
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

51 | P a g e  
www.ijacsa.thesai.org 

Adaptive Hybrid Synchronization Primitives: A 

Reinforcement Learning Approach 

Fadai Ganjaliyev 

School of IT and Engineering, ADA University 

Baku, Azerbaijan 

 

 
Abstract—The choice of synchronization primitive used to 

protect shared resources is a critical aspect of application 

performance and scalability, which has become extremely 

unpredictable with the rise of multicore machines. Neither of the 

most commonly used contention management strategies works 

well for all cases: spinning provides quick lock handoff and is 

attractive in an undersubscribed situation but wastes processor 

cycles in oversubscribed scenarios, whereas blocking saves 

processor resources and is preferred in oversubscribed cases but 

adds up to the critical path by lengthening the lock handoff 

phase. Hybrids, such as spin-then-block and spin-then-park, 

tackle this problem by switching between spinning and blocking 

depending on the contention level on the lock or the system load. 

Consequently, threads follow a fixed strategy and cannot learn 

and adapt to changes in system behavior. To this end, it is 

proposed to use principles of machine learning to formulate 

hybrid methods as a reinforcement learning problem that will 

overcome these limitations. In this way, threads can intelligently 

learn when they should spin or sleep. The challenges of the 
suggested technique and future work is also briefly discussed. 

Keywords—Spinning; sleeping; blocking; spin-then-block; 

spin-then-park; reinforcement learning 

I. INTRODUCTION 

While multicore architectures bring new opportunities for 
parallel software, they also present certain challenges, such as 
the choice of contention management strategy, which is 
crucial for the performance and scalability of parallel 
applications. The diversity of computing environments and 
unpredictability of application behavior makes this issue even 
more severe. 

General synchronization techniques used to provide 
concurrent access of threads to shared objects are spinning 
(busy waiting) or blocking (descheduling the waiting thread). 
The other approaches are some combinations of the two, such 
as spin-then-block or spin-then-park. When spinning, to get 
the ownership of the shared resource, a thread continuously 
polls the resource until it becomes free, while in case of 
blocking, the thread relinquishes processor, thereby allowing 
other threads to utilize CPU. Spinning provides very quick 
lock handoff and is preferred in undersubscribed scenarios. 
However, in oversubscribed cases, every type of spinning can 
create scalability bottlenecks because it is highly CPU 
intensive by design. To mitigate this issue exponential backoff 
technique [1-3] inserts random delays between consecutive 
spins and queue-based protocols [4-9] spread contention 
among different memory locations. Still, in an overloaded 
system, spinning is inefficient because it wastefully burns 

CPU cycles. Blocking, on the contrary, saves processor cycles 
by descheduling the contending thread even though context 
switches associated with the lock handoff phase (one to park 
out and another one to wake up) significantly add up to the 
critical path. Besides, frequent sleeps and wakeups can make 
the scheduler very busy and deteriorate its performance. 

To balance tradeoffs between spinning and blocking, 
hybrid, spin-then-block, and spin-then-park strategies are used 
where threads spin at low and average contentions and block 
when contention rises [2, 10-13]. These techniques provide 
quick lock handoff at moderate contentions, meanwhile avoids 
waste of CPU time because when contention rises, threads 
suspend themselves, and other threads can do useful work. 
However, these strategies do not eliminate parking out and 
waking up from the lock handoff phase. To remove scheduler 
interaction from the critical path, previous [14] and recent [15] 
research suggests to maintain system load and to park and 
wake up threads in bulk as load changes. In summary, these 
works address two main problems: 1) whether a thread should 
spin or sleep, and 2) how a thread should make sleeping 
decisions. 

Threads can address these issues more elegantly. Instead 
of acting in a certain way deemed efficient at particular states 
of the system, a thread can take action (for example, sleep for 
a specific duration) and evaluate it by peeking at its outcome, 
which drives the thread to the goal it is trying to achieve. 
Eventually, a thread will have a set of state-action pairs that 
will not only allow it to act optimally at any state but also will 
help it to predict optimal behavior for future unseen cases. 

