
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

Evaluation Criteria for RDF Triplestores with an
Application to Allegrograph

Khadija Alaoui1, Mohamed Bahaj2
LITEN Lab, Faculty of Sciences and Techniques

Hassan I University
Settat, Morocco

Abstract—Since its launching as the standard language of the
semantic web, the Resource Description Framework RDF has
gained an enormous importance in many fields. This has led to
the appearance of a variety of data systems to store and process
RDF data. To help users identify the best suited RDF data stores
for their needs, we establish a list of evaluation and comparison
criteria of existing RDF management systems also called
triplestores. This is the first work addressing such topic for such
triplestores. The criteria list highlights various aspects and is not
limited to special stores but covers all types of stores including
among others relational, native, centralized, distributed and big
data stores. Furthermore, this criteria list is established taking
into account relevant issues in accordance with triplestores tasks
with respect to the main issues of RDF data storage, RDF data
processing, performance, distribution and ease of use. As a study
case we consider an application of the evaluation criteria to the
graph RDF triplestore AllegroGraph.

Keywords—RDF; RDFS; SPARQL; triplestore; big data;
NoSQL; AllegroGraph

I. INTRODUCTION
The primary goal of the W3C (World Wide Web

Consortium) standardized ontology language RDF (Resource
Description Framework, [24]) and its query language SPARQL
(SPARQL Protocol and RDF Query Language, [25]) is to
enrich the Web with semantics by structuring data through
linking. This goal was set up with the aim to transform the web
from a web of documents to a web of intelligent data in order
to allow applications to easily extract semantics from data.
With the web of documents, there is a difficulty to intelligently
follow the semantics of the data because of the lack of structure
in the documents content ([9]). For these reasons, there has
been a massive use of RDF for publishing data on the web
during the last decade. The use of RDF has paved the way for
new features and use by scientists and businesses. RDF has
indeed been used for modeling and publishing of data in
various fields such as health services [3], smart city services
[7], Internet of Things [8] and Geography Information Systems
(GIS) [23]. This use of RDF has also been accompanied by a
rapid development of a multitude of data management systems,
also called triplestores, for the storage and processing of RDF
data. In the first years of RDF, storage and processing solutions
for RDF data were developed based on the use of relational
based management systems because of the successful
developments of such systems that had been reached over
many years. However, these relational solutions present many
limitations because of multiple problems such as, among

others, SPARQL to SQL (Structured Query Language) query
conversion overhead for RDF data querying, complex joins
processing imposed by the relational schema proposals for
modeling RDF data, integration of other data sources and the
handling of big amounts of data. To come up with solutions to
the relational problems with regards to RDF data handling,
various RDF data management systems have been proposed
during the past decade ranging from NoSQL (Not only SQL)
based systems through native triplestores to Big Data solutions.

The aim of this work is to give a complete list of evaluation
and comparison criteria for RDF management systems. To this
end, we first give a summarized categorization of existing
triplestores while considering the motivations behind their use
for handling RDF data. We identify the benefits of each
identified category of systems and the challenges they are
facing. In a second step, we establish and motivate an extended
evaluation criteria list for triplestores taking into account their
associated categorization and relevant aspects with respect to
their tasks for handling RDF data.

With the established criteria list, we aim to provide users
with detailed insights of the various RDF management systems
and comparison aspects with regards to the various relevant
issues of dealing with RDF data. Users will be able to
differentiate between RDF management systems and identify
the best suited triplestore to their data for their specific use
cases.

Contrary to existing comparison works that mainly focus
on response times of query processing for a limited number of
RDF storage systems (e.g. [29], [32], [13]) our list of
evaluation criteria for triplestores considers a large variety of
aspects. Indeed, based on the categorization details we are
considering, various issues related among others to storage
models, data organization and data recovery, query processing,
query optimization, concurrency, dynamicity, scalability,
reasoning, data integration, data exchange, data portability,
scalability, visualization and support of analytical
functionalities. The detailed criteria list provides users with
means to focus on the triplestores aspects that better fulfill their
objectives while comparing triplestores. Users can indeed
choose the right criteria to identify the drawbacks or the
positive aspects of these triplestores.

The following sections are structured as follows. Section 2
presents the W3C standards RDF, RDFS (RDF Schema, [10]),
OWL (Web Ontology Language, [18]) and SPARQL as well as
a summary about triplestores categories. Sections 3 to 7 present

411 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

the main categories of comparison and evaluation criteria with
motivations behind their associated criteria. Section 8 discusses
the case of Allegrograph and Section 9 concludes this work.

