than the number of columns in the matrix, the threads

Fig. 1. Givens Rotations to the First Column.

Fig. 2. Process to get R, an Upper Triangular Matrix with Givens Rotations.

are traversed. Although interesting results have been shown
when the number of threads is n−1− col, and although there
are several threads that do few computations, the results in
time are better, since CUDA threads are kept in fine grain.

V. MULTI GPU STRATEGY

One of the main restrictions on the use of GPUs is memory.
Many GPU cards have 8GB of memory or less. While nVidia
has provided memory sharing strategies across multiple GPUs
or directly communicate the main memory with the GPU
memory, these solutions can be expensive for many users. One
strategy could the use multiple stream to get an speedup and
use short pieces of data to process, but this strategy is not
always easy to implement in many problems.

To work with multiple GPUs, a strategy for partitioning
data is designed. A strategy would be to divide the columns so
that they are processed by different cards, as shown in Fig. 3.
Because matrices are stored by row in C, this partitioning
method generates an overhead. Since the input matrix A in
Algorithm 1 is symmetric, then the partitioning of A by
rows can be performed 3. This matrix partitioning makes the
communication between the processes that handle these sub-
matrices more efficient. And when applying Givens rotations
the RT matrix is obtained.

In the implementation of this work, it was decided to
use MPI with CUDA, so each MPI process is in charge of
communicating with the GPU card, and the partitioning of
the data is done by lines, instead of columns. Thus, each
MPI process has a GPU card assigned to execute CUDA
processes. The main MPI process, or root process, is in charge

www.ijacsa.thesai.org 638 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 3. Column and Row Partitioning of Data.

of doing the read operations and doing a scatter operation of
the matrix A to the other processes. Subsequently, the root
MPI process send to the other processes the row of A, to
which Givens rotations will be applied. Each MPI process
sends to the memory of the GPU card that has assigned the
sub-matrix A, the row of A, and sends to execute the kernel
of the Givens rotations. The MPI process must send the first
n − 1 lines among them, one line at a time, to each MPI
process so that they apply the rotation to the sub-matrices it
has. Every time an MPI process receives a row from the root
process, it must upload it to the GPU memory and run the
Givens rotation kernel. At the end each MPI process will have
a partial result of the partial triangular matrix RT . If each
MPI process initializes the corresponding identity sub-matrix,
a communication between the root process and the other MPI
processes is avoided, and the corresponding Givens rotation
is applied to it, at the end an Q submatrix is also obtained.
Finally, the data of each process must be gathered in a single
data set to the root MPI process, to be able to show the results,
in this case the Q and RT matrices.

In Algorithm 3 is shown the parallel QR factorization using
MPI processes for multi GPU.

In Algorithm 3, there are some lines that deserve a review.
In the line 8, select the GPU card that will be assigned
to each process, the CUDA function to select the card is
cudaSetDevice(). The assignment of the card will depend
on the hardware configuration of each node. For example, if
we have nodes with a multicore processor with two GPU cards,
each node associates 0 and 1 with the identifiers of the cards.
If MPI processes i, i + 1, with i = 0, 1, . . . , np, are assigned
on each node. Then a module operation is used to assign the
GPU card.

idGPU = (idProcess) mod 2.

Where 2 is the number of GPU cards.

The line 9, refers to the row partitioning of the matrices R
and Q. Thus, each MPI process corresponds to sub-matrices
R,Q ∈ R(n/np)×n with the same number of lines. That
is, each MPI process is sent (n ∗ n)/np elements to be
processed. For this task, MPI_Scatter function is used. The
MPI_Scatter function is used to divide an array of data into
equal parts between the different processes.

Line 21 of the Algorithm 3 gathers the partial results of
each MPI process to form the resulting RT and Q matrices.
To do this, the MPI_Gather function is used.

In the following sections, other lines of Algorithm 3 will
be described in more detail. These lines are: 12, 13 and 13.