In summary, this paper makes the following contributions: 

 We show that system load cannot serve as the only 
criteria in sleeping decisions, as previous and recent 
research states. 

 We show that a thread that follows either of the hybrid 
methods can be treated as an entity capable of learning 
optimal actions (spin or take a timed sleep) via 
interaction with the system. 

 We formulate both spin-then-block and spin-then-park 
strategies as a reinforcement learning (RL) problem, 
which allows a thread to 1) learn when it should spin or 
sleep 2) adapt its behavior to changes in the system and 
3) utilize learned experience to future cases. 

The rest of this work is organized as follows. The next 
section briefly describes the hybrid methods and motivates the 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

52 | P a g e  
www.ijacsa.thesai.org 

described approach. Section 3 presents the suggested method. 
Section 4 discusses the opportunities and challenges of the 
approach and future work. Finally, Section 5 summarizes 
conclusions. 

II. BACKGROUND AND MOTIVATION 

We motivate the need for intelligent learning of sleeping 
and spinning and provide background on reinforcement 
learning as applicable to hybrid primitives. Detailed 
descriptions are out of the scope of this paper, and the 
interested reader can refer to [10-13] for hybrid methods and 
to [16-18] for reinforcement learning. 

A. Hybrid Synchronization Primitives 

The blocking method extends queue-based spinning 
protocols in two ways. In the case of the spin-then-block 
method [10, 11, 19, 20], once a thread enters the system, it 
either spins or blocks depending on the level contention on the 
lock. In the other case, a thread may not block right away but 
may spin for a while and then park itself out, which is the 
spin-then-park [2, 12-15] strategy. The issue both of the 
methods are addressing is whether spinning or blocking a 
better choice at a particular point of time. 

Later, researchers suggested [14] to improve it further and 
move scheduler decisions off the critical path by decoupling 
contention management from load control. A separate control 
daemon thread periodically estimates the system load. A set of 
randomly selected threads is parked out or woken up in 
response to load change. A more recent work [15] extends this 
technique for NUMA architectures by maintaining a load 
metric per socket. In both of the works, system load is the 
driving factor when deciding about blocking and waking up 
threads that is done in bulks. Fig. 1(a) and Fig. 1(b) illustrate 
these approaches. The latter work also addresses memory 
footprint challenges. But this is not the focus of this work. 

Duration of sleep is important. When parked out threads 
wake up too early, they burn CPU cycles, whereas waking up 
later than expected lengthens the critical path (a thread still 
sleeps even though the lock is free). In Fig. 2(a) the lock is 
released at time t′. A contending thread that is currently 
sleeping wakes up at t′ and spins until t′. Should it predict lock 
release time more accurately, it could have slept a bit more so 
that to wake up right before the lock is released, which would 
minimize the unnecessary burning of CPU time. In Fig. 2(b) a 
thread sleeps such that it wakes up much later the lock is 
released. The lock holder frees it at time t′, but the thread 
continues to sleep until t′′ which lengthens the critical path. 
This time the issue is different while the reason is the same. 
To avoid these issues, threads should be able to judge the 
consequences of their actions. If sleeping for the smallest 
possible amount of time yields unnecessary sleeping, then a 
thread should never sleep, no matter what other conditions are, 
in which case spinning is the only choice. Also, because the 
number of possible sleep durations is large, threads should be 
encouraged to transfer learning from one state to other similar 
states. 

 
(a)  Spin-then-Park Strategy. 

 
(b)  Spin-then-Block Strategy. 

Fig 1. Spin-then-Park and Spin-then-Block Strategies. 

 
(a).Unnecessary Spinning. 

 
(b).Unnecessary Sleeping.

 

Fig 2. Spinning and Sleeping Unnecessarily. 

