
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

471 | P a g e
www.ijacsa.thesai.org

Enhanced Insertion Sort by Threshold Swapping

Basima Elshqeirat1, Muhyidean Altarawneh2, Ahmad Aloqaily3

Department of Computer Science, the University of Jordan, P.O Box 11942, Amman, Jordan1, 2

Computer Science Department, Maharishi International University, Lowa Fairfield, IA 52557, U.S.A2

Department of Computer Science and its applications, the Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan3

Abstract—Sorting is an essential operation that takes place in

arranging data in a specific order, such as ascending or

descending with numeric and alphabetic data. There are various

sorting algorithms for each situation. For applications that have

incremental data and require an adaptive sorting algorithm, the

insertion sort algorithm is the most suitable choice, because it can

deal with each element without the need to sort the whole dataset.

Moreover, the Insertion sort algorithm can be the most popular

sorting algorithm because of its simple and straightforward steps.

Hence, the insertion sort algorithm performance decreases when

it comes to large datasets. In this paper, an algorithm is designed

to empirically improve the performance of the insertion sort

algorithm, especially for large datasets. The new proposed

approach is stable, adaptive and very simple to translate into

programming code. Moreover, this proposed solution can be

easily modified to obtain in-place variations of such an algorithm

by maintaining their main features. From our experimental

results, it turns out that the proposed algorithm is very

competitive with the classic insertion sort algorithm. After

applying the proposed algorithm and comparing it with the classic

insertion sort, the time taken to sort a specific dataset was reduced

by 23%, regardless of the dataset’s size. Furthermore, the

performance of the enhanced algorithm will increase along with

the size of the dataset. This algorithm does not require additional

resources nor the need to sort the whole dataset every time a new

element is added.

Keywords—Sorting; design of algorithm; insertion sort;

enhanced insertion sort; threshold swapping

I. INTRODUCTION

Sorting is considered as one of the fundamental operations
and extensively studied problems in computer science. It is one
of the most frequent tasks needed mainly due to its direct
applications in almost all areas of computing. The various
applications of sorting will never be obsolete, even with the
rapid development of technology, sorting is still very relevant
and significant [1]. Formally any sorting algorithm will
basically consist of finding a permutation or swapping of
elements of a dataset (typically as an array) such that they are
organized in an ascending (or descending) or lexicographical
order (alphabetical value like addressee key). A large number
of efficient sorting algorithms have been proposed over the last
ten years with different features [2].

In this paper, we will consider the insertion sort
(IS) algorithm, which is one of the popular and well-known
sorting algorithms. It is simply building a sorted array or list by
sorting elements one by one. The IS algorithm begins at the
first element of the array and inserts each element encountered

into its correct position (index), after determining and locating
a suitable position. This process is repeated for the next
element until it reaches the last element in the dataset. Fig. 1
illustrates a classical procedure of the insertion sort algorithm
where A is an array of elements. The main side effect of the
sorting procedure is overwriting the value stored immediately
after the sorted sequence in the array.

The complexity of the insertion sort algorithm depends on
the initial array. If the array is already sorted by examining
each element, then the best case would be O(n) where n is the
array’s size. However, the worst case would be O(n2), as each
value has to be swapped through the whole dataset, which
makes the complexity increase exponentially as the dataset size
increases. The average case would be under O(n2), since most
values will be sorted to the beginning of the dataset, which is
highly expected in large datasets.

 Note that the insertion sort algorithm is less efficient when
it comes to huge datasets than advanced algorithms, such as
heap sort, quick sort, or merge sort. The main insertion sort
procedure has an iterative operation, which takes one element
with each repetition and compares it with the other elements to
find its correct place in the array. Sorting is typically done in-
place, by iterating through the array and increasing the sorted
array behind it [1].