Algorithm 3 QR Factorization using Givens Rotations for
Multi GPUs
Require: A ∈ Rn×n, a symmetric square matrix ;np = total

number of process.
Ensure: RT ∈ Rn×n transposed upper triangular matrix; Q ∈

Rn×n orthogonal matrix.
1: Start MPI.
2: np = total number of process.
3: idProcess = process number.
4: if idProcess == 0 then
5: R← A.
6: Q← I .
7: end if
8: Associate a GPU card with the MPI process.
9: MPI Scatter of R and Q to all processes.

10: To copy the sub-matrices of R and Q to the memory of
the GPUs.

11: for i = 0, 1, . . . , n− 2. do
12: if Row i belongs to the R sub matrix of the process

idProcess then
13: To get the i row from R sub matrix of the idProcess

process.
14: end if
15: idProcess process sends the row obtained to the other

MPI processes.
16: Wait until all processes have received the row.
17: Copy the row to the memory of the GPUs card.
18: To apply Givens rotations to sub-matrices R and Q.
19: end for
20: Copy the R and Q sub-matrices from the GPUs card to

the Host.
21: Join submatrices to get RT y Q.
22: Finalize MPI.

Lines 12 and 13 show how to obtain the necessary row of a
specific process. And the line 18 Givens rotations are applied
to the matrix partition of each process.

A. To Get the i-th Row of the Process that has the Sub Matrix

As discussed in the previous sections, it is required to avoid
synchronization between processes to achieve performance. To
avoid this, a copy the row to which the rotations are applied to
each GPU card is made. It is important to extract the line that
is being processed. It must be inferred which process is the
one that contains the line to be processed. The Algorithm 4
is responsible for obtaining the row and sending them to the
MPI processes. This algorithm is used in lines 12 and 15 of
Algorithm 3.

In Algorithm 4, the i is the row that is send to all processes,
k is the partition that has the row, d is the number of rows
that each process has, n is the number of rows that the original
matrix has, np is the number of MPI processes, this value is
equal to the number of partitions that were made from the
matrix, and idProcess is the identifier of each process.

This process runs n times, as seen in the Algorithm 3,
where j and k are initialized to 0 before starting the for
cycle, it is possible yo obtain the row at the time it is required
and assures us to go through all the rows.

www.ijacsa.thesai.org 639 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Algorithm 4 To Get the i-th Row of R Sub Matrix from MPI
Process.
Require: i, i-th row; k is the process with the i row; d =

n/npm number of rows; idProcess, process identifier.
1: if idProcess == k then
2: To get i row of sub matrix R from idProcess.
3: end if
4: To send the row from idProcess to the other process.
5: i = i+ 1
6: if i == d then
7: i = 0
8: k = k + 1.
9: end if

B. To Apply Givens Rotations to Row i with Multi-GPUs

Because rotations are applied to row i of A matrix, this
operation affects rows i + 1 to n − 1 of this matrix. Since
each process has this row, the sub-matrices of R and Q can
be modified.

The algorithm is similar to Algorithm 2, although it has
some changes to be able to apply the rotations to each partition.
In Algorithm 5 shows the steps that must be applied to each
sub matrix of R and Q to get the partition with the rotations
applied.

Algorithm 5 To Compute Givens Rotations Per Row on Each
GPU Card

Require: R,Q ∈ R(n/np)×n, sub matrices; L ∈ Rn, is the
i-row; fil, is the row identifier; n, matrix column size;
np, number of process.

Ensure: R,Q ∈ R(n/np)×n, sub matrices with Givens rota-
tions applied;

1: i = thread identifier.
2: j = n.
3: while lj sea 0 do
4: j = j − 1
5: end while
6: tempj = j
7: while i < n/np do
8: µ′i =

√
lj−1

2 + lj
2.

9: c =
lj−1

µ′i
y s = lj

µ′i
.

10: while j > fil do
11: µi = ri,j−1 y νi = ri,j .
12: αi = qi,j−1 y βi = qi,j .
13: ri,j−1 = cµi + sνi y ri,j = −sµi + cνi.
14: qi,j−1 = cαi + sβi y qi,j = −sαi + cβi.
15: j = j − 1.
16: a = µ′i.

17: µ′i =
√
lj−1

2 + a2.

18: c =
lj−1

µ′i
y s = a

µ′i
.