According to previous [14] and recent research [15] 
estimating system load in blocking decision eliminates 
scheduler interaction from the blocking phase and improves 
latency of the lock handoff phase. Threads sleep for a duration 
proportional to the overload metric value. However, there are 
other factors that should be taken into account when making 
sleeping decisions, such as, length of the queue of nodes 
created by contending threads. If a thread decides to take a 
sleep, then it should also take into account length of the queue. 
Each successor thread will hold the lock for the time it takes to 
execute the critical section. This means that for the same 
overload factor a thread should sleep for different durations 
depending on the length of the queue created by successor 
threads. Otherwise, it may result in unnecessary spinning or 
sleeping or both. 

That is, the following conclusions can be made: 

 When making sleeping decisions, both system load and 
number of successor contending threads should be 
considered. A thread should have both a global and a 
local view of its environment. 

 To decide about spinning or sleeping, threads should be 
able to evaluate their actions. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

53 | P a g e  
www.ijacsa.thesai.org 

 As the system changes its behavior, a thread should be 
able to 1) adapt accordingly, and 2) use its experience 
to act optimally in the future. 

B. Reinforcement Learning and its Applicability to Hybrid 

Synchronization Methods 

Once a thread enters the system, it has to choose one of 
several options to contend for the lock: spin, spin for some 
time, and then sleep or take a sleep. A thread prefers one of 
these options depending on some factors, such as the load of 
the system. Instead of just heuristically choosing one of the 
available actions, a thread may also retrieve feedback from it 
to determine how good was the action it took at this particular 
state of the environment. The thread may then remember this   
and use it to act more intelligently and efficiently in the future. 
By behaving in this manner, the thread collects a set of state-
action pairs, and whenever it enters any state, it chooses the 
action that is the best one at this state. The feedback must 
correctly reflect the goal that the thread is trying to achieve. 
Thus, a thread can be treated as a RL agent whose aim is to 
learn to behave optimally in an uncertain environment by 
interacting with it. 

Situated between supervised and unsupervised learning, 
RL is an area of machine learning that deals with sequential 
decision making problems in which the feedback is limited 
[18]. Basic concepts of RL are agents, environments, actions, 
states, rewards, and policies. An agent represents the learning 
decision maker. The environment is where the agent learns by 
taking actions, which is the set of all possible moves an agent 
can make. Whenever the agent takes action, the environment 
responds to it by placing the agent in a certain state which is 
an instantaneous situation where the agent finds itself i.e., the 
environment’s input is agent’s current state and action in that 
state and the output is the new state and the corresponding 
reward. The reward, which is an immediate scalar signal, is 
the feedback the agent receives as a consequence of its action 
and helps to measure how good the action at that state was. It 
essentially evaluates the agent’s action in the current state. 
The policy is a function that maps states to actions and 
effectively is a strategy that the agent exploits to decide about 
the next action in the current state. The goal of the agent is to 
learn the best policy i.e., the policy that maximizes the long-
term reward. Fig. 3(a) represents the agent-environment 
interaction. 

Fig. 3(b) shows how a thread’s interaction with the system 
fits within this framework. The thread (the agent) decides to 
spin or sleep. Note that now it does not block but takes a timed 
sleep since one of the purposes is to remove lock handoff from 
the critical path. Consequently, the thread receives a reward 
(for example, the reward can be modeled as the cost of lock 
acquisition in terms of CPU cycles). As a result, the thread 
finds itself in a new state where it can take a different action 
(for example, sleep for a different duration). Eventually, the 
thread collects a set of state-action pairs which it then can 
utilize. 

 
(a).A RL Agent Interacting with its Environment. 

 
(b).A Thread as a RL Agent Interacting with its System. 

Fig 3. RL Framework and Thread as a RL Agent. 

RL problems are formalized using Markov Decision 
Processes (MDP). MDP is a tuple <S, A, T, R, γ> with the 
Markov property, that is, the current state provides sufficient 
statistics about the future, and thus, all the past information 
can be discarded. S and A is a finite state and action spaces 
correspondingly. 

