
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

695 | P a g e
www.ijacsa.thesai.org

Ensemble Methods to Detect XSS Attacks

PMD Nagarjun1, Shaik Shakeel Ahamad2*

Department of CSE, K L University, Vijayawada, India1

College of Computer and Information Sciences (CCIS)

Majmaah University, Al Majmaah, Kingdom of Saudi Arabia2

Abstract—Machine learning techniques are gaining

popularity and giving better results in detecting Web application

attacks. Cross-site scripting is an injection attack widespread in

web applications. The existing solutions like filter-based,

dynamic analysis, and static analysis are not effective in detecting

unknown XSS attacks, and machine learning methods can detect

unknown XSS attacks. Existing research to detect XSS attacks by

using machine learning methods have issues like single base

classifiers, small datasets, and unbalanced datasets. In this paper,

supervised ensemble learning techniques trained on a large

labeled and balanced dataset to detect XSS attacks. The ensemble

methods used in this research are random forest classification,

AdaBoost, bagging with SVM, Extra-Trees, gradient boosting,

and histogram-based gradient boosting. Analyzed and compared

the performance of ensemble learning algorithms by using the
confusion matrix.

Keywords—Cross-site scripting; machine learning; ensemble

learning; random forest; bagging; boosting

I. INTRODUCTION

Machine learning algorithms are useful in detecting
unknown and new XSS attacks in Web Applications. Ensemble
methods are a combination of different base models, and the
ensemble learning models can give optimal results compared to
base models [1]. In XSS attacks, the attacker can steal victim’s
session cookie, sensitive data of victim, implement keyloggers
at browser, and damage the reputation of a trusted Website.

A common problem in existing XSS prevention techniques
are the incapability of detecting unknown or new XSS attacks
[2]. Highly effective XSS detection models can be built by
using ensemble learning techniques. AdaBoost, bagging, Extra-
Trees, gradient boosting, random forest, histogram-based
gradient boosting are ensemble methods, which uses base
models like decision trees, etc.

Cross-site scripting injection attacks are categorized into
three types, and they are persistent (stored), non-persistent
(reflected), and DOM-based attacks. Many existing solutions
primarily focused on preventing only one type of XSS attack,
and there are only a few solutions to avoid all types of attacks
[3]. The proposed ensemble learning models can detect all
types of attacks by proper implementation at the server and
client-side.

Ensemble methods use different algorithms to achieve
better prediction rate. Usually, ensemble learning involves the
same base learning algorithm. The limitation in ensemble
methods is that these require more computations compared to a
single model. In ensemble learning base models are combined
in three ways.

Bagging: In bagging (bootstrap aggregation) weak learning
algorithms applies on a small sample dataset and takes an
average of all learners prediction. Bagging will decrease the
variance.

Boosting: It is an iterative method, in boosting sample
weights are adjusted based on the previous classification.
Boosting will decrease bias error.

Stacking: In this output of one model is given as input to
another model. Stacking will decrease variance or bias based
on models used.

The purpose of this paper is to investigate and compare the
prediction accuracy of machine learning ensemble methods in
detecting Cross-site scripting attacks in Web Applications.

The paper is organized as follows: Section 2 contains
related work. We prepared XSS data for training and testing in
Section 3. We implemented the ensemble learning models in
Section 4. We analyzed the performance of proposed ensemble
models in Section 5. Sections 6 and 7 contains conclusion and
future work.

II. RELATED WORK

Rodriguez et al. [4] analyzed 67 documents related to XSS
attacks. According to their research, most of the researches use
browser tools or web page analysis methods to prevent XSS
attacks, very few researches on machine learning algorithms to
prevent these attacks. Based on their research most common
issues in existing researches are detecting only one type of
XSS attacks, low attacks data, only restricted to one
programming environment like PHP, same data for different
researches, methods not scalable, high false positives, methods
work on only one browser, few methods proposed to use
artificial intelligence, etc.

S. Gupta and B. B. Gupta [5] did a study on defense
mechanisms of XSS attacks, and they stated that safe input
handling is one of the essential techniques to mitigate XSS
attacks. A good XSS defensive technique needs to differentiate
malicious code and legitimate JavaScript code automatically.

Hydara et al. [6] studied 115 research papers on XSS
attacks. Based on their study, non-persistence XSS attacks are
popular, and there is a need for solutions to remove XSS
vulnerabilities from the source code.

Shanmugasundaram et al. [7] stated that developers lack
knowledge on implementing existing XSS solutions in their
web applications.