II. SEMANTIC WEB STANDARDS AND RELATED WORK
In this section we present aspects of the semantic web

standards RDF, RDFS, OWL and SPARQL ([24], [10], [18],
[25]) as well as of associated existing management systems
that help in guiding the identification of evaluation criteria for
such systems. We also give an overview of research works that
deal with comparison and evaluation of triplestores.

A. RDF and SPARQL
RDF semantic language revolutionized the research domain

of creation, engineering and processing of ontologies for
sharing information on the web. It uses a flexible model where
statements in RDF are simply modeled as a set of triples
having the form of (S,P,O):=(Subject, Predicate, Object) where
a subject represents a resource, an object can be either resource
or a literal value and the relation between the Subject and
Object is expressed by the Predicate. An object may also be a
set of either resources or literals grouped together using RDF
grouping constructs such as “RDF:bag”, “RDF:seq” for an
ordered list or “RDF:list”. Literal values may have a type and
XML types may be used as types of literals.

RDF data can be presented in different formats: XML,
Turtle, N-Triples and the N3 (Notation 3). Fig. 1 gives an RDF
example using N3 and XML formats. RDF resources and
predicates may be endowed with URIs (Uniform Resource
Identifiers) to separate data into groups and to allow linkage
between graphs to get a web of data.

With the RDF representation of data in form of triples such
data can be considered as an oriented graph where nodes are
either resources or literals and edges are labeled with
predicates. There could be of course more than one edge
between two nodes of the graph.

As mentioned above, the W3C standardized query language
of RDF data is SPARQL (SPARQL Protocol and RDF Query
Language, [25]). A SPARQL query has a SELECT clause and
a WHERE clause and may have a FILTER clause to filter the
results according to some conditions. In the SELECT clause,
attributes to look for are given as variables and these variables
are used as substitutes of either subjects, predicates or objects
in the triples to look for in the WHERE clause.

@prefix fsts: <http://www.fsts.ma/studies#> .
fsts:MachL a fsts:Course .
fsts:MachL fsts:coursename "Machine Learning".

(a) N3 Format
<rdf:RDF xmlns:rdf= "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fsts="http://www.fsts.ma/studies#">
<rdf:Description rdf:about=”http://www.fsts.ma/studies#MachL”>
 <fsts:coursename>
 Machine Learning</fsts:coursename>
</rdf:Description>
</rdf:RDF>

(b) XML Format

Fig 1. Example of an RDF Triple.

B. Schema Languages RDFS and OWL
The RDF schema language RDFS [10]) is the meta-

language for RDF data. Statements in RDFS are also RDF
triples. RDFS allows RDF resources to be grouped into classes,
and allows the declaration of subclasses, properties,
subproperties and domains and ranges for properties. An
example is given in Fig. 2 where “BachelorStudent” is declared
as a subclass of the class “Student”.

Built on top of RDFS, OWL (Web Ontology Language
[18]) extends RDFS by adding concepts of classes and
properties equivalence, resources equality, symmetric
properties, disjoint properties and cardinalities.

<rdfs:Class rdf:ID="Student">
</rdfs:Class>

<rdfs:Class rdf:ID="BachelorStudent">

<rdfs:subClassOf
rdf:resource="#Student"/>

</rdfs:Class>

(a) Graph
representation

(b) XML format

Fig 2. Class Hierarchy in RDFS.

OWL uses "ObjectPropertyDomain" and
"DataPropertyDomain" to specify the domains of an object
property and a data property. It also offers other inference
constructs such as “owl:sameAs”, “owl:inverseOf” and
“owl:TransitiveProperty”. Such OWL constructs have the
advantage to induce inheritance between classes and similarity
between properties and therefore allow reasoning over data
through inference.

C. RDF Triplestores
Over the two past decades several systems for the storage

and the processing of RDF data have been developed. Those
systems called triplestores can be classified into several
categories according to the aspects considered for data
management [1]. The criteria we are giving in the following
section take into account the category of the triplestore chosen
for handling RDF data.

RDF management systems can be broadly classified as
being relational or non-relational, native or non-native,
centralized or distributed and memory or disc based, as well as
Map-Reduce based or not relying on Map-Reduce for the case
of big RDF data.