T is a transition function, which is the probability 
distribution over the state space for each states ϵ S, and action 
a ϵ A. R is an expected reward for taking action in a state and 
γ is a discount factor. The discount factor guarantees, from 
one hand, that the algorithm converges, and on the other hand, 
tells the agent how important are immediate rewards 
compared to future rewards. The closer it is to 0, the less 
important future rewards are compared to immediate rewards, 
whereas values closer to 1 make future rewards count as much 
as immediate rewards. Transition function and reward together 
completely define the model of the environment. Fig. 4 shows 
an example of a non-deterministic MDP state diagram that 
models an environment with two states S1 and S2, and in both 
states, the agent has two actions A1 and A2. If the agent, for 
example, in state S2, takes action A1, it transitions to state S1 
and receives a reward of 9 with a probability of 0.3 and finds 
itself in the same state and receives a reward of 4 with a 
probability of 0.7. It is important to note that the next state is 
not determined just by the agent’s action in the current state 
but also depends on the behavior of the environment. For 
example, in the context of hybrid synchronization methods, 
the next state (we suppose, at least scheduler load can be one 
of the state attributes) partly depends on the action of the 
thread in the current state and partly on the scheduling 
decisions which is not under the thread’s control. 

When the model of the environment is known, the agent 
can derive the optimal policy by using the transition and 
reward functions. However, in the absence of these functions 
(which is the case with hybrid methods), the agent needs to 
interact with the environment and observe its responses, in 
which case the algorithm is referred to as model-free. In this 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

54 | P a g e  
www.ijacsa.thesai.org 

case, the agent derives the optimal policy without using 
neither transition function nor the reward function. A popular 
model-free algorithm used for estimating optimal policy is Q-
Learning [17, 18] (more in the next section), which associates 
a value with each state-action pair and derives optimal policy 
from these values. Typical issues that the agent needs to 
address are the following. 

 

Fig 4. A Non-Deterministic MDP State Diagram with Two States and Two 

Actions. 

Temporal credit assignment. The agent tries to collect 
the largest amount of reward in the long run. For each 
received reward, it needs to determine whether it leads to the 
desired outcome. An action that yields high immediate reward 
may lead the agent to an undesirable state; in other cases, 
taking an action that yields no reward may seem undesirable 
first but may be critical to driving the system to the state with 
the highest reward. For example, some threads may take sleep 
for a specific duration and get a high reward for this action 
because it wastes fewer CPU cycles. However, if too many 
threads do so when the scheduler is very busy, then the 
scheduler can quickly become a bottleneck. Therefore, to act 
accurately, the agent needs careful planning. 

Exploration vs Exploitation. To achieve its goal, the 
agent needs to interact with its environment to gather more 
information that may lead to an optimal policy, and at the 
same time, it needs to exploit at best information it has found 
so far. An excessive investigation might lead to the best 
policy, but it causes long learning periods, whereas too little 
investigation may have the agent to accept a suboptimal policy 
early on. 

Generalization. The state space can be exponentially 
large, and the agent might need to visit a huge number of 
possible states to try actions and evaluate rewards at those 
states. Besides, the agent may not have a chance to visit the 
same state twice over its lifetime. In such cases, the agent has 
to generalize of experience learned in previous states to new 
states. 

III. RL-BASED HYBRID SYNCHRONIZATION METHODS 

Both spin-then-block and spin-then-park methods can be 
formulated as a RL problem. As stated above, both methods 
aim to decide whether spinning or sleeping is a more efficient 
choice at a particular state of the system. If a thread now acts 
as a decision maker, then it can take any of the available 
actions. Therefore, it will be agnostic about which hybrid 
primitive it follows. It is simply trying to find out best (from a 

reward perspective) actions at certain states. For example, if a 
thread spins for some time and quickly acquires the lock, then 
it remembers this choice at states. In a different state, it may 
notice that spinning does not result in high reward and will 
prefer a timed sleep. 

