
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

Estimate the Total Completion Time of the Workload 

Muhammad Amjad*1, Waqas Ahmad2, Zia Ur Rehman3, Waqar Hussain4, Syed Badar Ud Duja5, Bilal Ahmed6, 
Usman Ali7, M. Abdul Qadoos8, Ammad Khan9, M. Umar Farooq Alvi10 

College of Information and Computer Taiyuan University of Technology 
Taiyuan, Shanxi, China 

 
 

Abstract—The business intelligence workload is required to 
serve analytical process. The data warehouses have a very large 
collection of digital data. The large collection of digital data is 
required to analytical process within the perplexing workload. 
The main problem for perplexing workload is to estimate the 
total completion time. Estimate total completion time is required 
when workload is executed as a batch of queries. To estimate the 
queries according to their interaction aware scheme because 
queries are run in batches. The database administrators often 
require to perceive how much longer time for business 
intelligence workloads will take to complete. This question 
ascends, when database administrator entails to accomplish 
workloads within existing time frame. The database system 
executes mixes of multiple queries concurrently. We would 
rather measure query interactions of a mix than practiced 
approach to consider each query separately. A novel approach as 
a estimate framework is presented to estimate running time of a 
workload based on experiment driven modeling coupled with 
workload simulation. An estimation framework is developed 
which has two major parts offline phase and online phase. 
Offline phase collects the experiments sampling of mixes which 
has different query types. To find the good accuracy for 
estimating the running time of the workload by evaluation with 
TPC-H queries on PostgreSQL. 

Keywords—Query interactions; estimate time; running time 

I. INTRODUCTION 
OLAP workload has long-running queries that has to 

execute database system at different time period repeatedly. 
These batches of queries execution time range sometimes from 
minuts to hours. The database administrator wants to 
accomplish business intelligent workloads within time frame 
but due to indeterminacies of queries execution time can’t 
fulfill her requirement. Resource contentions are a reason 
which effects response time of a query. Therefore, to measure 
query interactions in a mix is essential, a phenomenon that 
query execution might be hastened or hindered by parallel 
queries [23]. For example the performance of 𝑄18  and 𝑄5 
describe in the three mixes 𝑚2, 𝑚3 and 𝑚4. The  𝑚2 presents 
the positive interaction for 𝑄18. 𝑄18  has the average response 
time 609 seconds while run alone in the system is 624 seconds. 
On the others hand 𝑄18  suffers in mix 𝑚3  due to negative 
interaction. 𝑄18  has the average response time 707 seconds in 
mix 𝑚3. 𝑚4 is also a positive interaction for  𝑄5. We need to 
capture these interactions. 

If query interaction in a mix is measured then a database 
administrator can adjust business intelligent workload within 
time-bound without flawlessly. The state of the art does not 
provide any method to estimate the total completion time of a 

workload. To predict query execution time that is not only use 
for estimate the total completion time, it is also useful for 
database other management tasks, sizing, progress monitoring, 
admission control and query scheduling [2-5].  Recently most 
of the work focuses on estimating the time for independent 
query [6-9]. whereas a very little work studies to predict the 
time for simultaneously running queries [10]. The database 
systems most often allow simultaneously running queries. 
Therefore, to estimate execution time for concurrent queries 
are required. To estimate simultaneously running queries are 
more important than for independent queries. 

The approaches are investigated to building estimation 
model for estimating the response time of a query running 
concurrently with other queries. Specifically, the model 
focuses to the following scenario. The database systems 
constantly run a mix of M queries simultaneously. Whenever a 
query is finished execution and exits, the database systems 
arbitrary manner select a query from the queue to form a new 
mix. The model is required for estimating the response time of 
a query at any time point of its running. 

In this paper experiment driven approach is used to take 
into account the query interactions. Experiment driven 
approach is attainment to build performance static model 
which estimate the query response time. A dynamic model is 
manipulate such performance static model for estimating the 
response time of the newly form mixes. A relevant work uses 
machine learning technique to estimate performance metrics 
for queries [7], but authors focus at the single query running in 
the database system and our motive is concurrently running 
queries. 

Our contributions can be concluded as follows: 

• A performance static model is proposed to estimate the 
query response time in a mx. 

• A dynamic model is proposed to manipulte the 
performance static model for estimating newly formed 
mixes. 