Relational RDF stores are solutions that exploit relational
database systems to store RDF data. However, the dynamicity
of the RDF data is generally not guaranteed by these
triplestores. Object relational stores on the other hand provide
the link between classic relational databases and object
databases. Non-relational RDF stores are those stores that do
not rely on relational database systems for handling RDF data.
Native triplestores are those systems designed solely for the
purpose of handling RDF data. Some of them are disk-based
stores (e.g., 4Store [17]) and others are main-memory-based
stores (e.g., Cliopatra [35]). NoSQL triplestores are those RDF
solutions that use column, document, Key-value or graph

412 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

NoSQL databases for handling RDF data. Among NoSQL
triplestores we have CumulusRDF that is based on Cassandra
([21]) and SHARD ([28]).

RDF triplestores are also categorized as either centralized
or distributed stores. Although centralized triplestores ensure
efficient and scalable RDF query processing in a centralized
way, they show limitations in storing and processing large
amount of data.

RDF management systems can further categorized in cloud
based triplestores (e.g., 4Store [17], Amada [4], [11]), mobile
solutions designed for mobile devices (e.g., RDF on the Go
[22]), and P2P solutions (e.g., Rya [26], Atlas [20], Statustore
[33], RAPID+ [27]). Another category of RDF management
systems consists of Big Data triplestores that either use Hadoop
Map-Reduce (e.g., SHARD [28], HadoopRDF [19], RAPID+
[27], PigSPARQL [30]) or other frameworks such as Spark
framework (e.g., S2RDF [31], PRoST [12]).

To be noticed is that a triplestore may belong to one or
more of the given categories. The comparison and evaluation
criteria given in following sections also considers the
categorization of triplestores. Fig. 3 summarizes the list criteria
and the classes they belong to.

D. Related Work
As already mentioned, this is the first times a research

paper addresses the topic of evaluation and comparison criteria
for RDF management systems. Many works mainly dealt with
the comparison of some triplestores only with respect to either
the amount of RDF data they can store, the loading times of
such data or the execution times of SPARQL queries on these
data. This is done for example for the comparison of some Big
Data and some NoSQL RDF in [6].

Fig 3. Comparison Criteria with Associated Categories.

Also such type of comparison has also been done in the
context of the specific application domain of smart city
services, RDF data loading times and query response times
were compared in [7] principally for some NoSQL and
relational triplestores using data benchmarks related to smart
city services.

III. CRITERIA RELATED TO RDF DATA STORAGE
In this section we list some important criteria dealing with

the capabilities of triplestores to handle RDF data storage. Such
criteria involve the respect of RDF data model, RDF data
validation, storage capacity, Data portability and serialization
and integration of other data sources.

A. Compliance with RDF Data Model
RDF storage solutions have to preserve the flexibility and

dynamicity of RDF data. The “-Subject, Object, Predicate”
data model and the graph structure of RDF data is beneficial
for querying the semantic information and also for adding new
predicates without the need to change the schema. It also
allows partitioning of the data for the efficient storage and
processing of the queries.

B. RDF Data Validation
For triplestores it is also necessary that they provide the

possibility for users to validate their RDF data against the
constraints and the structures they provide in associated
RDFS/OWL schemas. Through validation, not only data
conformity with such schemas will be guaranteed but also data
exchange and integration will be facilitated.

C. Storage Capacity
The storage capacity for RDF data management systems

refers to the possible amount of RDF triples such systems can
store and handle. AllegroGraph can handle RDF datasets with
more than 1 trillion RDF triples. The Stardog triplestore can
handle up to 50 billion triples [31], and GraphDB and Virtuoso
triplestores cab handle up to 15 billion [34]. Such information
are naturally of great importance for RDF users because of its
crucial role in choosing the best suited triplestore for managing
their RDF data.

D. Data Portability and Serialization
Data portability would give the opportunity for users to

exchange information and content between the services. This
requires representation portability mechanisms to be
implemented in triplestores. Among such mechanisms, at least
export functionalities of RDF data into portable formats such
as XML or Json formats are of great importance. In this way,
exported RDF data will be machine-understandable and
extensible. Furthermore, switching from a triplestore to another
one can be easily done.