A. Formulation of Hybrid Primitives as a RL Problem 

Now the reward structure needs to be defined, as well as 
state and action spaces that threads can use to decide about 
their optimal behavior. Here, also described the techniques can 
be used to overcome the challenges mentioned in the previous 
section are also. 

Action. A thread can either spin or take a timed sleep but 
never a combination of both with spinning being first. Initial 
spinning of the spin-then-park strategy is a waste of CPU 
cycles now, since if a thread would be scheduled out until it 
gets the lock, then it should not have spun but rather have 
taken a timed sleep when it entered the system. To amortize 
the cost of scheduling out and waking up threads can park out 
and wake up in batches as previous [14] and recent [15] 
research suggests. 

Reward. The goal of a thread is to acquire the lock in the 
cheapest and fastest way. If a thread manages to acquire the 
lock solely by spinning, then it receives a positive reward, 
otherwise, a negative reward, in which case it would be 
scheduled out by the scheduler. Next time the thread visits the 
same or a similar state, it should take a timed sleep and 
consequently receives a positive reward equal to the duration 
of the sleep if, as a result, the thread did not sleep 
unnecessarily (still slept while the lock was free). Eventually, 
it may sleep for even more amount of time to minimize 
spinning at that state. Otherwise, the thread receives a 
negative reward of the same magnitude (to discourage it from 
sleeping for this duration at this state again because it will add 
up to the critical path which has to be avoided). Hence, the 
more a thread sleeps, the more reward it receives, given that 
the sleep does not result in sleeping unnecessarily. To 
determine whether it has slept more than necessary, the thread 
can check whether it has at least one failed spin after waking 
up. If upon waking up, the thread grabs the lock as a result of 
the first spin that means the lock was free by the time it woke 
up, in which case the thread is punished. Acquiring the lock 
solely by spinning (which should always be possible in case of 
undersubscribed situation and relatively fewer number of 
successor threads) should yield the highest reward to 
encourage the thread to prefer spinning in the first place. 
Reward structure is shown in Fig. 5. 

State. As recent research indicates [15] system load plays 
an important role in deciding about sleeping: a thread should 
sleep only in oversubscribed cases and should never do so in 
undersubscribed situations. The duration of the sleep should 
be proportional to the overload factor. However, as explained 
in the previous section, even in undersubscribed cases, a 
thread may prefer sleeping if the latter is cheaper than 
spinning (which could be because of a huge number of threads 
contending for the lock). Hence, state attributes are system 
load and the number of successor threads contending for the 
lock. 

A

1 

(0.7, 4) 

A

1 

(0.7, 2) 

A

1 

(0.3, 9) 

A

1 

(1, 0.2) 

A

2 
S

2

S

1

(0.3, 5) 

A2 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

55 | P a g e  
www.ijacsa.thesai.org 

 
Fig 5. Reward Structure for a Thread as an Agent. 

B. Solving Challenges of the Agent 

Estimating actions. The temporal credit assignment 
problem can be addressed by one of the well-known 
algorithms in RL Q-learning [17, 18], where the agent learns 
Q-values associated with each state-action pair. One of the key 
properties of Q-learning is that to derive the optimal policy π*, 
the agent needs to determine the best action as defined by Q-
value. Q-value of a state-action pair (s, a) under policy π is the 
reward for taking action a in state s plus the sum of discounted 
future rewards if the policy π is followed thereafter. The agent 
learns all Q-values for a particular state. Therefore, if at each 
state, the agent chooses the action that has the largest Q-value, 
then it effectively follows the optimal policy. 