To meaure the impact of the query interactions in a mix, 
queries are used from TPC-H benchmark with a database 
system extent of 10GB operating on PostgreSQL. Table I 
shows average running time of the TPC-H queries in the 
database system. Table II shows the number of each type of 
queries in a mix. 

The rest of paper organized as follow. Section II present 
related work . A framework is developed in Section III. 
Section IV presents evaluation of this approach and conclude 
in Section V. 

46 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

TABLE I. RUNNING TIME 𝑡𝑗  OF SINGLE QUERY TYPES 

Query 
type 𝑸𝟏 𝑸𝟒 𝑸𝟓 𝑸𝟔 𝑸𝟖 𝑸𝟏𝟎 𝑸𝟏𝟐 𝑸𝟏𝟒 𝑸𝟏𝟖 

Runtime tj 
(sec) 5085 1414 585 578 598 71 866 573 624 

TABLE II. THE AVERAGE RUNNING TIME FOR SIMULTANEOUSLY QUERIES 

 Mix M1 M2 M3 M4 

Q1 
Aij 1 0 0 0 
Nij 5193 0 0 0 

Q2 
Aij 1 0 0 1 

Nij 1620 0 0 1620 

Q5 
Aij 0 0 0 1 

Nij 5193 0 0 443 

Q6 
Aij 1 0 0 0 

Nij 602 0 0 0 

Q8 
Aij 0 1 0 1 

Nij 5193 707 0 707 

Q10 
Aij 0 0 1 0 

Nij 5193 0 78 0 

Q12 
Aij 0 1 0 0 

Nij 5193 1133 0 0 

Q14 
Aij 0 0 1 0 

Nij 5193 0 607 0 

Q18 
Aij 0 1 1 0 

Nij 0 609 609 0 

II. REALTED WORK 

A. Literature Review 
The main method of the analytical model is to obtain the 

query response time by performing a detailed analysis of the 
query process of the database system.  The core research 
content is (1) the speed at which the system executes the query 
(2) the amount of data that the query needs to process.  For the 
analytical model of a single query, the response time of the 
query can be obtained by clarifying the above two points.  For 
the analytical model of parallel query, additional research is 
needed (3) the contention pattern of resources between parallel 
queries, and the mode is explicitly described.  The research 
process of the analytical model is also the research progress of 
the above three core contents.  In 2004, Chaudhuri et al. [16] 
and Luo et al. [24] published a paper on query progress 
indicators at SIGMOD 2004, and studied the progress indicator 
and the query response time prediction model based on the 
analysis method.  

The workload prediction has to do with query interaction in 
a mix that is known as building query progress indicator, 
statistical prediction models and analytical prediction models. 
Progress indicator is a tool which shows the percentage 
progress of a running query [15, 16]. The progress indicators  
fundamentally partition a query plan do on different phases and 
updated the query progress information based on the execution 
information consistently. 

Ahmad et al. [10] study the problem  for estimating 
simultaneously query response time. In [13], the authors 
propose an experiment driven approach for sampling. In the 
paper the authors use Gaussian process as the particular 
statistical model. The key restraint of the work is assumed 
static workload that is not practically. According to our 
reading, we indicate the concurrent query response time 
estimation problem under dynamic workload. 

 In database system the research communities have gained 
substantial interest to predicting query execution time [11,12, 
13,14]. The current query response time prediction model is 
divided into analytical type and statistical type.  Analytical 
modeling predicts response time by studying the query 
execution process.  Statistical modeling uses machine learning 
methods to model query response time. This method can strike 
a balance between model complexity and usability. The static 
modeling technique is employed to estimate running time for a 
query in a database system [17,18,19]. We employed our 
developed Gscheduler by solving a linear programming 
problem and also for the estimation model to work [1]. 

III. THE FRAMEWORK 
Estimation framework is described in this Section. In first 

instance, estimation problem is described, then solution is 
described and would be provided some analysis. 

We present problem definition in Subsection A. Subsection 
B presents the structure of our defined workflow. Subsection C 
presents performance static model. Subsection C presents 
dynamic model. 

A. The Problem Definition 
In order to meet and maintained the peak performance of 

our proposed scheduler in our prior work, that decrease total 
completion time of a business intelligent (BI) workload [1]. 
Now to solve another workload management problem that 
estimate the total running time of a workload. The database 
administrators want to knowing how much the workload will 
expect to run. 