E. Integration of Other Data Sources
Integration functionalities expected from a triplestore

concern above all adding new RDF graphs into the triplestore
as well as merging graphs. Also adding non RDF data source is
of great importance to allow interoperability with other
database systems that are not RDF based. Many existing
transformation techniques of other non RDF data sources such

413 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

as UML, relational and XML already exist and can be
incorporated into triplestores to realize such interoperability.

IV. RDF DATA PROCESSING CRITERIA

A. Support for SPARQL Constructs
Without SPARQL support by a triplestore such a triplestore

will of course be useless. Triplestores should offer SPARQL
querying to extract the desired information in an efficient way
while providing support for all constructs of SPARQL 1.1. It is
an important requirement to efficiently process queries,
especially interactively. Also querying with the use of
SPARQL should be possible also for massive amounts of data.

B. Data Retrieval and Modification Time Costs
When considering triplestores, we consider the data, its size

and how it is processed. The first thing to consider is how long
the triplestore needs to load the data.

Another point to consider is the storage and the retrieval
time of the data. Generally, native triplestores are more
efficient than existing relational database based triplestores
because of the difficulty they face when trying to map the
graph based models to SQL.

C. Indexing
The main objective of data indexing is to sort data in order

to make its querying easier and faster. Indexing plays an
important role especially when managing large amount of data
to increase the performance for a large-scale analysis. Indeed,
though indexing involves some space overhead, it lets focus
only on the portions of data involved by the analysis so that
loading these data can be faster and memory space and
execution time will be reduced.

The major problem faced by RDF data stores, is how they
can build an index data structure over RDF triples. Because of
the performance problems related to loading RDF files, or
creating suitable indexes, an RDF triplestore must also provide
a memory efficient data representation that leaves enough
space for the operation of SPARQL querying algorithms.

With regards to indexing, both automatic indexing through
the system and the possibility for users to set indexes on
specific resources or literal values of triples are of great
importance. The former solution will let users not care about
indexation and the latter will give them the possibility to index
items dependently of their needs.

Triplestores that are relying on relational database
management systems have naturally profited from indexing
techniques these systems offer.

D. Reasoning
Reasoning allows inferring logical consequences and

checking the consistency of a database. It allows a better
interpretation and processing of the information for the users.

As mentioned above, RDFS and OWL offer constructs
(e.g., “rdfs:subClassOf”, “rdfs:subPropertyOf”, “owl:sameAs”,
“owl:inverseOf”, “owl:TransitiveProperty”) for modeling the
relations between RDF classes or properties to better structure
RDF data in order to avoid problems related for example to

redundancies, updates or deletion. However, structuring of
information using such constructs will have no sense if the
system does not have algorithms for an automatic reasoning
that can infer, with the use of such constructs, the hidden
information which is implicitly deducible from RDFS/OWL
schemas. Concerning AllegroGraph, it allows RDFS reasoning
with its built-in reasoned as well as temporal reasoning.

E. Support for ACID Properties
The well-known properties of atomicity, consistency,

isolation and durability are of course of great importance for
transactions handling [15]. RDF systems that use relational
database management systems to store RDF triples have
profited from implementations of these properties in these
systems. However there is still a lack for support of such
properties in non-relational triplestores. Users should therefore
be aware of supported properties to ensure that operations of
transactions are performed in the right sequence to avoid
problems related to inconsistencies, to incomplete executions
of such operations or to conflicting operations.

V. PERFORMANCE CRITERIA

A. Query Optimization
The query optimizer as a component of triplestores,

attempts to find the best way to execute a given query
efficiently. It simplifies the query and removes redundant
computation. In [5] a methodology using the BGPs and
OPTIONALs query optimization techniques for the queries
with a mix of UNION and FILTER clauses is proposed.

In term of query optimization, relational based RDF
triplestores offer better solutions due to the efforts done on
making relational query processing efficient over the last three
decades.

B. Support for Programming Languages
It is also to consider if the triplestore serves most modern

programming languages (e.g., Java, C++, C#, Python). Within
the associated programming APIs RDF Formats and SPARQL
query languages should also be supported.

AllegroGraph, for example, offers a Java and Python APIs
that implement most of the Sesame and Jena interfaces to
access RDF data. It also provides the possibility to Lisp
programmers to interact with its RDF repositories.

C. Support for BI
Nowadays, we deal with a huge amount of data and

businesses are aware that analyzing and processing those data
can generate new opportunities and improvements of the
processes. Business intelligence (BI) tools are therefore to be
supported by triplestores in order to provide analytical
functionalities for users to analyze their data and extract useful
information from these data.