As threads spin or sleep, they continuously update 
estimates of Q-values based on the rewards they receive. 
When a thread executes action ac in state sc it receives a 
reward r, transitions to a new state sn, and chooses an action 
an. The Q-value associated with taking action ac in state sc can 
then be updated by an error using the SARSA [18] update 
rule: 

 ),(),(),(),( ccnncccc asQasQrasQasQ                (1) 

Recall that γ is a discount factor and determines the 
importance of future rewards. The learning rate α (or step size) 
determines how quickly the agent learns. Setting it to 0 means 
Q-values are never updated, that is, the agent does not learn at 
all, whereas higher values of it facilitate faster learning 
periods. In the context of hybrid methods, presumably very 
high values of   for example, γ = 0.95, should work quite well. 
This is because a thread is highly agnostic about the effect of 
its action on the future state of the system. But the value for   
should be experimentally tuned for good performance. The 
SARSA rule is guaranteed to converge to the optimal policy, 
assuming that each state can be visited by the agent infinitely 
often. 

Addressing exploration-exploitation tradeoff. If a thread 
never chooses certain actions in a given state, it would not be 
able to learn the associated Q-values. Even if the optimal 
policy has been already learnt, the dynamics of the system can 
make the current policy obsolete. Furthermore, even though 
threads are not willing to spend much time on learning, they 

have to try different actions in a given state to evaluate 
corresponding rewards. Therefore, threads must continuously 
explore their environment while at the same time, utilize the 
best policy they have found so far. 

To balance exploration with exploitation, one can 
implement a widely used ε-greedy [18] action selection 
technique. The agent (the thread) takes the actions that are 
optimal most of the time but to try more actions and 
potentially find ones with a higher reward, introduces 
randomness (ε factor). Threads randomly take actions with 
probability ε which intuitively should be set to small values to 
guarantee that they continue trying different actions in each 
state, while the majority of the time utilizing the best policy 
they have derived. It is also important to note that after a 
while, it is possible to gradually decrease the ε probability so 
that exploitation prevails, and the model converges to an 
optimal policy. 

Efficient generalization and quantization. Model-free 
RL techniques assume that Q-values can be stored in a look-
up table with one entry for each. However, when the state 
space is large, the issue is not only excessive storage 
requirements for storing Q-values but also time to accurately 
maintain these values. This problem is known as the curse of 
dimensionality and can be addressed in two ways. 

One way consists of discretizing the state space into a 
smaller number of cells. In this case, all states within each cell 
are aggregated and linked to a single Q-value. However, if the 
discretization of the state space is coarse-grained, then some 
states can be hidden, preventing the agent from learning the 
optimal policy. On the other hand, a fine-grained 
discretization may result in too many cells, and the agent may 
not be able to generalize, and the amount of training data will 
increase. 

CMAC [21] is a computationally efficient generalization 
and resolution technique with extremely fast learning 
capability and the special architecture, which makes it 
effective from an implementation perspective. It takes an 
arbitrary number of state variables and lays axis-parallel 
rectangles over them, known as tilings (as shown in Fig. 6). 
Overlapping partitions are called tiles. The number of the tiles 
and the widths of the tilings are generally set at design time. 

The tilings are offset from each other by the same amount 
and maintain the weights of each of its tiles. The center of 
each tile determines which state values activate which tiles. 
The method computes a value of any given point as a sum of 
the weights of the tiles, one per tiling. That is, to calculate a 
Q-value for a given state, all values from tiles sharing the 
center are summed up. Analogously, an update to a value will 
heavily affect nearby points and not as heavily farther points. 
The function approximation is trained by adjusting the weights 
of each of the involved tiles. In this way, CMAC achieves the 
quantization of continuous state space into tiles while 
retaining the capability to generalize by means of several 
overlapping tilings. Other function approximation methods, 
such as radial-basis, instance, and case-based approximators 
[22], are not suitable candidates in the context of hybrid 
synchronization methods. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

56 | P a g e  
www.ijacsa.thesai.org 

 

Fig 6. CMAC using Two Overlapping Tiles for Efficient Resolution. Two 

Tilings are shown to simplify the Figure. 