The Insertion sort algorithm is the optimal algorithm when
it comes to incremental, instantly, and dynamically initiated
data, which is due to its adaptive behavior. This paper proposes
an enhanced algorithm to reduce the execution time of the
insertion sort algorithm by changing the behavior of the
algorithm, more specifically on large datasets. This proposed
algorithm called Enhanced Insertion Sort algorithm (EIS),
which aims to enhance how the elements are relocated from the
first part of the dataset, rather than waiting to find its correct
position by comparing and swapping. Instead, a simple
question is asked during the algorithm's execution; is the
particular element less than the determined threshold? If yes,
then the algorithm applies by traversing the elements that are
under the threshold to find the correct position of this particular
element. This algorithm will be explained in detail in
Section III. The structure of the paper is as follows. Section II
presents a brief of related works that are proposed to handle
and improve the insertion sort algorithm. Section III describes
the proposed EIS algorithm with an explanation of its
complexity cost, Pseudo-code, implementation code and finally
simple comparisons between EIS and other IS algorithms.
Section IV shows the experimental results of our proposed EIS
algorithm. Finally, the conclusion of the paper presented in
Section V.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

472 | P a g e
www.ijacsa.thesai.org

Fig. 1. Pseudo-Code of a Typical IS Algorithm.

II. RELATED WORK

The IS algorithm is considered as one of the best and most
flexible sorting methods despite its quadratic worst-case time
complexity, mostly due to its stability, good performances,
simplicity, in-place and online nature. It is a simple iterative
sorting procedure that incrementally builds the final sorted
array [2]. There were several suggestions to improve insertion
sort and some of them were even implemented, as seen in [2-
4]. Insertion sort can be simplified by using an external
element, known as a sentinel value [5]. Bidirectional
approaches were proposed in [6], where it consists of two
steps, the first step compares both the first and last elements,
and then swaps them if the first element is larger. The second
step takes two adjacent elements from the beginning of the
array and then compares them as well. Abbasi and Dahiya [7]
proposed a bidirectional approach to minimize the shifting
process, which supposes that there are two sorted parts on the
left and right. This approach reduces the shifting process,
rather than an element that may shift through the whole array.
Patel, et al. [8] presented an approach of inserting elements
from the middle of a dataset and applying a bidirectional
sorting, using arrays as structured data. Paira, et al. [9]
proposed an approach that applies a dual scan from both
directions, which locates the position from both sides. Sodhi, et
al. [10] presents a binary insertion sort that achieves a time
complexity of O(n1.585) for some average cases by reducing the
number of comparisons. This approach starts with the middle
element, which reduces the number of swaps needed. Then it
determines the position of the suitable location for each
element. Afterward, it chooses one direction, either left or
right, then adds or appends it to another array. Khairullah [11]
presented an approach that keeps track of both directions. It
also starts from the middle element's location and compares it
according to the element in the middle. Some approaches were
not bidirectional, such as [12], which implements an algorithm
to simply arrange a worst-case insertion sort that reverses the
values.

However, bidirectional methods are efficient when
compared with other classical insertion sort algorithms, but
these kinds of approaches require the complete dataset to be
sorted before knowing its size. In this case, these approaches
cannot be implemented in applications that have incoming
incremental data.

III. METHODOLOGY

The methodology section demonstrates a detailed
explanation of the proposed EIS algorithm method in
subsection III.A, then it presents an analysis of the algorithm's
complexity in subsection III.B. Further, subsections III.C and
III.D handling the details of Pseudo-code and the
implementation code of the EIS algorithm. Finally,
subsection III.E illustrates a simple comparison between the
EIS and IS algorithms.

A. EIS Algorithm Method

 In the EIS algorithm, the enhancement occurs when the
algorithm behaves differently, more specifically when a value
of the selected element is lower than a given threshold. The
threshold is defined as the index of selected elements from the
sorted part of the array, A, in the particular step during the EIS

algorithm. Note that the Threshold= ⌊i/3⌋, where i is defined as
the index of the particular element which is select to be sorted

and 0<in. Please note that if i element is selected now to be
sort, then this means that all elements in the array A from A[0]
to A[i-1], are fully sorted according to the original insertion
sort algorithm behavior. Moreover, the threshold is determined

by ⅓ of the dataset size, which changes dynamically as the
algorithm sorts the elements one by one and i will increase by

1 in each iteration. The ratio, ⅓, of the dataset was chosen after
executing several experiments, which concluded that it is the
best case in terms of time complexity. It is clear that there is no
specific way to determine the optimal ratio for the threshold
unless you try out a bunch of different values and test the
performance. This will be further discussed in section VI.