D. Streaming Capabilities
Real time processing of data is becoming of high

importance, due to the increased sources of real time data (e.g.
weather sensors, social networks, IoT tools).

The ability for a triplestore to provide support for streaming
will have a crucial role in applications. To this end, the

414 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

triplestore should support SPARQL querying to be done
dynamically over the streams with results given as a
continuous streams.

E. Crash Recovery
A important requirement that is be considered, when

considering comparison criteria, is the robustness of
triplestores toward the system components failure while
processing RDF data and the ability to restore the accidently
loosed, deleted or corrupted data.

We consider here, as an example, HadoopRDF ([19])
which provides an architecture that stores triples on HDFS. It
replicates the triples on multiple machines and decomposes a
user query into partial queries with an independent evaluation
of these queries without any communication overhead between
the partitions.

VI. CRITERIA FOR DISTRIBUTED TRIPLESTORES

A. Data Replication and Partitioning
Due to the quick increase of the scale of RDF data, various

distributed storage systems have been developed. For such
systems partitioning and replication capabilities while handling
RDF data is necessary to distribute both data and processing
among RDF nodes. For the distribution of data, partitioning
techniques should be efficient enough to achieve a reasonable
query processing performance together with efficient data
transfers between the nodes.

There are two types of data partitioning in existing RDF
stores. The first type is the static graph partitioning, which
creates partitions with a minimum of edges. The second type is
the workload aware partitioning, which faces however the
complex problem of choosing the right decisions regarding
space and workload [2].

On the other hand, replication refers to the storage of the
same data in several different locations. Of course, such
replication requires the availability of synchronization
mechanisms between the data sources to guarantee consistency
between the replicated data. To this end, good strategies are to
be provided by triplestores to select the RDF data to be
replicated, to control the storage availability and to handle data
changes related to updates, insertion or deletion. For example,
the distributed triplestore DREAM [16] does not partition data
over nodes but simply replicates the whole data in every node,
which necessitate updating the same data each time changes
occur.

B. Scalability
A distributed triplestore should have the ability to scale

either vertically with the possibility to add data resources to the
nodes, or horizontally with the possibility to add more nodes to
the system. This is a relevant property for handling large
amounts of data that are gathered from various sources as well
as for integrating data from classical databases (e.g., XML,
relational or file systems).

Because of the graph nature of RDF data, good strategies
are needed to achieve both arts of scalability in order to
achieve efficient SPARQL search, delete or update queries.
Indeed, such queries may involve complex joins of subgraphs

and therefore an extra time complexity. The development of
Big Data technologies and frameworks (e.g., Hadoop, Map
Reduce and Spark) has also favored the development of
various scalable triplestores based on such technologies (e.g.,
SHARD [28], HadoopRDF [19], PRoST [12] and
CliqueSquare [14]).

VII. EASE OF USE CRITERIA

A. Data Visualization and User APIs
With APIs (Application Programming Interfaces) we

mainly mean those APIs that make it easier for triplestores
users to interact with their data easily to query their RDF data
and to have their data presented in a user friendly way. The list
should also include APIs for programming languages or for the
use existing RDF/SPARQL programming packages such as the
use of Jena.

Visualization of RDF in several ways has also to be taken
into account for the understanding of different RDF data
structures. Principally, a triplestore, because of the nature of
RDF data, should support RDF data presentation in form of
graphs.

With regards to APIs, relational databases based
triplestores have largely profited of existing APIs developed
for relational database systems.

B. Acquisition costs, Documentation, Maintenance and
Extensibility
Two other points to consider are the product costs and the

learning costs that are associated of a triplestore and its
implementation.

Also the development conditions of a triplestore are also to
be considered, together with its documentation, maintenance,
accessibility and performance.

As stated, it is important to check how long a triplestore is
used, and to also get an overview of possible updates, releases
development and dedicated extensibility mechanisms. This
will provide an idea about the triplestore, if it is an individual
initiative, an active or a non-active project, if it is dependent to
a third party application and if it is an open source system.

It is also important to consider, if the store is brightly used,
in which domains it is used and how long it is being in use.
These factors play an important role in the decision regarding
the adoption of such a triplestore or not.