*Corresponding Author

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

696 | P a g e
www.ijacsa.thesai.org

Aliga et al. [8] study showed that most of the XSS
prevention solutions are client-side, and they are unable to
detect new XSS attacks, and these solutions lack self-learning
capabilities. They reviewed 15 XSS prevention techniques, and
out of 15, only two techniques have self-learning capabilities.

Nunan et al. [9] used supervised ML methods like Naive
Bayes and SVM to detect XSS attacks. Their total data set size
216054, and among them, 15366 are XSS attacks. They
evaluate the algorithms based on accuracy, detection, and false
alarm rates, etc. Their results show that compared to Naive
Bayes, the SVM achieved the best performance. They selected
the following features for classification of XSS attacks
Obfuscation of code, the number of domains, URL Length,
duplicate special characters, Schemes, etc.

Mereani and Howe [10] developed Random Forest, kNN,
and SVM models to detect XSS malicious code, and they used
labeled data in training. They trained using 2000 samples and
used 13000 for testing. In their experiments, they reached
accuracy up to 99.75%. They extracted Structural features
contain a set of special characters in malicious JavaScript, and
Behavioural Features includes function and commands used in
malicious JavaScript code, a total of 59 features from both
categories.

Rathore et al. [11] developed an ML method for Social
networking services (SNSs) to detect XSS attacks. In their
method, extracted Webpage features, URL features, and SNSs
features from web pages and used this data to train models.
Some of the features include domains in a URL, URL length,
Iframes count, external link counts, and malicious JavaScript
codes in SNSs webpage, etc. 1000 SNSs pages used to build a
dataset for testing and used different classifiers in their testing.
They achieved 97.2% accuracy in their tests.

Akaishi and Uda [12] used a combination of classifiers to
detect XSS attacks in their research. Their data set contain
balanced 10000 samples where attack data in URL format.
They divided the attack sentence into words, co-occurrence,
and frequency of words used in their classification. They used
word2vec based model in their research to transform words
into vectors, and used those vectors is classification algorithms.
According to them, CNN and SVM are the best filters for real-
world problems.

Mokbal et al. [13] proposed a Multilayer perceptron based
model to detect XSS attacks. Their model achieved an
accuracy of 99.32% in detecting attacks. Their dataset contains
a total of 138569 samples, and among them, 38569 are attack
samples. They extracted URL based, HTML based, and
JavaScript-based features form content and used these features
in training proposed models. Some of the features like URL
length and special characters in URL, HTML tags, JavaScript
events, etc.

Wang, Cai, and Wei [14] proposed a deep learning-based
framework to detect malicious JavaScript. The structure
contains logistic regression, deep learning method, and sparse
random projection. They extracted features from JavaScript
code by using Stacked denoising autoencoders (SdA). These
features used to train SVM or logistic regression models.
Classification of malicious code done by logistic regression.

Their labeled dataset contains 14783 malicious JavaScript
codes and 12320 benign samples. Their model achieved 94.9%
accuracy.

III. DATA COLLECTION AND DATA PREPROCESSING

For this research, collected XSS vectors by using popular
XSS tools like XSStrike, XSSER [15] and from different
sources collected thousands of attack vectors. The dataset
contains 154626 unique samples with labels. Half of this
dataset is XSS attack vectors, and another half (77313) of the
dataset is safe vectors. XSS attack vectors and Safe vectors are
maintained at 128 characters, and longer sequences are split
into 128 character chunks. Fig. 1 shows safe vector generator,
by using this, generated safe vector samples. These randomly
generated safe vectors are three types with length ranges from
40 to 126 those are, string with only uppercase or lowercase
alphabets, strings with all alphabets and digits, and strings with
all alphabets, digits and special characters. The below
examples show different types of safe vectors:

1. kikDfuPLasVpSDqfKLMUTbyDAssjedEhphsOSPUnxO
OHwDUkdHxLyJGPoMRIVERzJwuTVmbCwwYjVTtQ
TfApxparHUUEEiidfUWBfJNUnVovFYNlBTJJ

2. aLcmHRaDMXwMmOmzQDhbEfeSYcZTRsPNkbjcoCa
YauezgpthiPEvrUGfOXHGljqgZSDiArGKshBDvmcYm
OdOYIpDsfbfGoPrwQXIkjltIIqImReZGbEVFwABEJZg
Sn