19: end while
20: j = tempj
21: increase i to block size
22: end while

Every CUDA thread work with a specific row. If the
number of threads is less than the number of lines of the sub-

matrices, then the thread identifier is increased with the total
of CUDA threads that have been requested per MPI process.
Because CUDA threads traverse the sub matrix per row, using
a moderate number of threads is not recommended to avoid the
sparse cache problem. It was observed that an adequate number
of CUDA threads is 128 threads per streaming multiprocessor
in GPU cards.

A CUDA kernel runs the Algorithm 5. This kernel runs on
every GPU card associated with an MPI process. The key for
this algorithm to work is to have the row to which the rotations
in memory will be applied, since without it the algorithm
would not work, or it only work on the GPU card where the
row data is kept. Fig. 4 shows how the algorithm works on
the sub matrices.

Fig. 4. Kernel Running on 2 GPU Cards.

It is known that although the cards run the same kernel,
it does not imply that they end at the same time. So MPI
processes must wait for all cards to finish executing the kernel
that applies rotation to row i before moving on to row i+ 1.
This is accomplished by synchronizing the MPI processes with
a call to the MPI_Barrier function.

As in the method for a GPU card, in the method of Givens
multi GPUs, each card must make n − 1 calls to the kernel.
Fig. 5 shows how the whole method works using two GPU
cards.

Fig. 5 shows that after half the process, it seems that one of
the cards, the one with the upper part of the matrix, no longer
performs any operation; but this is not the case, although it
does not work on the partition of R, on the partition of Q it
does, since each call to the kernel changes the partition of Q.
Fig. 6 shows how even after the middle of the process the two
cards continue to work.

Like a parallel method that works on a single card, for the
multi-GPU method, if the number of rows in each partition
is greater than the number of threads, then the threads start
traversing to completely cover the partitions. Thus, it is not

www.ijacsa.thesai.org 640 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

Fig. 5. Givens Method for 2 GPU Cards Working in the R Matrix.

Fig. 6. Givens Method for 2 GPU Cards Working in the Q matrix.

necessary to have the same number of threads as rows per
partition, this takes on importance since it can be the case
that the two cards are different, so there is no need to change
the number of threads in the program execution. In addition
to avoid scattered cache problems, it is recommended to have
128 threads per block.

VI. TESTS

To test the performance of the multi GPU parallelization
of the QR factorization, it was compared against Intel Math
Kernel Library (MKL) functions. These comparisons were
made with single-GPU and multi-GPU experiments.

The hardware used for testing was as follows:

• Server with two Intel Xeon X5675 [29] to run MKL.
Each process has::

◦ Number of CPU core: 6. Clock Speed: 3.06
GHz. Memory bandwidth: 32 GB/s.

• Three different GPU cards were used for testing with
CUDA:
◦ 2 NVIDIA Tesla K20X card [30]:

Memory size: 6 GB. CUDA Cores: 2688.
Clock speed per core: 732 MHz. Memory
Bandwidth: 250 GB/s.

◦ 1 NVIDIA Tesla C2070 [31]:
Memory size: 6 GB. CUDA Cores: 448.
Clocl speed per core: 1.15 GHz. Memory
Bandwidth: 144 GB/s.

◦ 1 NVIDIA GeForce GTX 460 [32]:
Memory size: 1 GB. CUDA Cores: 336.
Clock speed per core: 1.53 GHz. Memory
Bandwidth: 115.2 GB/s. Cuenta con over-
clocking

A. Experiments with a Single GPU

The parallel implementation of the QR factorization for
multi GPU was executed in each one of the cards. The 2 MKL
functions were used: ?geqrf1, which allows to get the matrix
RT and the function ?orgqr, which is used after the function
?geqrf, to get the matrix QT . In CUDA and MKL tests,
single and double precision were used.

Three different types of test matrices were used: tridi-
agonal, pentadiagonal, and heptadiagonal. The results of the
three types of matrices were very similar, since the algorithm
considers symmetric dense matrices, so only the results of the
tests with heptadiagonal matrices will be exposed. One of the
objectives of this work is to be able to process large matrices.
The experiments were carried out with single precision square
matrices of size 5000×5000 to 20000×20000, and 5000×5000
to 16000× 16000 for double precision square matrices.