VIII. CASE STUDY: ALLEGROGRAPH
It is absolutely evident that an evaluation of triplestore

should be done in the context of its comparison with other
stores belonging to its category using associated established
criteria. However for specific applications, the triplestore could
also be compared with stores not belonging to its category and
in this case such comparison needs to only be conducted with
respect to some specific criteria pertaining to the specific use in
applications. Both types of comparison will lead to further
research papers and constitute one of our future perspectives.

However, to illustrate the application of the established list
of criteria, we discuss in this section the case of AllegroGraph

415 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

triplestore with the NoSQL triplestore XX and with the Big
Data triplestores HadoopRDF. As mentioned, a thorough
comparison of AllegroGraph with other triplestores from
Graph stores and other types of stores using the
aforementioned criteria will be the subject of another research
paper.

AllegroGraph is an efficient RDF native graph database
that uses disk storage, which allows it to scale up to billions of
triplets. It was developed to meet RDF standards and It has
been continuously further improved since its appearance in
2004. It also offers interfaces for many programming
languages such as Java, Python, Ruby, C#, and Scala.

Inference is also supported by AllegroGraph under two
angles. On one hand, AllegroGraph offers the so-called
“dynamic RDFS++ reasoned” that implements a set of RDFS
inference rules and also OWL2resoner. The first reasoner
generates inferred triples during inference execution without
saving inferred triples. However, the OWL2 reasoner adds
generated triples to the considered triples database.

AllegroGraph also has components for the analysis of
social network and geospatial data. It also supports visual
generation of SPARQL queries as well as visualization of
graphs using Gruff. A free, developer and enterprise versions
of Allegrograph with storage capacities of respectively 5, 50
and 50+ million triples are provided for users.

In comparison with other Graph oriented triplestores and
even to other kind of RDF stores, AllegroGraph fulfills by far
many of the criteria mentioned above. We can say that many of
such RDF management systems are still at their infancy phase
since they are still limited to RDF storage and SPARQL
processing functionalities.

For example, HadoopRDF is a Big Data triplestore [19]
that uses the Hadoop file system for the distributed storage of
RDF data in a cluster of nodes and Map Reduce framework for
SPARQL query processing. In comparison of HadoopRDF
with AllegroGraph, HadoopRDF also shows a high failure
tolerance and reliability. Indeed, Hadoop based triplestores can
be easily implemented on clusters of so called commodity
computers and the cluster can continue functioning after node
failure. Therefore HadoopRDF can also handle very large
amounts of RDF data. With regards to RDF querying,
processing of SPARQL queries is done in HadoopRDF
efficiently since it partitions the RDF data not in a single file
but in a set of small files and Map Reduce jobs are simply run
on small portions that are of concern [19].

Apart from RDF data modeling compliance, storage and
querying, HadoopRDF has not been further developed since its
appearance and show strong limitations with respect to the
other criteria already listed in comparison with AllegroGraph.
However, because of the Hadoop architecture of HadoopRDF,
HadoopRDF can also be easily extended and further yields
other research perspectives. Indeed, this fact will let
HadoopRDF benefice from the analytical technologies and
APIs already developed within the framework of Hadoop.

IX. CONCLUSION
We have established a list of criteria for the comparison

and evaluation of RDF triplestores. To achieve this task, we
provided a methodology relying on the identification of
expected key characteristics for triplestores. This is done by
categorizing the criteria according to: - RDF data storage (e.g.,
Compliance with RDF data model, RDF Data validation,
Storage capacity, Data portability and serialization, Integration
of other data sources), - RDF data processing (e.g., support for
SPARQL constructs, data retrieval and modification times,
indexing, reasoning, support for ACID properties), -
performance (e.g., query optimization, support for
programming languages, support for BI, streaming capabilities,
crash recovery), - distribution (e.g., data replication,
scalability), - and ease of use (e.g., user APIs, visualization,
acquisition costs, documentation, maintenance and
extensibility). As an illustration of the criteria list, we
considered the case of AllegroGraph triplestore and showed
that AllegroGraph fulfills many of these criteria.

The criteria will play an important role in supporting users
to make accurate decisions for the adoption of the appropriate
triplestore that best suit their objectives and will help in
identifying the strength and weaknesses of existing triplestores.

This research work is as far as we know the first work that
addresses comparison and evaluation criteria for triplestores.
Because of the increasing use of RDF in many application
domains, the established list of comparison and evaluation
criteria will surely pave the way for more research works that
deal with further improvements of the functioning of existing
triplestores or with the development of new ones.