3. BqAoxOrvaovydRv8QuQmQvoAk6hUbTaUFx18al7jYZ
XBWvf1GWHIlbwgYd1qR2mx

4. x54fQrSJicA8f2KInEibadR3NrAVwkTgKdFn8WqBpqB
KcufKJZ1zPpqybBPPQCu0LcWHjkRqvEgnJHUolgRLiZ
ebe13wt7b6S1uY23cWkbleU7dzbKyQMysra18u

5. Y0P/U#Y_Dk#NNZ?p>B]6Ndb[&,:^iMI=~ts8Depf*C`aQ
>!d[;p02LzJ,`5"hVCqAPXonVtrQ]L9`JBD=8L<c"Tl-
?PASb7bs|/[.IXXMyQ:7av`q?m-@XV7"xm(

6. 2\{k@1\WMNXMi/3[1=mo#UHv5Da@-PzvG%*t(h-
f\L25+{IU3#2Y_[msZ8h_^QP$@E4quPS~.~JddH"G3.+2
)1~+svNQ.HPuCT5eKZVV*[Ej]*x5

The number of safe vectors generated depends on XSS
attack vectors, to maintain the balance between XSS and safe
samples of the dataset. This balanced dataset used to train and
test the models. The below examples shows sample XSS attack
vectors.

1. <img src="http://www.example.org/theerrornoimg.file"
onerror=alert(" hi, here XSS Problem");>

2. <script\x20type="text/javascript">javascript:alert(19);</sc
ript>

To prepare input for models, converted the character
sequence of XSS attacks, and Safe vectors into Unicode integer
format, Fig. 2 shows sample data in Unicode format. The
dataset is standardized by using sklearn’s [16] StandardScaler
function, Standardization of a dataset will improve the
performance and accuracy of machine learning algorithms.
Fig. 3 shows a sample data after standardization without the
output column. The preparing process of dataset for model
training shown in Fig. 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

697 | P a g e
www.ijacsa.thesai.org

Fig. 1. Safe Vector Generator.

Fig. 2. Sample Data from the Dataset in Unicode Format.

Fig. 3. Sample Data from the Dataset after Standardization.

Fig. 4. Process of Preparing the Dataset.

IV. IMPLEMENTATION OF ENSEMBLE METHODS

In this research supervised ensemble machine learning
methods are used to detect XSS attacks. The ensemble learning
methods [17] used are random forest classification, AdaBoost,
bagging with SVM, Extra-Trees, gradient boosting, and
histogram-based gradient boosting. These ensemble
classification methods are effective in detecting XSS attacks
compared to base models.

Google Colab [18] is used to build and test these models.
The working environment includes Python 3.6.9, scikit-learn,
TensorFlow 2.1.0 (includes Keras) [19], etc.

The dataset contains balanced unique 154626 samples,
77313 are Safe vectors and 77313 are XSS attacks. Total
samples divided into 8:2 ratio for training (123700) and testing
(30926) samples.

Fig. 5 shows the confusion matrix. The confusion matrix
values are used to compare and evaluate the models.

Confusion matrix [20] used to calculate performance
metrics of a model, by using the confusion matrix one can
calculate the following values.

Recall = (TRUE POSITIVE) / (TRUE POSITIVE + FALSE

NEGATIVE)

Precision = (TRUE POSITIVE) / (TRUE POSITIVE + FALSE

POSITIVE)

F-measure = (2 x Recall x Precision) / (Recall + Precision)

Accuracy = (TP+TN)/(TP+TN+FP+FN)

A. Random Forest Classifier (RF)

Random forest classifier contains a collection of decision
trees, and each decision tree fits on a subset of the dataset.
Based on the output of all decision trees, the random forest
classifier decides the final class of an input object. Table I
shows the confusion matrix of the random forest model, and
Table II shows the recall, precision, F-measure, and accuracy
of the random forest model in detecting XSS attacks and safe
vectors. Cross-validation scores of random forest classifier
model are 0.99803, 0.99774, 0.99787, 0.99796, 0.99822 and
the mean is 0.99796. In the random forest model, reached
accuracy up to 0.99822.