Fig. 7 shows the difference in execution times of the
different tests that were carried out for simple precision. And
the Table I shows the data in more detail for your study. These
first experiments are for QR factorization with a single GPU
card. In general, it is appreciated that the MKL functions for
QR factorization are very competitive up to sizes between
9000× 9000 or 10000× 10000.

Table I shows the execution times. Because the MKL
experiments with 12 threads have better performances, these
times will be taken as a reference for CUDA experiments.
The K20X card, which is the one with the lowest performance
among GPU cards. The test on the K20X has a maximum
acceleration of 1.2x over MKL with 12 threads when working
with an matrix size of 20000×20000. The GTX 460 card could
only process matrices up to 10000×10000 in single precision
because it only has 1MB of memory, however, when process-
ing this matrix size it achieves a 1.36x acceleration compared
to MKL. The C2070 card begins to show better performance
compared to MKL from the matrix size of 10000×10000 with
a 1.2x acceleration and achieves an acceleration of 2.8x at the
size 20000× 20000, which is the maximum it supports.

1Where the symbol ? changes for a s if it is a single precision or a d if it
is a double precision.

www.ijacsa.thesai.org 641 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

0

20

40

60

80

100

120

140

160

180

5000 8000 12000 16000 20000

Se
co

nd
s

Size of matrix

MKL (6 threads)
MKL (12 threads)

Tesla C2070
GeForce GTX 640

Tesla K20X

Fig. 7. Execution Times of QR Factorization for Single Precision Matrices.

TABLE I. EXECUTION TIMES OF QR FACTORIZATION FOR SINGLE
PRECISION MATRICES.

Execution times (seconds)
Size MKL 6

threads
MKL 12
threads

C2070 GTX 640 K20X

5000 3.005 1.854 4.315 4.127 7.567
6000 5.057 3.054 5.181 4.893 9.583
7000 7.887 4.664 6.175 5.775 11.967
8000 11.621 6.795 7.345 6.823 14.708
9000 16.361 9.428 8.689 7.991 17.812

10000 22.249 12.701 10.153 9.289 21.251
12000 37.928 21.379 13.598 - 29.217
15000 73.342 40.967 19.986 - 43.838
18000 126.449 71.037 27.771 - 61.680
20000 172.728 96.641 33.677 - 77.676

Fig. 8 shows the execution times of the different tests with
double precision with MKL and CUDA with a single GPU
card. Like the simple precision case, MKL experiments with
12 threads perform better than execution with 6 threads, so
comparisons of the CUDA implementation will be made with
the results of this experiment.

Table II shown the performance of CUDA programs with
respect to the MKL version. The maximum size for GTX 640
card es 8000× 8000, this card begins to show an acceleration
of 1.1x in the size of 6000 × 6000 and reaches 1.7x in the

0

20

40

60

80

100

120

140

160

180

5000 7000 10000 13000 16000

Se
co

nd
s

Size of matrix

MKL (6 threads)
MKL (12 threads)

Tesla C2070
GForce GTX 640

Tesla K20X

Fig. 8. Execution Times of QR Factorization for Double Precision Matrices.

TABLE II. EXECUTION TIMES OF QR FACTORIZATION FOR DOUBLE
PRECISION MATRICES.

Execution times (seconds)
Size MKL 6

threads
MKL 12
threads

C2070 GTX 640 K20X

5000 5.856 3.471 4.532 4.405 7.886
6000 9.863 5.783 5.507 5.333 9.893
7000 15.407 9.001 6.592 6.354 12.401
8000 22.894 13.338 7.882 7.599 15.271
9000 32.359 18.678 9.449 - 18.640
10000 44.139 25.375 11.043 - 22.124
12000 75.976 43.294 14.861 - 30.562
15000 146.037 82.342 22.118 - 45.949
16000 177.032 99.588 24.683 - 51.798

TABLE III. EXECUTION TIME OF QR FACTORIZATION WITH 2 K20X
CARDS FOR SINGLE PRECISION SQUARE MATRICES.