IV. DISCUSSIONS AND FUTURE WORK 

Recently, it has been suggested [23] to formulate the spin-
then-block method as a reinforcement learning problem. 
However, it still leaves much room for improvement, which 
was the focus of this work. First, the reward structure has been 
refined. Secondly, it is shown that the same idea could be 
applied to the spin-then-park strategy. Thirdly, it is suggested 
to take system overload factor as one of the state attributes 
(rather than the only number of currently running and waiting 
threads on CPU), and that action can be a decision of a batch 
of threads. Finally, the techniques and algorithms that are 
suited well in the context of hybrid methods for overcoming 
issues faced by the agent are described (the thread). 
Effectively, the technique presented in [14] and [15] is 
wrapped into a RL framework, but this idea has been arrived 
at independently. 

Although the approach presented here promises 
competitive results, there are certain challenges that should be 
considered. Threads lifetime can be very short and adding 
policy related updates can lengthen it. One way to overcome 
this issue is to run updates not for every action of every thread 
but every few actions or every few time units. Another 
solution to this problem is to run additional helper threads to 
monitor, track and optimize threads behavior. 

The second issue is related to the number of policies. 
When many lock instances are involved, the number of 
policies to be maintained can be huge. Two threads 
contending for different locks may exploit the same policy if 
the length of the critical section protected by these locks is the 
same. That is, the method can significantly reduce the number 
of policies to be maintained if policies can be clustered on the 
length of the critical section. Threads then will maintain a 
fewer number of policies, one per cluster. Future experiments 
will reveal more details on this. 

Currently, no experiments have been set up to evaluate the 
suggested approach. Nevertheless, the theoretical 
argumentations presented here allow having a base to claim 
that the technique, if implemented, will allow application and 
system programmers to avoid the burden of balancing 

spinning and blocking. The method will monitor itself and 
optimize and adapt to the dynamics of the system. 

The primary goal of the near future work is to test the 
presented method and compare it with the state-of-the-art 
implementations of hybrid primitives, such as [15]. Also, 
extensive experiments will reveal the limitations of the 
suggested technique and cases where it may not be applicable. 

Another part of the future work is to apply this idea for the 
case of NUMA machines, where threads are encouraged to 
spin locally rather than remotely. For example, the state can be 
modeled as the load level of the interconnect module. Threads 
can be given larger rewards if they spin locally and smaller 
rewards if spinning is remote (remote spinning cannot be 
eliminated completely, otherwise threads, ultimately, will spin 
only locally and will not make progress). In this way, threads 
can learn that local spinning is preferred whenever they are 
about to start contending for the lock. 

V. CONCLUSION 

Designing a hybrid synchronization primitive that 
performs well in both under- and oversubscribed scenarios is 
challenging. In this work, a RL based approach for 
implementing hybrid synchronization methods (namely, the 
spin-then-block and spin-then-park strategies) has been 
presented. It is suggested to make use of principles of machine 
learning, which a more generic approach. It may release the 
application developers and system programmers from 
choosing the appropriate contention management strategy and 
will optimize and adapt itself to the system as it changes its 
behavior. 

ACKNOWLEDGMENT 

This work has been carried out at the Center of Data 
Analytics and Research at ADA University. 

REFERENCES 

[1] Facebook. A persistent key-value store for fast storage environments, 
http://rocksdb.org, 2012. 

[2] X. Leroy, The open group base specifications, 

http://pubs.opengroup.org/onlinepubs/9699919799, no. 7, 2016. 

[3] Torvalds L. The linux kernel archives, https://www. kernel.org, 2017. 

[4] I. Calciu, D. Dice, Y. Lev, V. Luchangco, VJ. Marathe, N. Shavit, 

“NUMA-aware reader-writer locks,” Proceedings of Eighteenth ACM 
Symposium on Principles and Practice of Parallel Programming, pp. 