REFERENCES
[1] K. Alaoui. “A Categorization of RDF Triplestores,” Proc. Smart City

Applications, SCA-2019, October 2–4, 2019, Casablanca, Morocco,
ACM, ISBN 978-1-4503-6289-4/19/10, DOI
10.1145/3368756.3369047, 2019.

[2] A. Al-Ghezi and L. Wiese, “Adaptive workload-based partitioning and
replication for RDF graphs” Database and Expert Systems Applications,
2018.

[3] S. Anand and A. Verma, "Development of Ontology for Smart Hospital
and Implementation using UML and RDF," IJCSI Int. J. of Computer
Science Issues, Vol. 7, Issue 5, 2010.

[4] A. Aranda-Andujar, F. Bugiou, J. Camacho-Rodriguez, D. Colazzo, F.
Goasdoué, Z. Kaoudi, and I. Manolescu, “Amada: Web data repositories
in the Amazon cloud,” in Proc. 21st Int. Conf. on Information and
knowledge Management, CIKM"12, maui, 29 Octpber-02 November
2012, ACM, pp. 2749-2751, 2012.

[5] M. Atre, “Algorithms and analysis for the SPARQL constructs,”
arXiv:1805.08037v3 [cs.DB] 23 May 2018.

[6] M. Banane and A. Belangour, “An Evaluation and Comparative study of
massive RDF Data management approaches based on Big Data
Technologies,” Int. J. of Emerging Trends in Engineering Research, vol.
7, no. 7, July 2019.

[7] P. Bellini and P. Nesi, “Performance assessment of RDF graph
databases for smart city services,” J. Vis. Lang. Comput. 2018, 45, 24–
38.

[8] M. Bermudez-Edo, T. Elsaleh, P. Barnaghi, and K. Taylor, “IoT-Lite: A
Lightweight Semantic Model for the Internet of Things,” in 2016
International IEEE Conferences on Ubiquitous Intelligence Computing,
Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People,
and Smart World Congress, July 2016, pp. 90–97.

416 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

[9] T. Berners-Lee, J. Hendler, and Ora Lassila. “The Semantic Web,”
Scientific American, pages 29–37, May 2001.

[10] D. Brickley and R.V. Guha, "RDF Schema 1.1, W3C
Recommendation," https://www.w3.org/TR/rdf-schema/, 2014.

[11] F. Bugiou, F. Goasdoué, Z. Kaoudi, and I.Manolescu, “RDF data
management in the Amazon cloud,” in ICDT/EDBT Workshops 2012.

[12] M. Cossu, M. Färber, and G. Lausen, "PRoST: Distributed Execution of
SPARQL Queries Using Mixed Partitioning Strategies," in Proc. of the
21st International Conference on Extending Database Technology
(EDBT), March 26-29, 2018.

[13] J. V. F. Dombeu, and R. Kwuimi, “Semantic data storage in information
systems,” African J. Of Information Systems, 2018.

[14] F. Goasdoué, Z. Kaoudi, I. Manolescu, J.A. Quiané-Ruiz, and S.
Zampetakis, “CliqueSquare: Flat plans for massively parallel RDF
queries,” in Proc. IEEE 31st International Conference on Data
Engineering, 2015, pp. 771–782.

[15] T. Haerder, A. Reuter, "Principles of Transaction-oriented Database
Recovery.," ACM Comput. Surv. 15, Nr. 4, 1983, pp. 287–317,
doi:10.1145/289.291

[16] M. Hammoud, D.A, Rabbou, and R. Nouri, “DREAM: Distributed RDF
Engine with Adaptive Query Planner and Minimal Communication,”
VLDB Endowment, 2015.

[17] S. Harris, N. Lamb, and N. Shadbolt, "4store: The design and
implementation of a clustered RDF store." In Proc. Scalable
SemanticWeb Knowledge Base Systems - SSWS2009. pp. 94–109,
2009.

[18] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S.
Rudolph, "OWL 2 Web Ontology Language Primer,”
https://www.w3.org/TR/owl-primer/, 2012.

[19] M. Husain, J. McGlothlin, M.M. Masud, L. Khan, and B.M.
Thuraisingham, “Heuristics-Based query processing for large RDF
graphs using cloud computing,” IEEE Trans. on Knowl. and Data Eng.,
2011.