Execution times (seconds)
Size MKL 6 threads MKL 12 threads 2 K20X

10000 22.24998125 12.70196825 38.5489915
15000 73.34226025 40.967238 84.951077
20000 172.7288738 96.6412415 150.7447375
22000 229.2751283 129.0128638 182.637326
24000 296.6546478 165.9274763 217.4389965
26000 376.5570043 210.0910878 254.3220125

maximum size of the card. The C2070 card presents better
performance than MKL from 7000 × 7000 matrix size, with
1.3x, and reaches 4.14x acceleration compared to MKL. The
K20X starts its acceleration in the size of 10000x10000 with
1.15x and reaches almost 2x speedup. Again, the C2070
performs better than the K20.

Finally, a very peculiar behavior is observed in Table I
and II tables, since the execution times are maintained for
matrix sizes from 5000 to 1000 for double and single precision
cases.

B. Experiments with Multi-GPU

Two experiments were carried out on the scalable imple-
mentation of GPU cards: One using 2 Tesla K20X cards and
the other using a Tesla C2070 card and a GTX 640. The results
of these experiments are compared against MKL of 6 and 12
threads. The first configuration of cards is homogeneous, since
they are two Tesla K20 cards. Because K20 cards have 6GB of
memory, its possible work with 26000×26000 single precision
square matrix for the experiments. The second configuration
is heterogeneous, since they are cards with different character-
istics. In the case of the experiments with the C2070 and the
GTX 460x, it will only be possible to carry out experiments
on stable matrices of sizes 6000 to 18000. This limitation in
the size of the matrix is due to the memory restriction of the
GTX 460 card, since it only has 1GB of memory.

It start with the experiments of the 2 K20X, in the Fig. 9
and Table III it can be see the times for MKL and the
implementation proposed in this work to perform the QR
factorization. In this the MKL experiments for 12 threads have
better performance that the multi-GPU program. However, the
multi GPU program is capable of processing a larger matrix
than its single card version.

www.ijacsa.thesai.org 642 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

0

50

100

150

200

250

300

350

400

10000 14000 18000 22000 26000

Se
co

nd
s

Size of matrix

MKL (6 threads)
MKL (12 threads)

2 Tesla K20X

Fig. 9. Execution Time of QR Factorization with 2 K20X Gpus Cards for
Single Precision Matrices.

0

20

40

60

80

100

120

140

6000 9000 12000 15000 18000

Se
co

nd
s

Size of matrix

MKL (6 threads)
MKL (12 threads)

Tesla C2070 y GeForce GTX 640

Fig. 10. Execution Times for QR Factorization with Multi GPU using C2070
and GTX 460 Cards for Single Precision Matrices.

Unfortunately for the configuration with the K20X cards
the same behavior is maintained in single and double precision.
In both cases the performance of the mutli-GPU version is
lower than that of MKL with 12 threads.

For multi-GPU experiments with the C2070 and GTX 640,
we started showing the results for single precision matrices. In
this case, the maximum size of the matrix used to process was
18000×18000, due to the memory limitation of the GTX 460
card. Fig. 10 presents the times of the MKL experiments and
the multi GPU implementation. It is interesting to see that the
same multi-GPU program has better performance than running
for 2 K20X and better performance than MKL functions with
12 threads.

From the values in the Table IV, it is observed that the multi
GPU program with the C2070 and GTX 640 cards, starts with
similar times to the program with MKL and 12 threads, and
accelerates until reaching 1.2x acceleration for the maximum
size of the test matrix.

Fig. 11 shows the run times for experiments in the case
of matrices with double precision. For these experiments the
maximum size of the test matrices was 12000 × 12000. It
is observed that the performance of the version of the QR
multi GPU factorization is superior to the version of MKL

TABLE IV. EXECUTION TIMES FOR QR FACTORIZATION WITH MULTI
GPU USING C2070 AND GTX 460 CARDS FOR SINGLE PRECISION

MATRICES.