Fig. 5. Confusion Matrix.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

698 | P a g e
www.ijacsa.thesai.org

TABLE I. RANDOM FOREST MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15463 0

XSS samples (Actual) 62 15401

TABLE II. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF

RANDOM FOREST MODEL

 Recall Precision F-measure

Safe samples 1.00000 0.99601 0.99800

XSS samples 0.99599 1.00000 0.99799

Accuracy = 0.99800

B. AdaBoost Classifier (AB)

Boosting algorithms are used to reach high accuracy,
AdaBoost (Adaptive Boosting) is a popular ensemble boosting
algorithm works on decision trees. AdaBoost combines
multiple low performing classifiers to get high performing
classifier. In AdaBoost's every iteration, weak classifiers are
tweaked (weighted data) based on the accuracy of previous
training. The confusion matrix of the AdaBoost classifier
model is shown in Table III, and Table IV shows the recall,
precision, F-measure, and accuracy of the AdaBoost classifier
model in detecting XSS attacks and safe vectors. Cross-
validation scores of AdaBoost classifier model are 0.9977,
0.99793, 0.99735, 0.99764, 0.99832 and the mean is 0.99779.
In the AdaBoost model, reached accuracy up to 0.99832.

C. Bagging Classifier with SVM (BC)

Bootstrap aggregating (or Bagging) is an ensemble method
in machine learning. SVM is used as a base classifier for the
bagging model. In bagging, the base classifiers are trained (fits)
on a randomly selected subset data of the original dataset, and
the final prediction depends on individual base classifiers
predictions. The confusion matrix of the bagging model is
shown in Table V, and Table VI shows the recall, precision, F-
measure, and accuracy of the bagging model in detecting XSS
attacks and safe vectors. Cross-validation scores of bagging
classifier model are 0.98192, 0.98228, 0.98186, 0.98264,
0.98276 and the mean is 0.98229. In the bagging model,
reached accuracy up to 0.98276.

D. Extra-Trees Classifier (ET)

Extra-Trees (Extremely Randomized Trees) method is an
ensemble method similar to the random forest classifier. In
Extra-Trees classifier, decision trees are constructed randomly
in the forest, and these decision trees trained (fits) on subsets of
data. The final prediction depends on all decision trees
predictions. The confusion matrix values of the Extra-Trees
classifier model is shown in Table VII, and Table VIII shows
the recall, precision, F-measure, and the accuracy of the Extra-
Trees classifier model in detecting XSS attacks and safe
vectors. Cross-validation scores of Extra-Trees classifier model
are 0.99049, 0.99088, 0.99069, 0.99192, 0.99175 and the mean
is 0.99115. In the Extra-Trees classifier model, reached
accuracy up to 0.99192.

E. Gradient Boosting Classifier (GB)

Gradient boosting classifier is an ensemble boosting
algorithm, where a weak classifier is modified into a strong
classifier. In the gradient boosting classifier, decision trees are
base classifiers, and loss function is optimized while adding a
new tree. Table IX shows the confusion matrix of the gradient
boosting model, and Table X shows the recall, precision, F-
measure, and the accuracy of the gradient boosting model in
detecting XSS attacks and safe vectors. Cross-validation scores
of gradient boosting classifier model are 0.99618, 0.99573,
0.99644, 0.99609, 0.99648 and the mean is 0.99618. In the
gradient boosting model, reached accuracy up to 0.99648.

TABLE III. ADABOOST MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15440 23

XSS samples (Actual) 46 15417

TABLE IV. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF

ADABOOST MODEL

 Recall Precision F-measure

Safe samples 0.99851 0.99703 0.99777

XSS samples 0.99703 0.99851 0.99777

Accuracy = 0.99800

TABLE V. BAGGING MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15243 220

XSS samples (Actual) 354 15109

TABLE VI. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF

BAGGING MODEL

 Recall Precision F-measure

Safe samples 0.98577 0.97730 0.98152

XSS samples 0.97711 0.98565 0.98136

Accuracy = 0.99800

TABLE VII. EXTRA-TREES CLASSIFIER MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15463 0

XSS samples (Actual) 272 15191

TABLE VIII. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF EXTRA-
TREES CLASSIFIER MODEL

 Recall Precision F-measure

Safe samples 1.00000 0.98271 0.99128

XSS samples 0.98241 1.00000 0.99113

Accuracy = 0.99800

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

699 | P a g e
www.ijacsa.thesai.org

TABLE IX. GRADIENT BOOSTING MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15406 57

XSS samples (Actual) 79 15384

TABLE X. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF

GRADIENT BOOSTING MODEL

 Recall Precision F-measure

Safe samples 0.99631 0.99490 0.99561

XSS samples 0.99489 0.99631 0.99560

Accuracy = 0.99800

F. Histogram-based Gradient Boosting Classification
(HGBC)

Histogram-based gradient boosting classification is an
ensemble boosting algorithm, which is better compared to
gradient boosting for large datasets. HGBC can handle missing
values. In HGBC, decision trees are base classifiers. Table XI
shows the confusion matrix of the HGBC model, and Table
XII shows recall, precision, F-measure, and the accuracy of the
HGBC model in detecting XSS attacks and safe vectors. Cross-
validation scores of HGBC model are 0.99874, 0.99877,
0.99851, 0.99871, 0.9989 and the mean is 0.99873. In the
HGBC model, reached accuracy up to 0.9989.