[20] Z. Kaoudi, M. Koubarakis, K. Kyzirakos, I. Miliaraki, M. Magiridou,
and A. Papadakis-Pesaresi, "Atlas: Storing, updating and querying
RDF(s) data on top of DHTS," J. of Web Semantics 8 (4), pp. 271–277,
2010.

[21] G. Ladwig and A. Harth, "CumulusRDF: linked data management on
nested key-value stores,” SSWS 30, 2011.

[22] D. Le-Phuoc, J. X. Parreira, V. Reynolds, and M. Hauswirth, "RDF on
the go: an RDF storage and query processor for mobile devices," In
ISWC Posters&Demos. 2010.

[23] G. Mai, K. Janowicz, B. Yan, and S. Scheider, "Deeply integrating
linked data with geographic information systems," Transactions in GIS,
230 (3), pp. 579–600, 2019, doi: 10.1111/tgis.12538.

[24] F. Manola, E. Miller, and B. McBride. “RDF 1.1 Primer,"
http://www.w3.org/TR/rdf-primer/, 2014.

[25] E. Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF, W3C Recommendation. http://www.w3.org/TR/rdf-sparqlquery/,
2008.

[26] R. Punnoose, A. Crainiceanu, and D. Rapp, “Rya: A scalable RDF triple
store for the clouds,” in 1st Interna=onal Workshop on Cloud
Intelligence (in conjunction with VLDB), 2012.

[27] P. Ravindra, H. Kim, and K. Anyanwu, “An intermediate algebra for
optimizing RDF graph patern matching on MapReduce”, in ESWC
2011.

[28] K. Rohloff and R. E. Schantz, "High-performance, massively scalable
distributed systems using the MapReduce software framework: the
SHARD triple-store," In Programming Support Innovations for
Emerging Distributed Applications, pp.1-5, October 17-21, Reno,
Nevada, 2010.

[29] S. Sankar, A. Sayed, and J. A. Bani-younis, “A schematic analysis on
selective-RDF database stores," Int. J. of Computer Applications 86(11),
pp. 21-28, January 2014..

[30] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen, ”PigSPARQL:
mapping SPARQL to Pig Latinn”, in SWIM 2011.

[31] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen,
“S2RDF: RDF querying with SPARQL on Spark,” arXiv Prepr., pp.
804–815, 2015.

[32] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte, and T. Tran,
” FedBench: A benchmark suite for federated semantic data query
processing," In Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A.,
Kagal, L., Noy, N., Blomqvist, E. (eds.) Proceedings of the 10th
International Semantic Web Conference (ISWC 2011), Bonn, Germany,
October 23-27, 2011, Part I. pp. 585–600. Springer 2011.

[33] R. Stein and V. Zacharias, “RDF on cloud number nine,” in 4th
Workshop on New Forms of Reasoning for the Seman=c Web: Scalable
and Dynamic, AWS SimpleDB, May 2010.

[34] W3C, https://www.w3.org/wiki/LargeTripleStores.
[35] J. Wielemaker, W. Beek, M. Hildebrand, and J. van Ossenbruggen,

"ClioPatria: A SWI-Prolog infrastructure for the semantic web,"
Semantic Web 7(5), pp. 529-541, 2016.

417 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Semantic Web Standards and Related Work
	A. RDF and SPARQL
	B. Schema Languages RDFS and OWL
	C. RDF Triplestores
	D. Related Work

	III. Criteria Related to RDF Data Storage
	A. Compliance with RDF Data Model
	B. RDF Data Validation
	C. Storage Capacity
	D. Data Portability and Serialization
	E. Integration of Other Data Sources

	IV. RDF Data Processing Criteria
	A. Support for SPARQL Constructs
	B. Data Retrieval and Modification Time Costs
	C. Indexing
	D. Reasoning
	E. Support for ACID Properties

	V. Performance Criteria
	A. Query Optimization
	B. Support for Programming Languages
	C. Support for BI
	D. Streaming Capabilities
	E. Crash Recovery

	VI. Criteria for Distributed Triplestores
	A. Data Replication and Partitioning
	B. Scalability

	VII. Ease of Use Criteria
	A. Data Visualization and User APIs
	B. Acquisition costs, Documentation, Maintenance and Extensibility

	VIII. Case Study: AllegroGraph
	IX. Conclusion
	References