Execution times (seconds)
Size MKL 6 threads MKL 12 threads C2070 y GTX 640
6000 5.05746 3.05409 3.343184
8000 11.62196075 6.79531825 5.625851
10000 22.24998125 12.70196825 8.625267
12000 37.928559 21.37907675 12.4785045
16000 89.31594025 50.3303555 22.0926865
18000 126.449971 71.03795625 59.6142455

0

10

20

30

40

50

60

70

80

6000 8000 10000 12000

Se
co

nd
s

Size of matrix

MKL (6 threads)
MKL (12 threads)

Tesla C2070 y GeForce GTX 640

Fig. 11. Execution times for QR factorization with multi GPU using C2070
and GTX 460 cards for double precision matrices.

with 12 threads. Table V shows that the multi GPU program
that uses the C2070 cards and the GTX 640, has better
performance since the first experiments, with a performance
of 1.6x compared to the MKL program with 12 threads. For
the experiment with the maximum size of the matrices, the
acceleration reached 1.6x over the version of MKL with 12
threads.

VII. DISCUSSION

After carrying out the experiments and comparing the
results, its possible analyze the behavior of the programs,
including the technologies that were used in this work. This
gives a set of lessons learned.

First it can be see that the performance of the Tesla K20X
cards was lower than that of the Fermi Tesla C2070 card.
When analyzing the execution of the CUDA program on these
cards, it is appreciated that the communication time between
the Host and Device (both to send data to the GPU and to
receive data from the GPU) increased with the K20X cards.

TABLE V. EXECUTION TIMES FOR QR FACTORIZATION WITH MULTI GPU
USING C2070 AND GTX 460 CARDS FOR DOUBLE PRECISION MATRICES.

Execution times (seconds)
Size MKL 6 threads MKL 12 threads C2070 y GTX 640
6000 9.86363625 5.7834095 3.6662875
8000 22.8946235 13.33819875 6.1803205
10000 44.13997175 25.37548475 16.696302
12000 75.97651125 43.29401675 27.9818585

www.ijacsa.thesai.org 643 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

The kernel performance is superior in the K20X, however, the
main bottleneck when using these cards is to pass data between
the host and the device.

It is observed that the performance behavior for double
precision and single precision data processing is similar with
CUDA. So the limitation of the cards is their memory size.

In this paper, symmetric matrices were deliberately used
to study the partitioning of rows by matrices to apply Givens
rotations. This type of partitioning allows the distribution of
data to be very transparent in MPI and thus avoid a bottleneck
in communication between MPI processes. However, this re-
sults in CUDA threads having to traverse the matrix by row,
which generates a sparse cache problem. That is, the cache of
the Streaming multiprocessor of the Nvidia GPUs is 46KB. By
having multiple threads that must traverse the rows in reverse,
there is no guarantee that the data for a CUDA thread will be
available in the L1 cache. Which generates a poor performance
in the execution of the kernel.In the case of the CUDA program
with a card, the path of the CUDA threads is made per column,
and thus each thread processes an element of the i-th row and
a compact cache is generated, so there is a guarantee of the
CUDA threads have the data with which they will operate in
the L1 cache memory.

The effect of the use of the compact and dispersed cache is
very noticeable in the experiments that were carried out. If the
execution times of the CUDA programs of a card are compared
with the CUDA multi GPU program, Table II and Table V, it
is noted that the performance of the programs with a card is
superior to that of the multi GPU version. At first glance one
might think that it is due to the synchronization between the
processes to send the i-th row to all the processes. But it has
been observed that the execution of the multi GPU program
with a single GPU consumes more than twice the time of the
execution of the program designed for a single GPU.

A new version of the multi GPU program for QR factor-
ization using Givens rotations must have a matrix partitioning
per column. This approach would allow CUDA threads to work
with compact cache memory, which would give CUDA kernel
execution a good performance. Fortunately, there are ways to
do a matrix scatter per column in MPI.

VIII. CONCLUSIONS

This work presents the parallel implementation in CUDA
for Givens factorization. This implementation is scalable to
work with multiple GPUs when combined with MPI and
CUDA. This work explore some strategies for working with
large volumes of data combining MPI with CUDA. These
strategies focus on partitioning the matrix to be factored. It can
be seen that the program with escalation has less performance
than the program for a card. But the performance is due to the
way CUDA threads work with sub-matrices derived from row
partitioning.