The functionality of the proposed algorithm is the same as
the insertion sort process, but it asks a question before it starts
comparing and swapping the selected i element in A[i] where
the index=i; is the value of the i element being compared less
than the value of the element in threshold index? If yes, then.

The EIS algorithm searches for the correct index to move
the i element and place it. Note that EIS will start searching for
the correct index for element i from the segment part (block)
that contains elements that have values that are less than the
value of the threshold index. When the suitable index is
spotted, it swaps the selected element to the specific index and
then shifts all other elements to the right. This operation
reduces the number of comparisons and swapping of elements
and this reduction will increase if the size of the array is also
increased. In case that the value of the element is higher than
the value of the threshold, then EIS behaves like the original
insertion sort process and the original IS procedure will be
done for this particular selected element in index i.

Fig. 2 demonstrates an illustration example of the
procedure of the proposed Enhanced Insertion Sort (EIS). The
threshold is dynamically changing based on the size of the
traversed elements while the algorithm sorts the elements on by
one. In each step, the algorithm examines whether the value of
the selected element i is lower than the value of the threshold
index or not. In steps 6 and 9, the algorithm begins to search
beyond the threshold, and then it replaces the elements to a
suitable index, and then shifted all the elements to the correct
index. To illustrate that if you look at step 9, rather than

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

473 | P a g e
www.ijacsa.thesai.org

comparing the element in A[i]=1, where i=9, with all the other
elements from A[0] to A[i-1], it only performs three
comparisons with elements A[2] = 5, A[1] = 4 and A[0] = 3
wherein this particular step the threshold = 3. Note that the
number of the comparisons in step 9 will be 9 if we use the
original LS, but when using our proposed EIS, the number of
the comparisons will reduce to 3, as shown in Table I.

Fig. 2. The Procedure of the Enhanced Insertion Sort (EIS).

B. The Complexity of the EIS Algorithm

As shown in Fig. 3, the cost of the execution is reduced to
n2/3, as the algorithm relies heavily on the threshold procedure
to reduce the search space. Given the following  2(n2/3) + 3n2
+ 4n. It will remain as O(n2). However, the results empirically
show more efficient behavior. The Pseudo-code of the
proposed Enhanced insertion sort algorithm is shown in Fig. 3.

C. Source Code of EIS Algorithm

Fig. 4 shows the java source code of the proposed
Enhanced insertion sort algorithm. Furthermore, the full
implementation of the EIS algorithm can be downloaded and
run from the Github website:https://github.com/muhyidean/
EnhancedInsertionSort-ThresholdSwapping.

D. Comparisons between the EIS and other IS Algorithms

Table I shows a detailed comparison between the insertion
sort (IS) and our proposed algorithm (EIS) using the same
dataset in Fig. 2 as an example. As shown in Table I, it is clear

that the number of comparisons for the dataset example using
the proposed EIS is better than using IS, where the number of
comparisons for the IS algorithm is 45; while the number of
comparisons for EIS is 34. As a particular example for specific
iteration in step 9, when i = 9, it is clear that the number of the
comparisons will be 9 if we use the original IS, but when using
our proposed EIS, the number of the comparisons will reduce

to 3, which is the one third (⅓) threshold value as shown in
Table I.

Fig. 3. Pseudo-Code of the EIS Algorithm.

Fig. 4. Java Code of the EIS Algorithm.