TABLE XI. HGBC MODEL CONFUSION MATRIX

Safe samples

(Predicted)

XSS samples

(Predicted)

Safe samples (Actual) 15447 16

XSS samples (Actual) 32 15431

TABLE XII. RECALL, PRECISION, F-MEASURE, AND ACCURACY OF HGBC

MODEL

 Recall Precision F-measure

Safe samples 0.99897 0.99793 0.99845

XSS samples 0.99793 0.99896 0.99845

Accuracy = 0.99800

V. RESULTS AND DISCUSSION

This research evaluated the XSS detection rate in ensemble
learning techniques. AdaBoost, bagging with SVM, Extra-
Trees, gradient boosting, random forest classification, and
histogram-based gradient boosting models are trained on a
large labeled dataset and evaluated these methods performance
based on their accuracy, recall, precision, and the F-measure.
Table XIII compares the performance metrics of all models,
and Table XIV compares the cross-validation scores of all
models, and Fig. 6 shows the mean score of cross-validations
of models. From the results, it is concluded that all ensemble
methods performed well and reached an accuracy of more than
98% in all models.

Form all tested ensemble machine learning algorithms, the
histogram-based gradient boosting classification model is the
best performed model with the highest possible accuracy of
0.9989.

TABLE XIII. COMPARISON OF PERFORMANCE METRICS

Mod

el

Recall Precision F-measure
Accura

cy

Safe XSS Safe XSS Safe XSS

RF
1.000

00

0.995

99

0.996

01

1.000

00

0.998

00

0.997

99
0.99800

AB
0.998

51

0.997

03

0.997

03

0.998

51

0.997

77

0.997

77
0.99777

BC
0.985

77

0.977

11

0.977

30

0.985

65

0.981

52

0.981

36
0.98144

ET
1.000

00

0.982

41

0.982

71

1.000

00

0.991

28

0.991

13
0.99120

GB
0.996

31

0.994

89

0.994

90

0.996

31

0.995

61

0.995

60
0.99560

HGB

C

0.998

97

0.997

93

0.997

93

0.998

96

0.998

45

0.998

45
0.99845

TABLE XIV. COMPARISON OF CROSS-VALIDATION SCORES

Model
Fold 1

score

Fold 2

score

Fold 3

score

Fold 4

score

Fold 5

score

Mean

score

RF 0.99803 0.99774 0.99787 0.99796 0.99822 0.99796

AB 0.9977 0.99793 0.99735 0.99764 0.99832 0.99779

BC 0.98192 0.98228 0.98186 0.98264 0.98276 0.98229

ET 0.99049 0.99088 0.99069 0.99192 0.99175 0.99115

GB 0.99618 0.99573 0.99644 0.99609 0.99648 0.99618

HGBC 0.99874 0.99877 0.99851 0.99871 0.9989 0.99873

Fig. 6. Mean Score of Ensemble Learning Algorithms.

VI. CONCLUSION

We developed and analyzed supervised ensemble machine
learning methods to detect XSS attacks in Web applications.
Ensemble learning techniques are a collection of base
classifiers, and these ensemble methods perform better than
single classifiers. Existing solutions to detect XSS attacks by
using machine learning methods have issues like single base
classifiers, small datasets, and unbalanced datasets. We trained
and evaluated proposed models on a large balanced dataset,
and in this research, we detect XSS attacks in data submitted
by the user. In this work, we evaluated the performance of
random forest classification, AdaBoost, bagging with SVM,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 5, 2020

700 | P a g e
www.ijacsa.thesai.org

Extra-Trees, gradient boosting, and histogram-based gradient
boosting models in detecting XSS attacks and safe vectors. We
compared the performance of models by using the confusion
matrix metrics. The results show that all ensemble learning
models performed exceptionally well in detecting XSS attacks
and safe vectors. We reached the highest accuracy of 0.9989 in
the histogram-based gradient boosting classification model.

VII. FUTURE WORK

In future, the work can be extend to detect other Web
application attacks like SQL injection. The models can be
tested by integrated into real world applications to detect
attacks.