Communication between CPU memory and GPU card
affects the performance of CUDA programs. The C2070 card,
although it is from a previous generation to the K20X, presents
better results than the K20X, because the data transfer times
are shorter.

The main contribution of this work is that, for the QR fac-
torization algorithm through Gives rotations, the relationship
between matrix partitioning and the scattered or compact cache
problems that occur at the GPU level by the how the CUDA
kernel should process the sub array. In addition, it is proven
that it is feasible to establish a combination of MPI and CUDA
to have scalable algorithms that process large volumes of data
on nodes that do not include the latest memory management
technology from NVIDIA such as GPU Direct.

ACKNOWLEDGMENT

The authors thank financial support given by the Mexican
National Council of Science and Technology (CONACyT),
as well as IPN for SIP Research Project number 20201079.
The authors acknowledge both, the Center for Research
and Advance Studies of the National Polytechnic Institute
(CINVESTAV- IPN) and the Section of Research and Grad-
uate Studies (SEPI) of ESCOM-IPN, for encouragement and
facilities provided to accomplish this publication.

REFERENCES

[1] B. Alipourfard and J. X. Gao, “Solving all regression models for
learning gaussian networks using givens rotations,” arXiv preprint
arXiv:1901.07643, 2019.

[2] Y. Gan, B. Hu, W. Liu, S. Wang, G. Zhang, X. Feng, and D. Wen,
“Endmember extraction from hyperspectral imagery based on qr fac-
torisation using givens rotations,” IET Image Processing, vol. 13, no. 2,
pp. 332–343, 2018.

[3] L. Marcellino and G. Navarra, “A gpu-accelerated svd algorithm, based
on qr factorization and givens rotations, for dwi denoising,” in 2016
12th International Conference on Signal-Image Technology & Internet-
Based Systems (SITIS). IEEE, 2016, pp. 699–704.

[4] C. Luo, K. Zhang, S. Salinas, and P. Li, “Efficient privacy-preserving
outsourcing of large-scale qr factorization,” in 2017 IEEE Trust-
com/BigDataSE/ICESS. IEEE, 2017, pp. 917–924.

[5] P. Czarnul, J. Proficz, and K. Drypczewski, “Survey of methodolo-
gies, approaches, and challenges in parallel programming using high-
performance computing systems,” Scientific Programming, vol. 2020,
2020.

[6] A. A. Serrano-Rubio, A. Meneses-Viveros, G. B. Morales-Luna, and
M. Paredes-López, “Generic methodology for the design of parallel
algorithms based on pattern languages,” in International Conference on
Supercomputing in Mexico. Springer, 2018, pp. 35–48.

[7] I. Burylov, M. Chuvelev, B. Greer, G. Henry, S. Kuznetsov, and
B. Sabanin, “Intel performance libraries: Multi-core-ready software
for numeric-intensive computation.” Intel Technology Journal, vol. 11,
no. 4, 2007.

[8] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,
“Intel math kernel library,” in High-Performance Computing on the
Intel® Xeon Phi? Springer, 2014, pp. 167–188.

[9] A. Kalinkin, A. Anders, and R. Anders, “Intel® math kernel library
parallel direct sparse solver for clusters,” in EAGE Workshop on High
Performance Computing for Upstream. European Association of
Geoscientists & Engineers, 2014, pp. cp–426.

[10] Intel, “Math kernel library (mkl),” 2016. [Online]. Available:
http://software.intel.com/en-us/intel-mkl/

[11] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra on
emerging architectures: The plasma and magma projects,” in Journal of
Physics: Conference Series, vol. 180, no. 1. IOP Publishing, 2009, p.
012037.

[12] A. Haidar, S. Tomov, P. Luszczek, and J. Dongarra, “Magma embedded:
Towards a dense linear algebra library for energy efficient extreme
computing,” in 2015 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2015, pp. 1–6.

www.ijacsa.thesai.org 644 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

[13] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser,
A. Jungel, and S. Selberherr, “Viennacl—linear algebra library for
multi-and many-core architectures,” SIAM Journal on Scientific Com-
puting, vol. 38, no. 5, pp. S412–S439, 2016.