The database consistently runs query mixes according to 
multiprogramming level M queries draw as 𝑊 = {< 𝑞𝑖 ,𝑤𝑖 >
|𝑖 = 1,2, … ,𝑁} , 𝑤𝑖  represents the number of queries 𝑞𝑖 . 
Whenever a query is finished execution, the database system 
selects the query from workload W to form a new mix, and 
estimate leftover running time of newly formed mix. We 
require to find an approach which give us estimate running 
time of newly form mixes. 

 
Fig 1. Illustration  the Estimation Running Time Problem. 

47 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

An example is employed to explain the estimation problem 
in Fig. 1, three queries 𝑞1  ,  𝑞2  and 𝑞3  that are concurrently 
running and arrive at time denoted as 𝑡1  , 𝑡2  and 𝑡3 . In this 
scenario, there are three estimation problems. At 𝑡1 we need to 
estimate the running time of 𝑞1 . The estimation requires the 
information of the upcoming 𝑞2, 𝑞3 which is not available at 
𝑡1. At 𝑡2 , 𝑞2 join and need to make an estimation for both 𝑞1 
and 𝑞2. Actually 𝑞1 that has been running for some time, we 
require its remaining running time. The estimation requires the 
knowledge that 𝑞3 will arrive which is unavailable at 𝑡2. The 
same argument can be further applied to the estimation for 𝑞1 
, 𝑞2 and 𝑞3 at 𝑡3. For example, let M be a mix of n queries M = 
{𝑞1 ,  𝑞2 ,…….,𝑞𝑛 } which are concurrently running. Let me 
know, 𝑠0 is a start time of n queries and 𝑒𝑖 is the end time. 𝑇𝑖  = 
𝑒𝑖  -  𝑠0 to be the execution time of 𝑞𝑖 is defined. An estimation 
model is required to concern this problem. The estimation 
problem in Fig. 1 is generated by setting M = {𝑞1, 𝑞2, 𝑞3} and 
𝑠0 = 𝑡3. 

B. The Structure of the Framework 
The structure of the framework is initiated for batch 

workload. The structure contains a dynamic model that can 
estimate response time of the mixes. This nontrivial task is 
accomplished with dynamic model whosoever can estimate the 
running time of queries to manipulating performance static 
model. 

 
Fig 2. An Overview of the Framework. 

Fig. 2 defines the overall workflow of the framework which 
consists of two major components, that are offline phase, and 
online phase. The workflow is used by a database administrator 
who executes the batch workloads repeatedly and need to 
estimate the total completion time of a workload. The database 
administrator provides a queries type 𝑞𝑖 as input to the offline 
phase. Next, the detail description is described of the 
performance static model and the dynamic model. 

C. The Performance Static Model 
The impact of query interactions have been defined 

capturing by experimentally measuring the average completion 
time of various queries type. A new approach is proposed 
which designed and conducted experiments for possible query 
mix sampling. The experiment is run to chose query mix 
sample. Collecting the data from all experiments as a query 
mix model. No prior assumptions are required for this method 
about the working of the database system. For example, the 
database consistently executes queries concurrently drawn 

from the set of N queries in a mix, m = {𝑞1 , 𝑞2 ,…….,𝑞𝑛}. 
Every executed query mix in the sample called a known mix. 
The response time of each query is recorded as the sample data 
set. A model is developed to estimate the newly formed 
unknown query mixes. 

Through experiment driven approach, sampling 
experiments are required to collect data for static model. The 
sampling policy gives feasible query mixes that provides a 
feasible point for an offline phase. The method perks that the 
instances can be updated incessantly and improved model 
performance. Our workload generator generates query mixes 
sample. For collecting the samples, the workload setting is 
generated by client coordinator, the MPL=3. 19 hours is taken 
to run these experiments for 504 different query mixes of 
workload. 

For the samples data, to develop a sampling algorithm is 
required, and then an appropriate regression model is 
employed, which gives accuracy in estimating query 
completion time in a mix. Now, a sampling algorithm is 
described for the efficiency of the sample data. 

There are many types of sampling techniques. To choose 
the possible sampling from the 504 set of query mixes. The 
random sampling is employed, but according our modeling 
perspective, it is inefficient. The drawback of the random 
sampling is wide-ranging when to require to learn a good 
model. When we increase the queries type, the same sample 
data may be repeated unnecessarily that’s why the sample data 
may be larged. For save the processing time, minimize the 
samples data is required for a large number of queries type. 