1. public static int[] EIS(int[] list){

2. int t, j,k;

3. int threshold = 3;

4. for (int i = 1; i < list.length; i++) {

 // If less than i/threshold

5. if (list[i] < list[i/ threshold]){

 // determine the Search position

6. for(j = i/ threshold ; j > 0 ; j--){

7. if(list[i] >= list[j-1]){

8. break;

9. }

10. }

 // Swap items

11. t = list[j];

12. list[j] = list[i];

13. list[i] = t;

 // Shifting

14. for(int c = i ; c > j+1 ; c--){

15. t = list[c];

16. list[c] = list[c-1];

17. list[c-1] = t;

18. }

19. }

20. else{

21. t = list[i];

22. k = i -1;

23. while (k>=0 && list[k]>t){

24. list[k+1]=list[k];

25. k=k-1;

26. }

27. list[k+1]= t;

28. }

29. }

30. return list;

31. }

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

474 | P a g e
www.ijacsa.thesai.org

TABLE I. COMPARISONS BETWEEN THE EIS AND IS ALGORITHMS

Dataset  3 6 5 22 12 14 4 8 19 1

VALUE

OF (i)

Number of

Sorted items

ETI Element To

Insert
LIST AFTER SORTING

Number of

Comparisons based

on the IS algorithm

Number of

Comparisons based

on the EIS algorithm

i = 1 0 6 3,6 1 1

i =2 2 5 3,5,6 2 2

i =3 3 22 3,5,6,22 3 3

i =4 4 12 3,5,6,12,22 4 4

i =5 5 14 3,5,6,12,14,22 5 5

i =6 6 4 3,4,5,6,12,14,22 6 1

i =7 7 8 3,4,5,6,8,12,14,22 7 7

i =8 8 19 3,4,5,6,8,12,14,19,22 8 8

i =9 9 1 1,3,4,5,6,8,12,14,19,22 9 3

* The number of comparisons was reduced using EIS 45 34 Total

IV. RESULTS

A. The Implementation Procedure

The proposed EIS algorithm was implemented using the
Java programming language. In order to evaluate the
performance of the proposed EIS algorithm. Three algorithms,

the classical IS algorithm, the proposed EIS algorithm using ⅓

threshold, and ¼ threshold are utilized and the results are
compared. The performance evaluations were performed on a
computer machine with a 2.8 GHz Intel Core i5 processor with
4 GB 1600 MHz DDR3 memory on a windows platform. An
experimental test has been done on empirical data (integer
numbers) that are generated randomly using Java.

To verify that the same data is examined for each
execution, a random dataset is generated and copied to three
different arrays. Then the data is used to apply each algorithm
and the time it takes (in milliseconds) to complete the sorting
process was recorded. This is to assure that the algorithm's
performance works for all types of data organizations and
sizes. Twenty random datasets were utilized and the average
execution times are reported. The sizes of the datasets that
were utilized were 10000, 50000, 100000, and 500000.

B. Experimental Results and Discussion

Table II shows the overall performance results of the
employed algorithms on different utilized datasets. As shown
in Table II, the performance results, exposed by the classical IS
algorithm, are stable on all utilized datasets. These results are
expected since the computational complexity of the IS
algorithm is practically the same. Further, the reported results
in Table II emphasize that the proposed EIS algorithm using

thresholds of ¼ and ⅓ reported enhanced performance results
as compared to the classical IS algorithm. In fact, when the

threshold equals ⅓ the results are superior. Consequently, a

threshold of ⅓ states an appropriate threshold for employing
the EIS algorithm.

The results are also showing, as the size of the dataset
increases, the deviations of the performance results are also
improved. Fig. 5 to 7 illustrates exceptional performance
results of the proposed EIS especially when the threshold

equals ⅓ and when the dataset’s size is larger. As Fig. 5
Shows, the performance results of the EIS algorithm are much
improved in terms of computational complexity time.
Although, the complexity of the EIS algorithm, as reported in
section III.B, states that the EIS has an O(n2) computational
time, but the results empirically demonstrate better
performance.