157–166, 2013. 

[5] M. Chabbi, J. Mellor-Crummey, “Contention-conscious, locality-
preserving locks,”, Proceedings of Twenty-First ACM Symposium on 

Principles and Practice of Parallel Programming, vol. 22, pp. 1–14, 
2016. 

[6] D. Dice, VJ. Marathe, N. Shavit, “Flat-combining NUMA Locks,”  

Proceedings of Twenty-Third Annual ACM Symposium on Parallelism 
in Algorithms and Architectures, pp. 65–74, 2011. 

[7] D. Dice, VJ. Marathe, N. Shavit, “Lock cohorting: a general technique 

for designing NUMA locks,” Proceedings of Seventeenth ACM 
Symposium on Principles and Practice of Parallel Programming, pp. 

247–256, 2012. 

[8] JP. Lozi, F. David, G. Thomas, J. Lawall, G. Muller, “Fast and portable 
locking for multicore architectures,” ACM Transactions on Computer 

Systems, no. 33, vol. 4, pp. 1–62, 2016. 

[9] V. Luchangco, D. Nussbaum, N. Shavit, “A hierarchical CLH queue 

lock,” Proceedings of Twelveth International Conference on Parallel 
Processing, pp. 801–810, 2006. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 5, 2020 

57 | P a g e  
www.ijacsa.thesai.org 

[10] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, A. Vainshtein 

“Optimal strategies for spinning and blocking,” Journal of Parallel and 
Distributed Computing, n. 21, vol. 2, pp. 246-254, 1994. 

[11] H. Franke, R. Russell, MK. Fuss, “Futexes and furwocks: fast userlevel 

locking in linux,” Proceedings 2002 Ottawa Linux Summit, pp. 479-495, 
2002. 

[12] I. Molnar, Linux rwsem, http://www.makelinux.net/ ldd3/chp-5-sect-3, 

2006 

[13] I. Molnar, D. Bueso, “Generic mutex subsystem, 
https://www.kernel.org/doc/Documentation/locking/mutex-design.txt,”, 

2016. 

[14] FR. Johnson, R. Stoica, A. Ailamaki, TC. Mowry, “Decoupling 
Contention Management from Scheduling,”. Proceedings of Fiftenth 

ACM International Conference on Architectural for Programming 
Languages and Operating Systems, pp. 117-128, 2010. 

[15] S. Kashyap, C. Min, T. Kim, “Scalable NUMA-aware blocking 
synchronization primitives,” Processdings of the USENIX Conference 

on Usenix Annual Technical Conference, pp. 603-615, 2017. 

[16] D. Bertsekas, Neuro Dynamic Programming: Athena Scientific, 1996. 

[17] T. Mitchell, Machine Learning: McGraw-Hill, Boston, 1997. 

[18] R. Sutton, A. Barto, Reinforcement Learning: MIT Press, 1998. 

[19] J. Mauro, R. McDougall: Solaris Internals: Core Kernel Components: 

Sun Microsystems Press, 2001. 

[20] JK. Ousterhout, “Scheduling techniques for concurrent systems,”. 
Proceedings of Third International Conference on Distributed 

Computing Systems, pp. 22-30, 1982. 

[21] R. Sutton, “Generalization in reinforcement learning: Successful 

examples using sparse coarse coding,”, Proceedings of Eigth 
International Conference on Neural Information Processing Systems, pp. 

1038-1044, 1996. 

[22] JC. Santamaria, RS. Sutton, A. Ram, “Experiments with reinforcement 
learning in problems with continuous state and action spaces,”. Adaptive 

Behavior, n. 6, vol. 2, pp. 163–217, 1997. 

[23] F. Ganjaliyev, “Spin-then-sleep: A machine learning alternative to 
queue-based spin-then-block strategy,” International Journal of 

Advanced Computer Science and Applications, n. 10, vol. 3, pp.605-
609, 2019. 