For this purpose, Latine Hypercube Sampling (LHS) is 
used. McKay et al. [20] propose LHS that is suitable for 
designing of computer experiments. Stein et al. [21] prove that 
LHS is a powerful and useful method. LHS gives better 
coverage than random sampling. LHS comes from the family 
of space-filling designs and performs well in practice [22]. 

The constraints are harded that the number of concurrent 
query instances in a sampled mix would not be exceeded from 
the fixed multiprogramming level. The requirements can’t be 
fulfilled by the simple LHS technique. For making it 
interactions aware and fixed conditions on MPL, an algorithm 
is needed to develop for collecting those sample data which 
have minimum estimation error and also to satisfy fixed 
instances of query types as fixed MPL. 

The Task: A set of samples 𝑛 mixes for the given query 
types 𝑇 , MPL=  𝑀 , interaction level = 𝑘 , and permutation 
matrix = 𝑃𝑘. 

The method: 

• Let’s 𝑃𝑘 of size 𝑛 × 𝑇 by LHS, 𝑃𝑘is a query mix. 

• 𝑃𝑘 at random set values of 𝑇 − 𝑘, the column set as 0 to 
𝑘 make the level of its interactions. The column does 
not exceed as fixed 𝑀. 

•  We want to cover the interactions level of 𝑘 within 𝑛 
samples data. The 𝑛 mixes that are allowed for 𝑘. We 
pick mixes from 𝑃𝑘. 

48 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

The algorithm fulfills our requirements to sample mixes, 
which covers interactions level and makes the fixed 
Multiprogramming level. When a query finish execution and 
exits the new query comes and forms new mix constantly in the 
database, therefore a model is required which uses this 
performance static model and estimates the time of the newly 
formed mix. Next, we present detail of the model namely 
called dynamic model for estimating query response times. 

D. The Dynamic Model 
The dynamic model is very powerful for database system 

administration. The important feature of the dynamic model is 
a plugable incorporating of the scheduling method. The 
dynamic model is used for typical scheduling methods First-
Come, First-Served, Shortest-Job-Next scheduling, and a 
variety of sophisticated scheduling methods. 

Dynamic estimation problem: The workload, 𝑊 = {<
𝑞𝑖 ,𝑤𝑖 > |𝑖 = 1,2,3, … ,𝑁} , is run according to 
multiprogramming level M queries. 𝑤𝑖  represents the number 
of queries 𝑞𝑖 in a mix. Whenever a query is finished and exits, 
the database system selects the query from workload W to 
form a new mix, the model is estimated the remaining 
execution time of the mix according to the new mix. 

For example, the query 𝑞1 in Fig. 3, when 𝑚1 start at time 
𝑡0. The model will estimate the leftover time of 𝑞1 according to 
the query mix (𝑞1, 𝑞3, 𝑞6), from 𝑡0 to 𝑡4. When 𝑞3 exits and 𝑞4 
comes in to form new mix 𝑚2 , the model estimates the 
remaining execution time of 𝑞1 according to mix (𝑞1, 𝑞6, 𝑞4), 
this is the time from  𝑡1 to 𝑡4. The estimation process for all 
other queries is the same. 

 
Fig 3. Different Mixes of Three Queries Running Continuously. 

The dynamic model is similar to the progress indictors [5, 
19, 26], but the dynamic model uses different modeling 
approach. (i) The dynamic model is activated at the exits of a 
query, but progress indicators predict periodically. (ii) The 
progress indicators are used in a single query scenario. The 
existing parallel progress indicators [5] is a simple extension of 
the classic progress indicators [17, 24]. The interactions 
between queries are not considered for the parallel progress 
indicators. 

When a query exits, the dynamic model estimates the 
remaining execution time of remaining running queries using 
Equation as follows: 

�̂�<𝑞,𝑚𝑠>
𝑟 =  𝑡𝐼 < 𝑞,𝑚𝑠 > �1 − 𝑡𝑎𝑛ℎ(∑

𝑡<𝑞,𝑚𝑙>
𝑒

𝑡<𝑞,𝑚𝑙>
𝐼

𝑠−1
𝑙=1 )�            (1) 

�̂�<𝑞,𝑚𝑠>
𝑟 , is shows the estimated remaining time of q with 

mix 𝑚𝑠. 𝑡𝐼 < 𝑞,𝑚𝑠 >, is shows the running time of query q 

running in 𝑚𝑙 . 𝑡<𝑞,𝑚𝑙>
𝑒 , is the elapse time of query q in 𝑚𝑙 . 