Fig. 6 and 7 demonstrate also similar performance results.
When the size of a dataset is larger, the EIS algorithm performs
better. Overall, the EIS algorithm, with varying datasets sizes
and with a range of threshold values, performs empirically
better than the classical IS algorithm. To further compare the
performance of the employed algorithms, the average,
maximum and minimum execution times for each dataset’s
size are reported and compared. As Table III shows the
classical IS reported results are the lowest in terms of average

execution time. When the threshold equals ¼, the EIS
algorithm has a higher maximum value and a lower minimum

value than using ⅓. This indicates that when the threshold

equals ⅓ the reported results are more efficient. The lowest
average execution times are highlighted to determine the most
efficient performance. To conclude, The EIS algorithm, with a

threshold of ⅓, demonstrates the best average performance
results as highlighted in Table III. The improvements of the
proposed EIS over the IS algorithms are also compared in
terms of the average execution time and reported. Table IV
shows that the proposed EIS algorithm outperforms the
classical IS algorithm. The performance improvements of the
proposed EIS algorithm in terms of execution time on average
was 23%. The main reason for the significant improvement in
performance is that the threshold procedure of the EIS
algorithm reduces the number of comparisons and swapping
needed to complete the sorting procedure.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

475 | P a g e
www.ijacsa.thesai.org

TABLE II. THE PERFORMANCE OF THE EMPLOYED ALGORITHMS

 Dataset

 size

Algorithms

Execution time (in milliseconds) on 20 Datasets that are randomly generated

104 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ins 36 45 38 34 71 48 60 39 57 69 67 36 41 44 74 42 39 112 42 38

EIS ⅓ 34 32 54 43 49 34 41 42 33 33 48 35 35 36 44 42 37 52 31 34

EIS ¼ 35 48 43 30 53 36 31 34 38 42 49 37 33 32 35 42 53 55 33 35

(104)*5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ins 769 827 770 774 792 813 766 865 809 833 780 774 766 794 763 809 811 773 784 782

EIS ⅓ 773 625 565 601 597 609 556 567 632 559 574 582 606 597 763 571 565 578 568 603

EIS ¼ 516 748 742 749 532 534 512 756 576 600 742 529 541 742 783 775 506 740 781 725

105 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ins 3035 3074 3032 3051 3031 3034 3021 3041 3062 3050 3026 3037 3038 3063 3033 3055 3040 3023 3041 3047

EIS ⅓ 2139 2134 2131 2150 3014 2146 2125 2161 2141 2134 2959 2151 2966 2149 2127 2158 2136 2133 2150 2963

EIS ¼ 2972 2033 2973 2033 2019 2964 2010 3000 2023 2094 2967 2997 2204 3037 2969 2037 2969 2015 2962 2963

(105)*5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ins 75242 77496 75306 75761 76568 76665 76140 76173 75406 75483 75114 75408 75092 75518 75378 75821 76094 75198 75792 76444

EIS ⅓ 53348 54684 53315 53697 54092 75198 55537 59393 55480 53693 53173 53633 73721 55514 53463 58709 53628 73674 73531 59116

EIS ¼ 73333 52147 50568 50678 55212 73765 73352 51036 73816 73268 73196 73345 73087 50763 54505 73449 73583 73273 50997 50684

Fig. 5. The Performance of the Employed Algorithms on utilized Datasets of

Size 5*104.

Fig. 6. The Performance of the Employed Algorithms on utilized Datasets of

Size 105.

500

550

600

650

700

750

800

850

900

2 4 6 8 10 12 14 16 18 20

Dataset size = 5*104

Ins EIS ⅓ EIS ¼

2000

2200

2400

2600

2800

3000

3200

3400

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

Dataset Size = 105

Ins EIS ⅓ EIS ¼

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 11, No. 6, 2020

476 | P a g e
www.ijacsa.thesai.org

Fig. 7. The Performance of the Employed Algorithms on utilized Datasets of

Size 5*105.