REFERENCES

[1] Y. Zhou and P. Wang, "An ensemble learning approach for XSS attack
detection with domain knowledge and threat intelligence," Comput.

Secur., vol. 82, pp. 261–269, 2019.

[2] U. Sarmah, D. K. Bhattacharyya, and J. K. Kalita, "A survey of
detection methods for XSS attacks," J. Netw. Comput. Appl., vol. 118,

pp. 113–143, 2018.

[3] L. K. Shar and H. B. K. Tan, "Defending against cross-site scripting
attacks," Computer (Long. Beach. Calif)., vol. 45, no. 3, pp. 55–62,

2011.

[4] G. E. Rodríguez, J. G. Torres, P. Flores, and D. E. Benavides, "Cross-
site scripting (XSS) attacks and mitigation: A survey," Comput.

Networks, vol. 166, p. 106960, 2020.

[5] S. Gupta and B. B. Gupta, "Cross-Site Scripting (XSS) attacks and
defense mechanisms: classification and state-of-the-art," Int. J. Syst.

Assur. Eng. Manag., vol. 8, no. 1, pp. 512–530, 2017.

[6] I. Hydara, A. B. M. Sultan, H. Zulzalil, and N. Admodisastro, "Current

state of research on cross-site scripting (XSS) - A systematic literature
review," Inf. Softw. Technol., vol. 58, no. July 2015, pp. 170–186, 2015.

[7] G. Shanmugasundaram, S. Ravivarman, and P. Thangavellu, "A study

on removal techniques of Cross-Site Scripting from web applications,"
in 2015 International Conference on Computation of Power, Energy,

Information and Communication (ICCPEIC), 2015, pp. 436–442.

[8] A. P. Aliga, A. M. John-Otumu, R. E. Imhanhahimi, and A. C. Akpe,

"Cross Site Scripting Attacks in Web-Based Applications," J. Adv. Sci.
Eng., vol. 1, no. 2, pp. 25–35, 2018.

[9] A. E. Nunan, E. Souto, E. M. Dos Santos, and E. Feitosa, "Automatic

classification of cross-site scripting in web pages using document-based
and URL-based features," in 2012 IEEE symposium on computers and

communications (ISCC), 2012, pp. 702–707.

[10] F. A. Mereani and J. M. Howe, "Detecting cross-site scripting attacks
using machine learning," in International Conference on Advanced

Machine Learning Technologies and Applications, 2018, pp. 200–210.

[11] S. Rathore, P. K. Sharma, and J. H. Park, "XSSClassifier: An Efficient
XSS Attack Detection Approach Based on Machine Learning Classifier

on SNSs.," JIPS, vol. 13, no. 4, pp. 1014–1028, 2017.

[12] S. Akaishi and R. Uda, "Classification of XSS Attacks by Machine
Learning with Frequency of Appearance and Co-occurrence," in 2019

53rd Annual Conference on Information Sciences and Systems (CISS),
2019, pp. 1–6.

[13] F. M. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F. Akhtar, and W.
Xiaoxi, "MLPXSS: An Integrated XSS-Based Attack Detection Scheme

in Web Applications Using Multilayer Perceptron Technique," IEEE
Access, vol. 7, pp. 100567–100580, 2019.

[14] Y. Wang, W. Cai, and P. Wei, "A deep learning approach for detecting

malicious JavaScript code," Secur. Commun. networks, vol. 9, no. 11,
pp. 1520–1534, 2016.

[15] I. M. Babincev and D. V Vuletić, "Web application security analysis

using the kali Linux operating system," Vojnoteh. Glas., vol. 64, no. 2,
pp. 513–531, 2016.

[16] S. Raschka and V. Mirjalili, Python Machine Learning: Machine

Learning and Deep Learning with Python, scikit-learn, and TensorFlow
2. Packt Publishing Ltd, 2019.

[17] R. Polikar, "Ensemble learning," in Ensemble machine learning,

Springer, 2012, pp. 1–34.

[18] E. Bisong, "Google Colaboratory," in Building Machine Learning and
Deep Learning Models on Google Cloud Platform, Springer, 2019, pp.

59–64.

[19] M. Abadi et al., "Tensorflow: A system for large-scale machine

learning," in 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), 2016, pp. 265–283.

[20] V. Labatut and H. Cherifi, "Accuracy measures for the comparison of

classifiers," arXiv Prepr. arXiv1207.3790, 2012.