Equation 1 estimates the time needs to exit query q running in 
𝑚𝑠 . 𝑚𝑠  estimates the starting time of the query instance. 
According to Fig. 3, suppose we need to estimate the 
remaining time of 𝑞1 at 𝑡2. The elapsed time of 𝑞1 is 𝑡0 to 𝑡2, 

and the work done for 𝑞1  is tanh �
𝑡〈1,{6,3.1〉
𝑒

𝑡〈1,{6,3.1〉
𝐼 +

𝑡〈1,{6,4.1〉
𝑒

𝑡〈1,{6,4.1〉
𝐼 � . To 

estimate the remaining time of 𝑞1 in mix (7, 4, 1), we multiply 

𝑡〈1,{7,4.1〉
𝐼  with 1 − 𝑡𝑎𝑛ℎ �

𝑡〈1,{6,3.1〉
𝑒

𝑡〈1,{6,3.1〉
𝐼 +

𝑡〈1,{6,4.1〉
𝑒

𝑡〈1,{6,4.1〉
𝐼 �. 

The dynamic model refreshes the state of unfinished 
queries at the end of the mix. When scheduling picks new 
query for making new mix, the dynamic model change the time 
state with the help of perfromance static model. That procedure 
continues running til all queries in the workload are completed. 

𝐿𝑤 = � 𝐼𝑖

|𝑊|−𝑀+1

𝑖=1

 

The workload estimated completion time is add the lengths 
for all mixes come upon throughout the imitation. 

IV. EXPERIMENT EVALUATION 
This section presented experiment evaluation of the 

proposed approach. The estimation accuracy we measure in 
terms of mean relative error. Which is defined as: 

1
𝑁
�

|𝑇𝑖𝑒𝑠𝑡 − 𝑇𝑖𝑎𝑐𝑡|
𝑇𝑖𝑎𝑐𝑡

𝑁

𝑖=1

 

The number of testing queries is N. The estimated and the 
actual execution time for  𝑞𝑖  are  𝑇𝑖𝑒𝑠𝑡  and 𝑇𝑖𝑎𝑐𝑡 . We measured 
the estimation approaches as well. In subsection 5.7.1 gives out 
the experimental settings. In subsection 5.7.2 define the overall 
accuracy. In subsection 5.7.3 define the scheduling 
performance. 

A. Experimental Setup 
Environments. The software and hardware is described for 

using in our experiments. A machine with Intel E3500 2.7GHz 
CPU and 4GB RAM is used for experiment. PostgreSQL 
database is run under Window 2007x64. whole configurations 
of Postgres are the default and turned off entire the statistics 
and tuning tools. TPC-H scale factor 10, denoted by 10GB is 
used. The configuration advisor of the PostgreSQL ensures the 
configuration parameters are well acquainted. 

Workload: Table III shown the workload of eighty 
instances of nine types of queries, which are chosen pursuant to 
the TPC-H and run on 10 GB database system. We limit the 
workload size and MPL by virtue of the long-term of queries in 
database system. Recall from Fig. 4 that 80 query workloads 
can take more than 6 hours to complete. 

Methodology: We generated 80 workloads due to choice of 
queries type, use our Gscheduler algorithm [1] with other two 
scheduling algorithms as FCFS, SJF. The completion times 
limit from 6 hours to more than 8 hours. We comparison acutal 
time as act and estimated completion time as est. the estimation 
error is computed as. 

49 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
|𝑒𝑠𝑡 − 𝑎𝑐𝑡|

𝑎𝑐𝑡
× 100 

B. Overall Accuracy 
The overall accuracy of our estimations. The relative 

estimation error in all 80 workloads in our experiment. In one 
case we use performance static model for First-Come-First-
Served, second, we use Shortest-Job-Next and third we use 
Gscheduler. Amjad et.al. defined Gscheduler is to schedule 
query mixes for a given query workload in order to minimize 
W’s total completion time. When query finished in query mix 
the Gscheduler chose query from the workload which will take 
minimum time for execution. The estimation errors in all cases 
are less than 20% of the 80% time. Aginst the 80 workload 
queries, these results show that our framework is accurate for 
estimating total completion time of the workload. 