TABLE III. AVERAGE, MAX AND MIN EXECUTION TIME OF THE IS AND EIS

ALGORITHMS

 Dataset size

Algorithms
Overall Performance

104

Average Max Min

IS

51.6 112 34

EIS ⅓

39.45 54 31

EIS ¼

39.7 55 30

5*104

Average Max Min

IS

792.7 865 763

EIS ⅓

604.55 763 556

EIS ¼

656.45 783 506

105

Average Max Min

IS

3041.7 3074 3021

EIS ⅓

2308.35 3014 2125

EIS ¼

2562.05 3037 2010

5*105

Average Max Min

IS

75804.95 77496 75092

EIS ⅓

58829.95 75198 53173

EIS ¼

63702.85 73816 50568

TABLE IV. THE OVERALL PERFORMANCE RESULTS OF THE EIS

ALGORITHMS

 Dataset size

Algorithms
104 5*104 105 5*105

IS 51.6 792.7 3041.7 75804.95

EIS ⅓
39.45 604.55 2308.35 58829.95

EIS ¼
39.7 656.45 2562.05 63702.85

Improvement of EIS ⅓ over the IS algorithm

Improvement 24% 24% 24% 22%

C. Source Code of Implementation

Due to the space limitation, the source code of the proposed
EIS algorithm is uploaded online to the GitHub website
(https://github.com/muhyidean/EnhancedInsertionSort-
ThresholdSwapping).

V. CONCLUSION

Insertion sort is the suitable sorting algorithm when it
comes to incremental, instantly and dynamically initiated data.
Yet, its complexity increases exponentially when the data size
increases, making it inefficient. In this paper, an enhancement
of the IS algorithm was proposed, named enchanted insertion
sort, to improve the computational complexity of the IS
algorithm by changing its behavior.

The proposed algorithm reduces the number of
comparisons and swapping needed to complete the sorting
procedure. After executing the algorithm and comparing it with
the classical insertion sort algorithm, there was an
improvement of 23% in terms of the execution time taken to
complete the sorting process. The worst case of the complexity
remains O(n2), but the reported results are empirically
promising. The efficiency of the proposed EIS algorithm is
attributable to the reduction of the number of comparisons
during the sorting process.

REFERENCES

[1] M. Aliyu and P. Zirra, "A Comparative Analysis of Sorting Algorithms

on Integer and Character Arrays," The International Jornal of Engineering
and Science, pp. 25-30, 2013.

[2] A. Chadha, R. Misal, T. Mokashi, and A. Chadha, "Arc sort: Enhanced

and time-efficient sorting algorithm," International Journal of Applied
Information Systems vol. 7, pp. 31-36, 2014.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

algorithms: MIT press, 2009.

[4] S. Samee, A. Chitte, and Y. Tangde, "Analysis of Insertion Sort in Java,"
Advances in Computational Research, vol. 7, p. 182, 2015.

[5] O. Nevalainen, T. Raita, and H. Thimbleby, "An improved insert sort

algorithm," Software: Practice and Experience, vol. 33, pp. 999-1001,
2003.

[6] M. P. K. Chhatwani, "Insertion sort with its enhancement," International

Journal of Computer Science and Mobile Computing, vol. 3, pp. 801-806,
2014.

[7] H. Abbasi and M. Dahiya, "Services Marketing: Challenges and
Strategies," International Journal on Recent and Innovation Trends in

Computing and Communication, vol. 4, pp. 345-349, 2016.

[8] S. Patel, M. D. Singh, and C. Sharma, "Increasing Time Efficiency of
Insertion Sort for the Worst Case Scenario," International Journal of

Computer Applications, vol. 975, p. 8887.

[9] S. Paira, A. Agarwal, S. S. Alam, and S. Chandra, "Doubly Inserted Sort:
A Partially Insertion Based Dual Scanned Sorting Algorithm," in

Emerging Research in Computing, Information, Communication and
Applications, ed: Springer, 2015, pp. 11-19.

[10] T. S. Sodhi, S. Kaur, and S. Kaur, "Enhanced insertion sort algorithm,"

International journal of Computer Applications, vol. 64, 2013.

[11] M. Khairullah, "Enhancing Worst Sorting Algorithms," International
Journal of Advanced Science and Technology, vol. 56, pp. 13-26.

[12] P. S. Dutta, "An approach to improve the performance of insertion sort

algorithm," International Journal of Computer Science & Engineering
Technology (IJCSET), vol. 4, pp. 503-505, 2013.

50000

55000

60000

65000

70000

75000

80000

2 4 6 8 10 12 14 16 18 20

Dataset Size = 5*105

Ins EIS ⅓ EIS ¼