[14] C. Sanderson and R. Curtin, “Armadillo: a template-based c++ library
for linear algebra,” Journal of Open Source Software, vol. 1, no. 2,
p. 26, 2016.

[15] S. Eliuk, C. Upright, and A. Skjellum, “dmath: A scalable linear algebra
and math library for heterogeneous gp-gpu architectures,” arXiv preprint
arXiv:1604.01416, 2016.

[16] J. Dongarra, M. Gates, A. Haidar, Y. Jia, K. Kabir, P. Luszczek, and
S. Tomov, “Portable hpc programming on intel many-integrated-core
hardware with magma port to xeon phi,” in International Conference
on Parallel Processing and Applied Mathematics. Springer, 2013, pp.
571–581.

[17] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu,
I. Yamazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour et al.,
“Plasma: Parallel linear algebra software for multicore using openmp,”
ACM Transactions on Mathematical Software (TOMS), vol. 45, no. 2,
pp. 1–35, 2019.

[18] A. H. Sameh and D. J. Kuck, “On stable parallel linear system solvers,”
Journal of the ACM (JACM), vol. 25, no. 1, pp. 81–91, 1978.

[19] ——, “A parallel qr algorithm for symmetric tridiagonal matrices,”
IEEE Transactions on Computers, vol. 100, no. 2, pp. 147–153, 1977.

[20] M. Cosnard, J.-M. Muller, and Y. Robert, “Parallel qr decomposition
of a rectangular matrix,” Numerische Mathematik, vol. 48, no. 2, pp.
239–249, 1986.

[21] I. C. Ipsen, “A parallel qr method using fast givens’ rotations.” YALE
UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE, Tech.
Rep., 1984.

[22] H. Xu and W. Alexander, “Parallel qr factorization on a block data flow
architecture,” in The 24th Southeastern Symposium on System Theory

and The 3rd Annual Symposium on Communications, Signal Processing
Expert Systems, and ASIC VLSI Design. IEEE, 1992, pp. 332–336.

[23] J. Dongarra, M. Faverge, T. Herault, M. Jacquelin, J. Langou, and
Y. Robert, “Hierarchical qr factorization algorithms for multi-core
clusters,” Parallel Computing, vol. 39, no. 4-5, pp. 212–232, 2013.

[24] T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, and Y. Yamamoto,
“Choleskyqr2: a simple and communication-avoiding algorithm for
computing a tall-skinny qr factorization on a large-scale parallel sys-
tem,” in 2014 5th Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems. IEEE, 2014, pp. 31–38.

[25] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka,
“Algorithm 980: Sparse qr factorization on the gpu,” ACM Transactions
on Mathematical Software (TOMS), vol. 44, no. 2, pp. 1–29, 2017.

[26] R. Andrew and N. Dingle, “Implementing qr factorization updating
algorithms on gpus,” Parallel Computing, vol. 40, no. 7, pp. 161–172,
2014.

[27] C. Coti, “Scalable, robust, fault-tolerant parallel qr factorization,” in
2016 IEEE Intl Conference on Computational Science and Engineering
(CSE) and IEEE Intl Conference on Embedded and Ubiquitous Com-
puting (EUC) and 15th Intl Symposium on Distributed Computing and
Applications for Business Engineering (DCABES). IEEE, 2016, pp.
626–633.

[28] A. Buttari, S. Hauberg, and C. Kodsi, “Parallel qr factorization of block-
tridiagonal matrices,” 2019.

[29] I. Corporation, “Intel xeon processor x5680.” [Online]. Available:
http://ark.intel.com/ products/47916/.

[30] N. Corporation, “Tesla k20x gpu accelerator,” 2012. [Online].
Available: http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-
06397-001-v05.pdf.

[31] ——, “Tesla c2075 and tesla c2070 computing processor board,” 2010.
[32] ——, “Nvidia geforce gtx 460,” 2011.

www.ijacsa.thesai.org 645 | P a g e