The database administrator can accurate estimations for 
future workloads in a database with the help of one time 
samples. 

TABLE III. WORKLOAD OF QUERIES 

SF 𝐐𝟏 𝐐𝟒 𝐐𝟓 𝐐𝟔 𝐐𝟖 𝐐𝟏𝟎 𝐐𝟏𝟐 𝐐𝟏𝟒 𝐐𝟏𝟖 

10 3 12 6 13 8 15 6 13 4 

C. Scheduling Performance 
Here, our Gscheduler is compared with two other state of 

the art scheduling approaches from the literature. The 
scheduling approaches are compared  without any assistance 
from queueing models. 

The performance of scheduling algorithms in this section 
and compare with each other, First-Come-First-Served, 
Shortest-Job-Next and Gscheduler scheduling algorithms. We 
represent the number of similar mixes used for the performance 
static model to estimate. The workload W contains 80 queries, 
as shown in Table III. 

First-Come-First-Served is sensitive to the arrival order of 
queries in W, so we sequentially generate a sequence of queries 
and report the completion time of W. Shortest-Job-Next is not 
sensitive to the arrival order we select the shorted query based 
on query response time 𝑡𝑞 in isolation. Gscheduler is different 
from First -Come-First-Served, Shortest-Job-Next scheduler, 
we randomly select a query from W whenever a query finish. 
The performance of all schedulers shows in Fig. 4, 5, 6 and 7, 
respectively. 

 
Fig 4. Completion Times for Gscheduler, FCFS and SJN. 

 
Fig 5. Predicted and Actual Time of the Gscheduler. 

 
Fig 6. Predicted and Actual Time of the FCFS. 

50 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 6, 2020 

 
Fig 7. Predicted and Actual Time of the SJN. 

V. CONCLUSION AND FUTURE WORK 
In a business intelligence setting, it is substantial for 

database administrators to estimate the total completion time of 
the workload. The state of the art methods don’t tender any 
procedure for the database administrators to estimate the 
completion time of the workload. An approach, interaction into 
account is presented in this paper. Interaction aware 
experiment driven model assumbled with workload simulation 
for estimating completion time of the workload. an 
experimental evaluation with TPC-H benchmark running on 
PostgreSQL has proven that our approach can estimate 
workload completion time with high degree of accuracy across 
a broad spectrum of workloads. 

A full research agenda is moving forward. We want to 
conduct research to form an integrated characterizing 
framework for query mixes, which may help us learn more 
about to measure query interactions method so that we could 
improve the models. We would make plan to study the 
adaptable similarity model which could make more accurate 
prediction because the DBMS is changing over time. 

REFERENCES 
[1] Amjad, M. and J. Zhang, Gscheduler: A Query Scheduler Based on 

Query Interactions. In proceeding of the Web Information Systems and 
Applications, Lecture Notes in Computer Science, Springer, Cham, 
China: WISA, 2018: 11242. 

[2] Wasserman, T, J.  Martin, P. Skillicorn, D, B. and H. Rizvi, Developing 
a characterization of business intelligence workloads for sizing new 
database systems. In DOLAP, 2004. 

[3] Mishra, C. and N. Koudas, The design of a query monitoring system. 
ACM Trans. Database Syst., 34(1), 2009. 

[4] Guirguis, S. Sharaf, M. A. and P. K. Chrysanthis, A. Labrinidis, and K. 
Pruhs. Adaptive scheduling of web transactions. In ICDE, 2009. 

[5] Tozer, S. Brecht, T. and A. Aboulnaga, Q-Cop: Avoiding bad query 
mixes to minimize client timeouts under heavy loads[C]. Proc. of the 
26th International Conference on Data Engineering. Long Beach, 
California, USA: IEEE, 2010:397-408. 

[6] Akdere, M. Çetintemel, U. Riondato, M. et al., Learning-based Query 
Performance Modeling and Prediction [C]// Proc. of the 25th 
International Conference on Data Engineering. Washington, DC, USA: 
IEEE, 2012: 390-401. 

[7] Ganapathi, A. Kuno, H. Dayal, U. and J. L. Wiener, et al., Predicting 
multiple metrics for queries: Better decisions enabled by machine 
learning[C] // Proc. of the Int Conf Data Eng, 2009: 592–603. 

[8] Li, J. K ¨ onig, A. C. Narasayya, V. R and S. Chaudhuri, Robust 
estimation of resource consumption for sql queries using statistical 
techniques. PVLDB, 5(11):1555–1566, 2012.  

[9] Wu, W. Yun, C. Shenghuo, Z. and T. Jun'ichi, et al., Predicting Query 
Execution Time: Are Optimizer Cost Models Really Unusable? Proc. of 
the 29th International Conference on Data Engineering, Brisbane 
Computer Society, Australia: IEEE, 2013: 1081-1092. 

[10] M. Ahmad, M. Duan, S. Aboulnaga, A. and S. Babu, Predicting 
completion times of batch query workloads using interaction-aware 
models and simulation. In EDBT, pages 449–460, 2011. 

[11] Duggan, J. Cetintemel, U. Papaemmanouil, O. et al., Performance 
prediction for concurrent database workloads. In Proceeding of the 
ACM SIGMOD International Conference on Management of Data. 
Athens, Greece: ACM, 2011:337-348. 

[12] Ahmad, M. Aboulnaga, A. Babu, S. and K. Munagala, Interaction-aware 
scheduling of report-generation workloads. The VLDB Journal, 20:589–
615, 2011.  

[13] Ahmad, M. Duan, S. Aboulnaga, A and S. Babu, Predicting completion 
times of batch query workloads using interaction-aware models and 
simulation. In EDBT, pages 449–460, 2011.  

[14] Wu, W. Chi, Y.  Zhu, S. Tatemura, J. Hacıg¨ um ¨ us, H. and J. F. 
Naughton, Predicting query execution time: are optimizer cost models 
really unusable? In ICDE, 2013. 

[15] Li, J. Nehme, R.V. and JF. Naughton, GSLPI: a Cost-based Query 
Progress Indicator. Proc. of the 28th International Conference on Data 
Engineering, 2012, Washington DC, USA, IEEE Computer Society, pp. 
678-689. 

[16] Chaudhuri, S. Narasayya, V. R. and R. Ramamurthy, Estimating 
Progress of Execution for SQL Queries. Proc. of the 2004 ACM 
SIGMOD/PODS Conference ,2004, Paris, France, ACM, pp. 803-814. 

[17] Gupta, C.  Mehta, A. and U. Dayal, PQR: Predicting query execution 
times for autonomous workload management. In Proceedings of the 5th 
International Conference on Autonomic Computing (ICAC), 2008. 

[18] Babu, S. Borisov, N. Duan, S. Herodotou, H and V. Thummala, 
Automated experiment-driven management of (database) systems. In 
Proceedings of the 12th Workshop on Hot Topics in Operating Systems 
(HotOS), 2009. 

[19] Suri, R. Sahu, S. and M. Vernon, Approximate mean value analysis for 
closed queuing networks with multiple-server stations. In proceeding. Of 
Industrial Engineering Research Conference, 2007. 

[20] McKay, M. D. Conover, W. J. and R. J. Beckman, A Comparison of 
Three Methods for Selecting Values of Input Variables in the Analysis 
of Output From a Computer Code, Technometrics, 1979, 21,239-245. 

[21] M. Stein, Large Sample Properties of Simulations Using Latin 
Hypercube Sampling, Technometrics, 1987 29:2, 143-151, DOI: 
10.1080/00401706.1987.10488205. 

[22] Hicks, C. R. and K. V. Turner, Fundamental Concepts in the Design of 
Experiments. Oxford University Press, 1999. 

[23] Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K. Modeling and 
Exploiting Query Interactions in Database Systems . Proc. of the 17th 
ACM Conference on Information and Knowledge Management, 2008, 
Napa Valley, California, USA, ACM, pp. 183-192. 

[24] Luo, G. Naughton, J. F. Ellmann, C. J, et al. Toward a progress indicator 
for database queries[C] // Proc. of the ACM SIGMOD International 
Conference on Management of Data. Paris, France: ACM, 2004:791-
802. 

51 | P a g e  
www.ijacsa.thesai.org 


	Estimate the Total Completion Time of the Workload
	I. Introduction
	II. Realted Work
	A. Literature Review

	III. The Framework
	A. The Problem Definition
	B. The Structure of the Framework
	C. The Performance Static Model
	D. The Dynamic Model

	IV. Experiment Evaluation
	A. Experimental Setup
	B. Overall Accuracy
	C. Scheduling Performance

	V. Conclusion and Future Work
	References


